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Facile Catalytic SNAr Reaction of Nonactivated Fluoroarenes with Amines 
Using h6-Benzene Ruthenium(II) Complex
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Abstract: Catalytic SNAr reaction of fluoroarenes possessing no
electron-withdrawing group(s) with cyclic amines was achieved us-
ing a readily accessible Ru catalyst, which was prepared from
[Ru(benzene)Cl2]2, AgOTf, and P(p-FC6H4)3. The coexistence of
molecular sieves MS4A realized high conversion and various sub-
stituted aryl amines were obtained in good to high yields.
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The nucleophilic aromatic substitution (SNAr) reaction of
haloarene is one of the most established and practical re-
actions to synthesize various substituted arenes. Electron-
deficient aromatic compounds with strong electron-with-
drawing group(s), such as nitro and cyano groups, can be
submitted to this reaction, while nonactivated arenes,
which have no electron-withdrawing substituent(s), are
generally inappropriate substrates.1

Recently, we developed the first catalytic SNAr reaction of
nonactivated fluoroarenes with amines using a ruthenium
catalyst (Scheme 1).2,3 The stoichiometric use of transi-
tion metal h6-arene complex, such as chromium carbonyl
complex, had been a common protocol for the SNAr reac-
tion of electron-rich arenes,4 therefore, our results could
eliminate the stepwise process where the transition metal
must be attached and detached.5

Scheme 1 Our previous work on catalytic SNAr reaction

In our previous paper, however, we used thermally sensi-
tive ruthenium complex [Ru(cod)(2-methylallyl)2], DPP-
Pent [1,5-bis(diphenylphosphino)pentane], and strong
acid (trifluoromethanesulfonic acid) for the preparation of
Ru h6-fluoroarene complex, which is the key intermediate
in the SNAr reaction (complex 2 shown in Scheme 2).6

Moreover, the addition of triethylamine and triethylsilane
was needed for high conversion. We next explored a more
facile protocol using h6-arene ruthenium(II) complex
such as 1, which directly provides the key intermediate 2
by arene exchange with fluoroarenes (Scheme 2).

Scheme 2 Exchange of h6-arene ligand following SNAr reaction

With these facts in mind, we examined h6-benzene ruthe-
nium(II)–phosphine complex, using the dichloro(ben-
zene)ruthenium(II) dimer {[Ru(benzene)Cl2]2} as a stable
precursor. The dichloro(arene)ruthenium(II) dimers are
widely used as precursors for various monomeric Ru cat-
alysts. For example, they are mostly used for the prepara-
tion of ruthenium–chiral diphosphine catalysts in
asymmetric hydrogenation, but their use as arene tem-
plates in catalytic reaction has never been reported as far
as we know. The reaction of p-fluorotoluene with mor-
pholine was chosen as a model reaction (Table 1). When
[Ru(benzene)Cl2]2 was used with PPh3 in refluxing 1,4-di-
oxane, the reaction did not proceed at all (entry 1). Next,
we examined a few silver salts for the preparation of cat-
ionic complexes, which are expected to induce facile are-
ne exchange. As a result, the desired aminated product 3
was obtained and AgOTf gave the best yield among them
(entries 2–4).7

We then screened phosphine ligands. As for monodentate
ligands, electron-rich monodentate phosphines, such as
P(p-MeC6H4)3 and P(p-MeOC6H4)3 gave comparable re-
sults with PPh3. In contrast, electron-deficient monoden-
tate phosphine P(p-FC6H4)3 improved the yield up to 55%,
but more electron-deficient P(p-CF3C6H4)3 did not give
better results (entries 5–8). Bidentate ligands, such as DP-
PB, DPPPent and DPPF, also facilitated the reaction but
the yields did not exceed that of P(p-FC6H4)3 (entries 9–
11). For the further optimization, we examined organic
bases as HF scavenger and the addition of triethylamine
realized the yield of 60% (entries 12–14). Inorganic bases,
such as K2CO3 and Na2CO3, were ineffective but molecu-
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lar sieves 4A (MS4A) promoted this reaction8 and the
highest yield of 80% was achieved (entry 15).

With the optimized conditions in hand, we then examined
the substrate scope in the present catalytic system
(Table 2). Fluorobenzene, m-fluorotoluene, and fluoroxy-
lene underwent SNAr reaction and furnished the corre-
sponding products in high yields (entries 1–3).
Fluoroarenes bearing ethyl group and allyl group also
achieved good yields but double-bond isomerization oc-
curred to give styrene derivative in the latter case (entries

4 and 5).9 In the case of sterically hindered o-fluorotolu-
ene, the yield was moderate (entry 6). Methoxy-substitut-
ed fluoroarenes were also available for this reaction
(entries 7–9). Even a fluoroarene bearing two methoxy
groups also realized a catalytic reaction (entry 10). Dime-
thylamino group is more electron-donating than methoxy
group, but it could be furnished into the substrate (entry
11).10,11

Table 1 Screening of Reaction Conditions

Entry Ag salt Ligand Additive Yield (%)

1 – PPh3 – NR

2 AgOTf PPh3 – 48

3 AgBF4 PPh3 – 27

4 AgSbF6 PPh3 – 34

5 AgOTf P(p-MeC6H4)3 – 39

6 AgOTf P(p-MeOC6H4)3 – 41

7 AgOTf P(p-FC6H4)3 – 55

8 AgOTf P(p-CF3C6H4)3 – 45

9a AgOTf DPPF – 26

10a AgOTf DPPB – 34

11a AgOTf DPPPent – 40

12 AgOTf P(p-FC6H4)3 Et3N 63

13 AgOTf P(p-FC6H4)3 TMEDA 17

14 AgOTf P(p-FC6H4)3 pyridine 1

15b AgOTf P(p-FC6H4)3 MS4A 80

a Diphosphine ligand (6 mol%) was used.
b MS4A (40 mg) was used in the 0.4-mmol scale reaction. DPPF: 1,1-bis(diphenylphosphino)ferrocene, DPPB: 1,4-bis(diphenylphosphino)bu-
tane, TMEDA: N,N,N¢,N′-tetramethylethylenediamine.

F

+

O

H
N

[Ru(benzene)Cl2]2 (2.5 mol%)
Ag salt (10.5 mol%)

ligand (12 mol%)

additive (1 equiv)
dioxane, reflux, 24 h

5 equiv 1 equiv

N

O

3

Table 2 Screening of Fluoroarenes in the Reaction with Morpholine

Entry Substrate Product Yield (%)

1 82

N

OF

+

[Ru(benzene)Cl2]2 (2.5 mol%)
AgOTf (10.5 mol%)

P(p-FC6H4)3 (12 mol%)

4 Å MS, dioxane, reflux, 24 h

5 equiv 1 equiv

R
RO

H
N

F
N

O



LETTER SNAr Reaction of Nonactivated Fluoroarenes with Amines 2603

Synlett 2010, No. 17, 2601–2606 © Thieme Stuttgart · New York

2 83

3 81

4 70

5 68a

6 44

7 50

8 57

9 55

10 30

11 47

a E:Z = 18:1.

Table 2 Screening of Fluoroarenes in the Reaction with Morpholine (continued)

Entry Substrate Product Yield (%)
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The results of the reactions of other amines with p-fluoro-
toluene are shown in Scheme 3. Piperidine and N-meth-
ylpiperazine were also good substrates and gave the
corresponding products in good yields (Scheme 3).

We supposed that the reaction proceeds via cationic Ru
h6-arene complexes A, B and C, which possess arene, two
phosphines and a trifluoromethanesulfonate group as
weakly coordinating ligands (Scheme 4). We actually
confirmed the reaction intermediates by ESI mass analy-
sis. Ru h6-benzene complex A was prepared from
[Ru(benzene)Cl2]2, AgOTf and P(p-FC6H4)3 in 1,4-diox-
ane.12,13 It was treated with excess amounts of p-fluorotol-
uene, and heated at reflux for four hours. Then the
resulting mixture was analyzed by ESI mass analysis. As
a result, the expected ruthenium h6-fluorotoluene com-
plex B was detected (Figure 1).13 Addition of morpholine
converted the complex B into the ruthenium h6-morpholi-
notoluene complex C, which was also detected
(Figure 2).13

Scheme 3 SNAr reaction of fluorotoluene with piperidine and N-methylpiperazine
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Figure 1 Detection of complex B prepared by arene exchange with complex A

Scheme 4 Proposed and confirmed scheme via cationic ruthenium
h6-arene complexes
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In conclusion, we have developed a facile ruthenium-
catalyzed SNAr reaction using dichloro(benzene)rutheni-
um(II) dimer as a catalyst precursor.14 The cationic spe-
cies were generated by the addition of silver salt in the
presence of P(p-FC6H4)3, and the reaction key intermedi-
ates were directly generated in situ by arene exchange
with fluoroarenes. The reaction of various fluoroarenes
with cyclic amines efficiently proceeded in the coexist-
ence with MS4A and the corresponding aminated prod-
ucts were obtained in good to high yields.
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