HYDROSILATION OF α, α, α -TRICHLOROALKENES IN THE PRESENCE OF $H_2PtCl_6 \cdot 6H_2O$

M. A. Galkina, E. Ts. Chukovskaya, and R. Kh. Freidlina*

UDC 542.97:547.413.4:547.1'128

In compounds of the type $CCl_3(CH_2)_nCH=CH_2$ (n = 0, 2), hydrosilation (HS) may occur at the multiple bond; in the presence of metal peroxides or carbonyls, the CCl_3 group is reduced to $CHCl_2$ [1]; and, finally, intra- or intermolecular addition of CCl_3 to the multiple bond may take place, as described in [2].

In the present work we investigated the possibility of selective HS of 5,5,5-trichloropentene-1 (I) and 3,3,3-trichloropropene (II) without involving the CCl₃ group. Preliminary experiments showed that the reaction of Et_3SiH with (I) in the presence of tert-butyl peroxide (140°C), Co₂ (CO)₈ (40°C), or Fe(CO)₅ (140°C) does not yield an HS product or hydrogenolysis products. A positive result was obtained by using H₂PtCl₆·6H₂O; in this case HS occurs at around 20°C, and hydrogenolysis is obtained at 120-140°C (cf. [3] and [4]).

With chloroalkene (I) the reaction proceeds according to the scheme

$$CH_2 = CH(CH_2)_2CCl_3 + HSiEt_3 \rightarrow Et_3Si(CH_2)_4CCl_3.$$
(III)

Adduct (III) was obtained in 67% yield during complete conversion of (I); $Et_3SiCl (0.7\%)$, $(Et_3Si)_2O (2.3\%)$, and isomerization products of (I) - Z, E isomers of $CCl_3CH_2CH = CHCH_3 (5\%)$ yield) - were also formed.

The reaction with trichloroalkene (II) is much more complex and affords a multicomponent product mixture [yield, % of (II): $CCl_2=CHCH_3$ (IV), 55; $CCl_3CH_2CH_3$ (V) 17; $Et_3SiCCl=CHCH_3$ (VI), 9; $Et_3SiCH_2CH_2CCl_3$ (VII), 7; $Et_3SiCH_2CH_2CH_2CH_2SiEt_3$ (VIII), 0.4]. In addition, Et_3SiCl (39%) and $(Et_3Si)_2O$ (10%) were formed; their yield was calculated on the basis of Et_3SiH . The conversion of Et_3SiH was 79%. The yield of adduct (VII) was insignificant; the major reaction pathway led to the formation of dichloropropene (IV). Special experiments (see experimental section) showed that, under the given reaction conditions, (II) is not rearranged to $CCl_2=CHCH_2Cl$ (IX), and (IX) is not reduced to $CCl_2=CHCH_3$ (IV). Using dichloro-alkenes (IX) and (IV) as examples, it was shown that HS does not take place in compounds with a dichlorovinyl grouping in the presence of $H_2PtCl_6 \cdot 6H_2O$ under selective conditions. Therefore, products (IV)-(VIII) probably are obtained by a scheme analogous to that proposed in [5], including the formation of an intermediate Pt complex with Et_3SiH and alkene.

The structure of starting compounds (I) and (II) and the products of their reaction with Et_3SiH were determined from ¹³C NMR (Table 1) and PMR (Table 2) spectra. The chemical shifts in the ¹³C NMR spectra were compared with their hydrocarbon analogs. For triethylalkyl-silanes the α , β , and γ effects of the Et_3Si group are similar (+2 ppm); for alkenesilanes the α and β effects are much larger. According to the PMR data, the ratio of Z and E isomers in chloroalkenesilanes (VI) is 4:1.

EXPERIMENTAL

Trichloroalkenes (I) and (II) were obtained according to [6] and [7], respectively. Their purity was determined by GLC analysis, and their structure was confirmed by 13 C NMR spectra. The GLC analysis was performed on an LKhM-8MD chromatograph with a katharometer; carrier gas, He; columns (steel): A) 2 m × 3 mm, 15% SKTFT; B) 2 m × 3 mm, 15% SE-301 on Chromaton N-AW-HMDS (0.16-0.20 mm). For preparative GLC a Tsvet-2 instrument with a preparative adapter was used; steel column, 55 cm × 8 mm, Chromaton N-AW (0.31-0.40) with 10% $\times Deceased$.

A. N. Nesmeyanov Institute of Heteroorganic Chemistry, Academy of Sciences of the USSR, Moscow. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 5, pp. 1095-1097, May, 1987. Original article submitted December 23, 1985.

TABLE 1.	¹³ C	NMR	Spectra
----------	-----------------	-----	---------

		ð, ppm				
Compound			C ²	C3	C ¹ ′ C ⁴	C ² ' C ⁵
$\begin{array}{c} 2' & 1' & 1 & 2 & 3 \\ (CH_{3}CH_{2}) _{3}SiCH_{2}CH_{2}CCl_{3} & (VII) \\ (CH_{3}CH_{2}) _{3}SiCCl = CHCH_{3} & (VI) \\ (CH_{3}CH_{2}) _{3}SiCH_{2}CH_{2}CH_{2}Si(CH_{2}CH_{3}) _{3} & (VIII) * \\ (CH_{3}CH_{2}) _{3}SiCH_{2}CH_{2}CH_{2}CH_{2}CCl_{3} & (III) \end{array}$	$Z \\ E$	8,3 136,3 133,7 16,6 11,4	50,6 134,9 139,2 18,5 23,0	102,3 14,2 15,7 16,6 30,4	$\begin{vmatrix} 3,0 \\ 2,6 \\ 3,9 \\ 3,6 \\ 3,4 \\ 55,1 \end{vmatrix}$	7,3 6,9 6,4 7,4 7,3 100,1
$\begin{array}{c} 1 & 2 & 3 \\ CH_3CH_2CCl_3 & (V) \\ CCl_2 = CHCH_3 & (IV) \\ CH_2 = CHCH_2CH_2CCl_3 & (I) \\ CH_3CH = CHCH_2CCl_3 & \dagger \end{array}$		10,5 120,8 116,5 13,2 17,8	48,7 124,3 134,6 122,4 123,1	$100,0 \\ 14,5 \\ 30,5 \\ 129,9 \\ 132,7$	- 54,2 54,9 57,8	 99,2 99,8 98,7

 $*J_{C-H}$ for C¹ and C³, 116 Hz; for C², 127 Hz. +The spectrum was obtained for fraction I, experiment 1.

TABLE 2. PMR Spectral Parameters of Organosilicon Compour	TABLE 2.	PMR Spectral	Parameters	of	Organosilicon	Compounds
---	----------	--------------	------------	----	---------------	-----------

		δ, ppm				
Compound	CH ₂	СН3	CCl ₃ CH ₂ , CH ₃	CH2, CH=		
(III)	0,51q 0,56q	0,94 t	2,65 m	1,40 m 1,80 m		
(VII)	0,55 q 1,03 q	1,00 t	2,52 m	-		
(VIII)	0,51 q	0,94,t		1,36 m		
(VI) * Z E	0,68 q 0,68 q	0,92 t 0,92 t	1,72 d 1,81 d	6,51 q 6,01 q		

$$J_{H,H'}^{Z} = 6.36; J_{H,H'}^{E} = 7.31 \text{ Hz}.$$

SE-301. PMR and ¹³C NMR spectra, with and without CH-interaction quenching and using the DEPT method, we obtained on a Brucker WP-200SY spectrometer, with $CHCl_3$ and CCl_4 as standards. PMR spectra were obtained for 30-50% solutions in CCl_4 or $CHCl_3$, with TMS as standard.

<u>5,5,5-Trichloroamyltriethylsilane (III)</u>. A mixture of Et_3SiH (105 mmoles) and CCl_3CH_2 . CH₂CH=CH₂ (70 mmoles) were placed in a three-necked flask equipped with a mixer, reflux condenser, and thermometer. The air in the apparatus was displaced by nitrogen, and 30 drops of 10% H₂PtCl₆·6H₂O in i-C₃H₇OH were added at 20-25°C. The mixture was left at \sim 20°C for two days, filtered through an Al₂O₃ (1.5 cm) layer, and Al₂O₃ was washed with pentane. After evaporation on an aspirator, 1 g of fraction (I) was obtained; bp, 40-60°C (60 mm). Compound (III) was obtained by vacuum distillation; yield, 67%, 113-114°C (1 mm); np²⁰ 1.4756; d₄²⁰ 1.0634; found (%): C, 45.74; H, 8.32; Si, 9.31; Cl, 36.86 (C₁₁H₂₃Cl₃Si); calculated (%): C, 45.59; H, 8.00; Si, 9.69; Cl, 36.71. For ¹³C NMR spectra, see Tables 1 and 2. In addition, $Et_3SiCl (0.7\%)$ and $(Et_3Si)_2O (2.3\%)$ were isolated. The PMR spectrum of fraction (I) was as follows (δ , ppm): 1.77, d (CH₃); 3.27, d, and 3.37, d (Z, E-CH₂); 5.5-5.9 (CH=CH).

Reaction of CCl₃CH=CH₂ with Et₃SiH. In an analogous manner, Et₃SiH (300 mmoles), CCl₃CH=CH₂ (150 mmoles), and H₂PtCl₆·6H₂O (30 drops), after distillation, yielded the following fractions: I, 30-69°C (60 mm), 26.7 g; II, 40-49°C (15 mm), 11.7 g; III, 56-95°C (2 mm), 13.9 g; residue, 0.8 g. The compounds CCl_2 =CHCH₃ (IV) and $CCl_3CH_2CH_3$ (V) were isolated from fraction (I) by distillation. Et₃SiCl was isolated from fraction (II), and the following compounds were obtained from fraction (III) by preparative GLC: a mixture of E and Z isomers of Et₃SiCl=CHCH₃ (VI), Et₃SiCH₂CH₂CCl₃ (VII) (cf. [8]), (Et₃SiCH₂)₂CH₂ (VIII) (cf. [9]), and (Et₃Si)₂O. The yields of compounds (IV)-(VIII) are given in the general section; NMR spectra are shown in Tables 1 and 2. The following data were obtained for E, Z-(VI) isomers: Found (%): C, 55.96; H, 9.93; Si, 14.73; Cl, 18.70 (C₉H₁₉SiCl); calculated (%): C, 56.66; H, 10.04; Si, 14.72; Cl, 18.58.

<u>Reaction of Et₃SiH with CCl₂=CHCH₂X (X = H, Cl)</u>. In an analogous manner, Et₃SiH (28 mmoles), CCl₂ = CHCH₂X (14.2 mmoles), and H₂PtCl₆·6H₂O (3 drops) afforded, after distillation, Et₃SiH (83%), CCl₂ = CHCH₂X (96%), and Et₃SiCl (3%). AT X = H, Et₃SiCCl=CHCH₃ (1%), and (Et₃Si)₂O (0.4%) were also obtained.

CONCLUSIONS

1. In the presence of $H_2PtCl_6 \cdot 6H_2O$, Et_3SiH is readily added to 5,5,5-trichloropent-1ene at room temperature.

2. Reaction of $CCl_3CH=CH_2$ with Et_3SiH gives $CCl_2=CHCH_3$ as the main reaction product.

LITERATURE CITED

1. E. C. Chukovskaya, R. Kh. Freidlina, and N. A. Kuzmina, Synthesis, 773 (1983).

2. R. Kh. Freidlina and E. C. Chukovskaya, Synthesis, 497 (1974).

- 3. J. L. Speier, "Homogeneous catalysis of hydrosilation by transition metals," Advances in Organometallic Chemistry, Vol. 17, Academic Press, New York (1979), pp. 407-447.
- 4. E. Ts. Chukovskaya, N. A. Kuz'mina, and R. Kh. Freidlina, Dokl. Akad. Nauk SSSR, <u>175</u>, 105 (1967).
- 5. J. F. Harrod and A. J. Chalk, "Hydrosilation catalyzed by Group VIII complexes," Organic Synthesis via Metal Carbonyls, Vol. 2, Wiley-Interscience, New York-London, (1977), pp. 673-705.
- 6. Methods in Heteroorganic Chemistry. Chlorine. Aliphatic Compounds [in Russian], Moscow (1973), p. 473.
- 7. R. Kh. Freidlina, E. Ts. Chukovskaya, N. A. Kuz'mina, and A. A. Kamyshova, Izv. Akad. Nauk SSSR, Ser. Khim., 1322 (1968).
- 8. R. A. Benkeser, E. W. Bennett, and R. A. Hickner, J. Am. Chem. Soc., 79, 6253 (1957).
- 9. J. Okunuko, S. Kumagai, and M. Nara, Pat. 8020.734 (Japan), Chem. Abstr., <u>93</u>, P101371x (1980).

DEMERCURATION OF SECONDARY-BENZYLIC TYPE ORGANOMERCURY

COMPOUNDS IN METHANOL AND NITROMETHANE

К.	Ρ.	Butin, T. V. Magdesieva	, and	UDC 541.127:542.92:
0.	Α.	Reutov		547.559.49

Based on the results of a study of the solvolytic demercuration of 1-(8-quinoly1)ethy1mercuric bromide in methanol [1, 2], a radical mechanism has been proposed for this reaction. In the present paper we have sought to expand the range of benzylic organomercury compounds which have been studied, and also to obtain direct evidence for the radical character of the reaction process. Toward this end, another secondary-benzylic type organomercury system was selected for study, namely, 1-phenylethylmercuric bromide. It was found that this compound behaves the same as the previously investigated compound, 1-(8-quinoly1)ethylmercuric bromide, under the conditions of solvolytic demercuration. It is readily demercurated upon refluxing in methanol, generating elemental mercury and the methyl ether of phenylmethylcarbinol in nearly quantitative yields. Secondary-benzylic organomercury compounds (OMC)

> PhCHMe MeOH PhCHMe + Hg(0) + HBr (1) $H_{gBr} \xrightarrow{I_{65^{\circ}}} I_{OMe}$

undergo facile demercuration even upon heating in an aprotic solvent such as nitromethane. The product composition for these reactions is given in Table 1. No traces of reaction are seen, however, in benzene solution at 80°C after 15 h.

EPR spectroscopy proved useful in detecting the radical particles formed as a result of

1012 0568-5230/87/3605-1012\$12.50 © 1987 Plenum Publishing Corporation

M. V. Lomonosov Moscow State University. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 5, pp. 1097-1101, May, 1987. Original article submitted September 17, 1985.