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The gold(III)-catalyzed rearrangement of tetrasubstituted 1-
alkynyloxiranes is described. This transformation led to a dif-
ferent reaction outcome with respect to related substrates
previously studied. Thus, tertiary α-alkynylketones or alkyn-
ols can be selectively obtained. Moreover, gold(III) proved

Introduction

Epoxides are readily available and versatile intermediates
in organic synthesis, as they can be easily converted into
various valuable building blocks.[1] Among this class of
compounds, transformations involving 1-alkynyloxiranes
have received particular attention, because they enable the
regioselective preparation of furan derivatives. This isomer-
ization was described more than 30 years ago; however, it
occurs under harsh reaction conditions with a limited scope
of substrates.[2] Considering the ability of gold catalysts to
activate alkynes,[3] Hashmi et al. elegantly developed a mild
and functional group compatible protocol to achieve this
interesting transformation making use of AuCl3 as catalyst
(Scheme 1a).[4] Subsequently, Yoshida et al.[5] and Pale et
al.[6] reported on analogous transformations employing
platinum and silver catalysts, respectively (Scheme 1b),[7]

which widen the scope of this transformation.[8] Notably,
these studies have been exclusively focused on di- and tri-
substituted oxiranes, whereas the use of the corresponding
tetrasubstituted analogues remained unexplored.[9] Con-
sidering the strong influence of the structure of the sub-
strates in gold-catalyzed transformations,[3] we envisioned
that the replacement of H atoms in the oxirane ring by dif-
ferent substituents might translate into a different reactivity
(Scheme 1c). Herein, we report our findings on the reactiv-
ity of easily available tetrasubstituted 1-alkynyl epoxides 1
in the presence of gold catalysts, which led us to find an
alternative reaction outcome of these compounds.
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capable to catalyze the rearrangement of simple epoxides.
These results indicate that gold(III) complexes act as oxo-
philic Lewis acids rather than π-acids in these transforma-
tions.

Scheme 1. Metal-catalyzed isomerization of 1-alkynylepoxides.

Results and Discussion

We selected alkynyloxirane 1a as a model substrate and
subjected it to the conditions previously reported by
Hashmi: AuCl3 (5.0 mol-%) in acetonitrile at ambient tem-
perature (Scheme 2).[4] Under these reaction conditions, ter-
tiary α-alkynylketone 2a was obtained as a sole product in
a moderate yield of 40%. This result is noteworthy despite
the low yield, because a different reaction outcome from
that previously reported for 1-alkynylepoxides is observed,
as we anticipated.[4–7] Gratifyingly, when we used THF or
1,2-dichloroethane (DCE) as the solvent, the yield in-
creased to a reasonable value of 80 or 84 %, respectively.[10]

Scheme 2. Initial findings.
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Next, we studied several alkynyloxiranes to evaluate the

scope of this transformation (Table 1). Thus, alkynes bear-
ing aryl, TMS, or various alkyl substituents (R1 = nBu, n-
C8H17, c-C3H7, tBu) were efficiently converted into the cor-
responding cyclohexanone derivatives 2a–g in moderate to
good yields. In contrast, substrates bearing a terminal al-
kyne (i.e., 1h, R1 = H), a six-membered ring in the spiro
structure [i.e., 1i, R3–R4 = –(CH2)5–], or without a spiro
core (i.e., 1j, R3 = R4 = Me) gave rise to unsatisfactory
conversions when employing AuCl3 as the catalyst. Never-
theless, the use of a catalytic system comprising a mixture
of AuCl3 and Ag(BF4) (5.0/15.0 mol-%, respectively) en-
abled ketones 2h–j to be obtained in acceptable yields.[11,12]

Interestingly, an unsymmetrically substituted oxirane (R3 =
Bn, R4 = Me) was converted with complete selectivity into
ketone 2k, although a higher reaction temperature was re-
quired. In contrast, the presence of an aromatic ring as the
R2 substituent seems necessary, as all attempts to obtain
ketone 2l gave rise to complex or sluggish reaction mixtures.

Table 1. Gold-catalyzed rearrangement of epoxides 1 into ketones
2 (isolated yield in parentheses).

[a] PMP = 4-MeOC6H4. [b] In the presence of Ag(BF4) (15.0 mol-
%). [c] At 0 °C. [d] At 70 °C. [e] Ketone 2l was detected in the crude
reaction mixture, but could not be isolated pure.

To gain insight into the mechanism of this transforma-
tion, we performed the reaction by using alcohols as nucleo-
philes. Thus, when the reaction of 1a was carried out with
methanol as the co-solvent (Scheme 3a), a separable mix-
ture of ketone 2a and alkynol 3a was obtained in good com-
bined yield (80 % total yield; 2a/3a = 2.3:1). Conversely,
when methanol was used as the solvent, compound 3a was
obtained as the only reaction product in good yield. In this
manner, various highly functionalized alcohols 3a–d were

www.eurjoc.org © 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Eur. J. Org. Chem. 0000, 0–02

prepared in good yield (Scheme 3b). Remarkably, the for-
mation of compounds 3 took place with complete chemo-
and regioselectivity, as we did not observe products derived
from the hydroalkoxylation of the alkyne, and the reaction
occurred exclusively at the propargylic position.

Scheme 3. Gold-catalyzed reactions of epoxides 1 in the presence
of nucleophiles (isolated yield in parentheses).

A plausible mechanistic scenario that would account for
this particular reaction outcome is depicted in Scheme 4.
Hence, the coordination of the gold catalyst to the alkynyl
epoxide, described as intermediate [1-Au], might favor acti-
vation of the propargylic position. This type of coordina-
tion and activation has been previously proposed by Pale
et al.[6b] and Campagne et al.[13] for other gold-catalyzed
processes involving alkynyl epoxides and propargylic
alcohols, respectively. This activation likely affords stabi-
lized propargylic carbocation intermediate I, in line with
the proposal of Campagne et al.[13] The required presence
of a stabilizing phenyl group as the R2 substituent (see
Table 1) might support this proposal. Subsequently, Mein-
wald-type rearrangement involving 1,2-alkyl migration
might give rise to α-alkynylketones 2.[14,15] In contrast,
when the reaction is carried out in the presence of an
alcohol, intermediate I can be trapped to afford the corre-
sponding alkynols 3.[16] Additionally, we ruled out the pos-
sibility that ketones 2 could arise from alkynols 3 through a
pinacol-type rearrangement, as compounds 3 proved stable
towards AuCl3 (5.0 mol-%) at a reaction temperature as
high as 70 °C (DCE, 24 h).

Scheme 4. Proposed mechanism.
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Finally, according to this mechanistic proposal and con-
sidering the oxophilic character of gold(III) complexes,[17]

we decided to evaluate whether or not the presence of the
alkyne is required to perform an epoxide rearrangement.
Interestingly, we found that AuCl3 (5.0 mol-%, DCE, r.t.)
proved capable to catalyze the Meinwald-type rearrange-
ment of representative epoxides 4 to ketones 5 in moderate
to good yields (Scheme 5). This result clearly reveals the
ability of gold(III) catalysts to act efficiently not only as a
π-Lewis acid but also as a σ-oxophilic Lewis acid.[18,19]

Scheme 5. Gold-catalyzed rearrangement of epoxides 4 into
ketones 5.

Conclusions
In summary, we have disclosed that the reactivity of 1-

alkynyloxiranes in the presence of gold(III) catalysts is
strongly affected by the substituents. Thus, whereas pre-
vious studies involving di- and trisubstituted epoxides af-
forded furan derivatives, the use of the corresponding tetra-
substituted analogues selectively gives rise to synthetically
relevant tertiary α-alkynylketones 2[20] by Meinwald-type re-
arrangement. The chemo- and regioselective formation of
alkynols 3 when the reaction is conducted by using alcohols
as solvent suggests the participation of a propargyl carbo-
cation as the intermediate. Finally, the capability of
gold(III) to act as a σ-oxophilic Lewis acid catalyst was
illustrated in the rearrangement of simple epoxides 4. This
unusual reactivity trend could be further exploited to de-
velop catalytic processes in which gold catalysts activate dif-
ferent functionalities.

Experimental Section
Preparation of 2-Phenyl-2-(phenylethynyl)cyclohexanone (2a) as a
Representative Procedure: To a stirred solution of AuCl3 (4.5 mg,
5.0 mol-%) in 1,2-dichloroethane (ca. 0.1 m) at 20 °C was added
alkynylepoxide 1a (82 mg, 1.0 equiv., 0.3 mmol) in one portion.
The resulting mixture was stirred at this temperature until 1a was
completely consumed (TLC analysis, reaction time = 1 h). Then,
the solvent was removed under vacuum, and the resulting residue
was purified by flash column chromatography (SiO2) to yield 2a as
a white solid (69 mg, 84%).

Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures and copies of the 1H NMR and 13C
NMR spectra.
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