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This work presents the first structure-based activity prediction model for benzothiadiazines against
various genotypes of HCV NS5b polymerase (1a, 1b and 4).The model is a comprehensive workflow of
structure-based field template followed by guided docking. The field template was used as a pre-filter
and a tool to provide hits in good orientation and position. It was created based on detailed molecular
interaction field analysis which includes Topomer CoMFA, grid independent analysis and Superstar. On
the other hand, Guided docking was used as a refinement and assessment tool. It was actively directed
by two scores: Moldock score as an interaction descriptor (r2 = 0.65) and a template similarity score as
a measure for accurate binding-mode compliance. The docking template was based on energy-based
pharmacophore analysis. The whole procedure was formulated and tweaked for both screening (ROC
of AUC = 0.91) and activity prediction (r2 of 0.8) for the genotype 1a. In order to widen the model scope,
linear interaction energy was used as a tool for predicting activities of other genotypes based on the
docked ligand poses while mutation binding energy was used to investigate the effect of each amino acid
mutation in genotype 4. The model was applied for structure-based fragment hopping by screening a
library designed by reaction enumeration. A top scoring hit was used to generate a focused library such
that it has lower TPSA than the original class ligands and thus better pharmacokinetic properties. After
that, experimental validation was carried out by the synthesis of this library and its biological evaluation
which yielded compounds that exhibit EC50 ranging from 1.86 to 23 lM.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The hepatitis C virus (HCV) is a member of the Flaviviridae
family. Chronic infection with this virus is associated with liver cir-
rhosis that often leads to hepatic failure and hepatocellular carci-
noma. Although the number of new infections has been
significantly reduced by the introduction of reliable blood testing,
more than 170 million people worldwide are chronically infected
with HCV, which has become a global health threat and the main
cause of adult liver transplants in developed nations. There is no
effective therapy for HCV-associated chronic hepatitis up till
now. As a result, hepatitis C is considered a major public health
threat and there is a growing unmet medical need to discover no-
vel therapies.1,2 Employing HCV proteins as targets, directly acting
antiviral agents have been identified and collectively described as
‘specifically targeted antiviral therapy for HCV0 (STAT-C).3–5 Among
the nonstructural proteins, NS3–4A protease, NS5B polymerase,
NS3 helicase and NS5A have been the object of intense research ef-
forts both by academia and pharmaceutical companies.6,7 NS5B
ll rights reserved.
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mail).
RNA-dependent RNA polymerase is recognized as a key target for
therapeutic intervention mainly because it is not present in mam-
malian cells and offers a wide range of possibilities for the discov-
ery of new molecular entities as anti-HCV agents.8–11 Mechanistic
and structural studies of this enzyme have revealed the existence
of multiple allosteric binding sites, and in particular two thumb
sites (thumb I and II) and three palm pockets (palm I, II and III)
have been identified to date.12 According to the target site, the dif-
ferent inhibitors will be referred to as palm site I NNIs (PSI-NNIs),
palm site II NNIs (PSII-NNIs), palm site III NNIs (PSIII-NNIs), thumb
site I NNIs (TSI-NNIs) and thumb site II NNIs (TSII-NNIs). Out of
these different allosteric sites and their corresponding inhibitors,
we focused this study on palm I site and in particular on benzothi-
adiazines as one of the main palm I-NNI13 (non-nucleoside inhibi-
tors) (see Figs. S1 and S2 in the Supplementary data and see full
account on the different allosteric sites in Section 1.1 HCV general
information).

The main aims of this study can be outlined in these points:

1. The development for the first time a structure-based activity
prediction model for the benzothiadiazine class which has
wider applicability domain14 than that of the ligand based ones.

http://dx.doi.org/10.1016/j.bmc.2012.01.031
mailto:mhismaeel@yahoo.com
http://dx.doi.org/10.1016/j.bmc.2012.01.031
http://www.sciencedirect.com/science/journal/09680896
http://www.elsevier.com/locate/bmc


Table 1
Mini review on the CADD attempts for benzothiadiazines and benzothiazines

Hendricks
et al.

Ab initio calculations were employed for conformational
analysis of a series of compounds61,62 The importance of
internal hydrogen bonding was highlighted as the main
method to achieve NS5b-bound conformations

Melagraki
et al.

Melagraki et al. built MLR QSAR model using lipophilicity,
HOMO energy, Ki2, KiInf0 and KiInf3 as descriptors.15 This
was carried out for Substituted hydroxyquinolone-
benzothiadiazine and substituted naphthyridone-
benzothiadiazine derivatives

Pourbasheer
et al.

Pourbasheer et al.16 built MLR and SVM models using seven
descriptors (hydration energy, PW4, GATS2m, GATS7m,
GATS5p, RDF095e and Mor30m) to study pyridazinone-
benzothiadiazine

Chen et al. Chen et al.17 carried out both 2D-QSAR and 3D-QSAR using
MFA coupled with G/PLS to study Benzoisothiazoles dioxide,
benzothiophenes dioxide

Wang et al. Wang et al.18 developed ligand-based and receptor-based
CoMFA and CoMSIA models for large number of
benzothiadiazines. Homology model was developed for
genotype 1a in this study. It was used to obtain receptor-
based alignment for CoMFA analysis via automated docking
procedure. Besides, binding mode was studied via Molecular
dynamics experiment

Li et al. Li et al.20 used MD-simulation to study binding mode of
benzothiadiazines and other palm I classes. MM-GB/SA
calculations together with free energy decomposition were
deployed in this study
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This wider scope is attributed to the usage of the knowledge of
the three dimensional structure of the biological target
obtained through x-ray crystallography. This model is
considered a receptor-based QSAR model which was mainly
influenced by the fact that previous prediction models by Mel-
agraki et al.15 Pourbasheer et al.16 Chen et al.17 and Wang
et al18 were ligand-based (Table 1) with limited applicability
domain.19 They were likely able to predict only the activities
of benzothiadiazines with similar properties to that of the
training dataset. Additionally we realized that all the previous
structure-based models were used to predict binding mode
only.18,20 Applicability domain method deployed is explained
in Section 1.7 in the Supplementary data.

2. Extending the applicability of the model by being able to pre-
dict the activities of various genotypes. This is because the palm
I site is the least conserved among the different allosteric bind-
ing sites of HCV polymerase21 which affects the activity of the
benzothiadiazine class leading to a drastic decrease in potency
against genotypes other than genotype 1. The effect is even
obvious in the subtypes of genotype 1 itself (10-fold decrease
in genotype 1a than 1b). Thus, we wanted to increase the scope
of this model to be able to predict the activities of various geno-
types. Here we included three genotypes: 1a,1b and 4.

3. Applying the model in virtual screening and identification of
new derivatives of this specific class of benzothiadiazines which
may have better pharmacokinetic properties especially the
topological polar surface area (TPSA). This is mainly due to
the fact that this class suffers from poor bioavailability due to
the large polarity of the ligands that hinders the permeability.22

The most important criterion of this work was the desire to find
hits that avoid the common chemotype trap in finding benzothia-
dinzes derivatives. By this, we are pointing to the fact that most
patents depend on simple markush structure similarity. This is
very obvious where nearly most of the patents focused on systems
having in common a keto-enol system in the ring fused with the
benzothiadiazine (e.g. hydroxyquinolinone system). Thus, we
shifted to structure-based virtual screening that does not depend
on active inhibitors similarity. However, we did not want to leave
it unguided such that it may result in a plethora of irrelevant hits
that do not have the essential features required for activity. Thus,
we decided to support this model by knowledge retrieved from
literature concerning known inhibitors of this class. In another
words, we decided to generate a guided receptor-based activity
prediction model.
2. Design process

Being a workflow, we decided to describe it all over first then
give the results of each part. The structure-based activity predic-
tion model presented in this study consists of two elements:
structure-based field template23 followed by guided docking.24

The field template (first main component of this workflow) con-
sists of field points which describe the van der Waals and elec-
trostatic (both positive and negative) minima and maxima25 that
surround molecules. It is considered a structure-based tool as it
takes the bound conformer as a template to construct field
points while considering the protein as an excluded volume. In
addition, It consists of hotspots which represent nodes or field
points of high relevance in ligand–protein interaction. These hot-
spots are treated in the field template as constraints and are ex-
tracted using molecular interaction field analysis as will be
described later. The field template is used as a pharmacophore
pre-filter and a tool to align ligands in the binding site and pro-
viding them in a good orientation before docking. The second
main component of the workflow is the guided docking module.
It is a type of docking which incorporates chemical information
to actively guide the orientation of the ligand into the binding
site during the ligand sampling. It is used as an efficient knowl-
edge-based strategy for binding affinity estimation, ligand bind-
ing-mode prediction, virtual screening enrichment and further
ligand optimization.24 Herein, we used Moldock that is based
on evolutionary algorithm (EA)26 in sampling that is guided by
chemical information represented in the form of pharmacophore
template that reflects the essential features for interaction. More
specifically, it is directed by a consensus scoring function which
is divided into two:

1. A score for ligand–protein interaction that correlates well with
activity. This score is used to optimize the ligand in the binding
site according to the interactions.

2. A template similarity score which reflects the compliance of the
inhibitor with the proper binding-mode (i.e., mapping with the
pharmacophore properly). This score applies similarity correc-
tions throughout the entire ligand incremental construction
process, thus affecting not only the relative ordering of the solu-
tions but also actively guiding the ligand placement such it
complies with the main reference of ligand–protein complex.

Thus, the requirements of the guided docking are a pharmaco-
phore template and a scoring function which correlates well with
the activity. These requirements were extracted according to inno-
vative procedures applied in the workflow which is described
below.

Systematically, we constructed the aforementioned model and
applied it using an innovative workflow which is depicted in
Figures 1 and 2 and consists of the following steps:

1. Detailed SAR analysis was done using molecular interaction
field analysis methods, molecular dynamics and energy-based
pharmacophore27 to extract hotspots and pharmacophore
features. As shown in Figure 1, SAR analysis had three roles.
It was used to construct structure-based field template



Figure 1. The workflow of the construction and the application of the structure-based activity prediction model for the benzothiadiazine class.

Figure 2. The workflow used to construct and validate the structure-based activity prediction model of benzothiadiazines.
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(pharmacophore pre-filter), guided docking pharmacophore
template and aided in the designing of the virtual library which
was later screened.

2. Construction of the structure-based activity prediction model
according to the following steps:

a. Generating a structure-based field template using the first
genotype 1a crystal structure recently released28 where
the bound ligand was used as a template to generate field
points while the hotspots (extracted above) were used as
constraints.

b. Setting up the guided docking preferences to direct the
ligands properly by:
i. Constructing a pharmacophore template to be used for

guided docking. This was guided by the SAR analysis
done in step 1.

ii. Finding the scoring function that correlates well with
the activity of this class of inhibitors. This is depicted
in Figure 2. As shown, a group of ligands with reported
activities were aligned using the field template in the
binding site then refined by energy minimization and
scored using different scoring engines to find the best
scoring function that correlates well with the activity.
c. Validation of the model statistically using cross validation
(to assess activity predication capability) and ROC analy-
sis (to assess screening capability).29,30

d. Extending the model applicability domain to describe the
different activities among various genotypes: linear inter-
action energy31 method was used as a post-docking scor-
ing function to calculate binding energies of the ligands
against various genotypes (genotype 1a, 1b and 4).The
calculations were done using crystal structures of geno-
types 1a and 1b and a homological model for genotype 4.
3. A library of benzothiadiazines was enumerated on reaction
basis such that it complies with SAR analysis done in step 1.

4. Structure-based fragment hopping was carried out by virtual
screening of the generated library using the validated model
in order to find new derivatives.

5. Construction of a focused library based on a top scoring hit such
that it has lower TPSA followed by its synthesis and biological
evaluation to validate model experimentally.
3. Results and discussion

3.1. Molecular modeling

3.1.1. SAR analysis
SAR analysis was carried out in order to extract Hotspots and

the complementary pharmacophore features. This is a crucial step
in which knowledge related to this class is extracted. As described
earlier, this knowledge will be used to construct the structure-
based field template, the guided docking pharmacophore template
and finally generating a virtual library based on this class of
compounds.

3.1.1.1. Hotspots extraction. Hotspots are highly relevant regions
for ligand interactions which can be used for accurately placing li-
gands in the binding site. They were extracted using molecular
interaction field (MIF) analysis techniques which can be applied
by different methods to study the ligand–receptor interactions.
MIF can be computed in the receptor binding site in order to scan
regions of importance for interaction, as was originally described
by Goodford.32 This was carried out in the protein-based methods
below using Superstar program. It is also possible to proceed the
other way around and compute MIF in one or many small
compounds in order to characterize them according to their poten-
tial to act as ligands, binding a certain receptor. When used in this
manner, the MIF can be seen as computationally obtained descrip-
tor variables (‘molecular descriptors’), which represent properties
of the molecules (e.g., AMANDA33) or contour maps (e.g., Topomer
CoMFA34). Both AMANDA and Topomer CoMFA were carried out in
the ligand-based methods. The details of these analyses are listed
below:

3.1.1.1.1. Ligand based methods. The methods used here are
QSAR methods which deals mainly with the variations among
structures (it does not describe constant part) thus they were re-
stricted on two functionalities: studying SAR of the variable sub-
stituents and developing virtual screening QSAR models.

Topomer CoMFA and AMANDA analyses were deployed. These
are two different field based techniques; the first uses the C.sp3
and H+ probes to represent steric and electrostatic fields while
the second use different types of probes (O, N1, probes) which re-
flect H-bond donor, H-bond acceptor and hydrophobic fields. In
this way, the information obtained from the two methods can be
complementary and not redundant as it covers different types of
fields. The two MIF analysis techniques are non-alignment based
and the combination of them, as far as we know, has not been pub-
licly utilized in literature unlike COMFA and COMSIA. These tools
were used to avoid alignment step which is the time consuming
step of the classic MIF analysis.

Recursive partitioning35 was used in addition as a fingerprint-
based decision tree. It was not used to extract hotspots but simply
aided in the rapid understanding of the AMANDA and Topomer
CoMFA results as will be described later.

The three aforementioned techniques were carried out using a
dataset of 98 benzothiadiazine inhibitors retrieved from litera-
ture36–38 (see Tables 2–6). The activities used were those of geno-
type 1a. The results of each technique are as following:

3.1.1.1.1.1.Topomer COMFA. Topomer CoMFA is a technique
introduced by Cramer.34 It delineates the need for alignment which
is mandatory for typical CoMFA analysis. For space saving; only fig-
ures with important outcomes are shown. Topomer CoMFA has
both graphical and statistical results. Concerning the graphical re-
sults, It was used to construct stdev⁄coeff contour maps to show
field effects on the target features. The contour plots are beneficial
to identify important regions where some changes in steric or elec-
trostatic fields can affect the biological activity. The maps gener-
ated depict regions having scaled coefficients greater than 80%
(favored) or less than 20% (disfavored).

CoMFA sterically favorable (green) contours are observed
(Fig. 3A) adjacent to the 3-methylbutyl group of compound side
chain (the hydrophobic tail substituted at hydroxyquinolinone N)
and this indicates the importance of the hydrophobic tail in this
site. It is surrounded by sterically unfavorable yellow contours
which point out that this site is a narrow pocket and should be
occupied by hydrophobic tails that are not too bulky. Another
group of CoMFA sterically favored green contours are present at
methansulfonamide substituent group which is also surrounded
by sterically unfavorable yellow contours indicating that there is
a limit for this side chain expandability (Fig. 3B). In the CoMFA
electrostatic contour maps, the red contours show favorable elec-
tronegative regions, and the blue contours show regions where
the electropositive charges are favored. A close inspection of the
electrostatic contour plots reveals that, for the tested molecules,
electropositive and electronegative pattern which maps perfectly
with aminosulfonamide (Fig. 3C) is more preferred surrounding
side chain at position-7 of the benzothiadiazine.

Regarding the statistical results of Topomer CoMFA analysis, the
model was validated internally yielding a q2 of 0.777 and r2 of
0.864 with 3 optimum components (PLS components). This



Table 2
Structures and activities of N-1-heteroalkyl-4-hydroxyquinolone-3-yl-benzothiadiazines

N

N
H

S
N

O O

OH

O

NH

R1

R

Name FR Structure Observed �logIC50 Topomer CoMFA AMANDA LIAISON

R R1 Genotype 1a Genotype1b PRED R1 R2 LV1 LV2 LV3 LV4 LV5 Genotype1a
pred

Genotype1b
pred

1 A1 Ph H �0.71 0.88 �0.94 �0.05 �0.69 �0.357 �0.634 �0.776 �0.437 �0.559 0.293282 1.002365
2 A1 2-BrC6H4 H �0.83 0.32 �0.91 �0.05 �0.66 �0.421 �0.656 �0.893 �0.775 �0.811 �0.52737 0.536115
3 A1 3-BrC6H4 H �0.02 1.12 �0.86 �0.05 �0.61 �0.456 �0.364 �0.258 �1.164 �1.296 0.382967 1.064247
4 A1 4BrC6H4 H �1.02 �0.67 �1.02 �0.05 �0.77 �0.305 �0.390 �0.536 �0.368 �0.384 �2.01536 �0.6206
5 A1 2-MeC6H4 H �0.79 0.31 �1.09 �0.05 �0.84 �0.432 �0.587 �0.667 �0.674 �0.867 �0.64675 0.443742
6 T1 3-MeC6H4 H �0.91 0.67 �1.00 �0.05 �0.75 �0.407 �0.294 �0.238 �0.820 �0.879 �0.81434 0.138103
7 A1 2-Thienyl H �0.37 0.90 �0.76 �0.05 �0.51 �0.494 �0.470 �0.405 �0.555 �0.586 0.032644 0.722524
8 A1 2-Thiazolyl H �1.55 0.17 �0.76 �0.05 �0.51 �0.451 �0.510 �0.537 �0.744 �0.911 �0.35388 0.455823
9 A1 2-Furyl H �0.51 0.51 �0.72 �0.05 �0.47 �0.501 �0.403 �0.298 �0.466 �0.488 �0.71322 0.30788
10 A1 3-Furyl H �0.19 0.87 �0.48 �0.05 �0.23 �0.467 �0.434 �0.372 �0.527 �0.646 0.109668 0.975671
11 A1 3-Me-thieny-2-yl H �1.18 �0.07 �0.79 �0.05 �0.54 �0.419 �0.686 �0.754 �0.712 �0.726 �0.47609 0.471498
12 A1 5-Cl-thienyl-2-yl H �0.68 �0.16 �0.84 �0.05 �0.59 �0.410 �0.234 �0.138 �0.328 �0.380 �0.57943 0.370195
13 A1 Pr H 0.02 0.79 0.08 �0.05 0.33 �0.523 �0.294 �0.025 �0.058 0.006 1.02182 1.595055
14 A1 Bu H 0.03 1 0.09 �0.05 0.34 �0.435 �0.091 0.220 0.219 0.035 0.332452 0.929392
15 A1 i-Bu H 0.20 0.87 0.03 �0.05 0.28 �0.499 �0.200 0.089 �0.001 �0.111 0.601349 1.114931
16 A1 Neopentyl H 0.39 0.86 �0.22 �0.05 0.03 �0.496 �0.377 �0.106 �0.013 0.265 �0.61384 0.376449
17 A1 i-Pr H 0.03 0.99 �0.09 �0.05 0.16 �0.462 �0.660 �0.619 �0.497 �0.293 0.16641 1.014823
18 A1 Cyclopropyl H 0.55 0.83 �0.03 �0.05 0.22 �0.482 �0.327 �0.106 �0.127 �0.004 0.945155 1.452157
19 A1 Cyclohexyl H �0.40 0.82 �0.47 �0.05 �0.23 �0.437 �0.264 �0.068 �0.107 �0.113 0.797223 1.320084
20 A1 Me Me �0.80 0.19 0.05 �0.05 0.30 �0.524 �0.204 0.130 0.054 �0.037 �1.00277 0.198086
21 A1 Et Et �0.39 0.92 0.12 �0.05 0.37 �0.414 �0.232 �0.072 �0.135 �0.206 �0.09094 0.637255
22 A1 Et Pr �0.28 0.41 0.14 �0.05 0.39 �0.495 �0.426 �0.296 �0.357 �0.268 0.423538 0.992241
23 A1 Pr Pr �0.35 �0.25 0.06 �0.05 0.31 �0.381 �0.296 �0.254 �0.418 �0.442 �0.25025 0.627329
24 A1 Pr i-Pr �0.81 �0.05 �0.16 �0.05 0.09 �0.442 �0.569 �0.497 �0.395 �0.345 0.19382 1.033736
25 A1 Me Ph �1.22 �0.17 �0.89 �0.05 �0.64 �0.455 �0.496 �0.474 �0.617 �0.726 �0.91748 0.166939
26 A1 Cyclobutyl 0.56 0.96 0.25 �0.05 0.50 �0.511 �0.399 �0.198 �0.258 �0.101 0.955955 1.429609
27 A1 Cyclopentyl 0.13 0.82 0.29 �0.05 0.54 �0.468 �0.350 �0.170 �0.182 �0.015 �0.87332 0.287409
28 A1 Cyclohexyl 0.45 1.2 0.25 �0.05 0.50 �0.391 �0.148 0.042 0.045 0.099 0.58855 1.1061
29 A1 Cycloheptyl �0.02 0.66 0.06 �0.05 0.31 �0.477 �0.370 �0.216 �0.286 �0.225 0.382967 0.964247
30 A1 4-Pyrnayl �0.67 0.35 �0.09 �0.05 0.16 �0.420 �0.424 �0.426 �0.625 �0.821 0.534419 1.168749
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number of components identified in the LOO (leave one out) cross-
validation is used in the final non-cross-validated PLS run (see re-
sults in Tables 2–6).

This model can be used for screening, especially R-group
screening, as the compounds were divided into 2 across the bond
joining ring B and C into R1 and R2 (see Section 5). However, this
was not the aim of Topomer CoMFA here; instead, it was used
for SAR analysis and extracting the hotspots represented in some
field points of highly relevance in interactions.

3.1.1.1.1.2. Pentacle GRIND. As the name implies, this MIF anal-
ysis depends on GRIND which is short for Grid-independent
descriptors.39–41 It is described in details in Section 1.2 of the Sup-
plementary data. The data set of compounds (98 compounds) was
used as an input for Pentacle (see Tables 2–4 and 6). Default probes
(DRY, O, and N1) were used obtaining three auto-correlograms
(DRY–DRY, O–O, and N1–N1) and three cross-correlograms
(DRY–O; DRY–N1; O–N1). The DRY probe represents hydrophobic
interaction, O is sp2 carbonyl oxygen and has hydrogen-bond
acceptor properties, and N1 is a neutral flat NH and has hydro-
gen-bond donor properties. The 6 types of GRIND variables were
used in PLS (partial leas square) to give a model.
In general, a Pentacle model gives graphical (Fig. 4) as well sta-
tistical results (Table 7). Simply we used the numerical values of
the PLS coefficients to select the GRIND able to correlate with bio-
logical activity (Table 8), whereas the distances were used to visu-
alize the pair of nodes that have been used to assign a value to the
GRIND variable (Fig. 4). Inspection of this table confirms the impor-
tance of the hotspots at the regions of the methansulfonamide at 7-
position, hydrophobic tail and the enolic oxygen. It is obvious that
pentacle did not add much to SAR analysis regarding the substitu-
ents (same information as Topomer CoMFA. However, the model
can be used for rapid virtual screening of the whole ligands which
can add to the R-screening in Topomer CoMFA. Practically, the
optimum number of PLS components (latent variables, LV) was
chosen by monitoring changes in the model’s predictivity index
evaluated by applying the cross-validation procedure available in
Pentacle (see Fig. S3 in Supplementary data). It was three just like
Topomer CoMFA.

3.1.1.1.1.3. Recursive partitioning. Recursive partitioning is a
technique to classify members of the population (the training set
here) according to several dichotomous dependent variables
(fingerprints) in a decision tree. A total of 4 tree(s) were created.



Table 3
Structures and activities of N-1-benzyl and N-1-(3-methylbutyl)-4-hydroxy-1,8-naphthyridon-3-yl benzothiadiazine analogs containing substituents on the aromatic ring

N N

N
H

S
N

O O

OH

O

R1

R7

R5

Name FR Structure Observed �logIC50 Topomer CoMFA AMANDA LIAISON

R1 R5 R7 Genotype 1a Genotype1b PRED R1 R2 LV1 LV2 LV3 LV4 LV5 Genotype1a pred Genotype1b pred

31 A1 Benzyl H H �0.76 1.0 �0.94 �0.05 �0.69 �0.412 �0.752 �0.901 �0.872 �0.824 �0.96343 0.235235
32 A1 Benzyl OMe H �1.26 �0.32 �1.37 �0.47 �0.69 �0.438 �0.932 �1.187 �1.138 �1.118 �0.95527 0.140864
33 A1 Benzyl H OMe �0.92 1.11 �0.63 0.26 �0.69 �0.194 �0.705 �0.968 �0.856 �0.771 �0.2196 0.618475
34 A1 Benzyl OH H �0.92 1.26 �1.16 �0.26 �0.69 �0.008 �0.071 �0.388 �0.537 �0.611 �0.82273 0.32232
35 A1 Benzyl H Me �1.41 0.63 �0.63 0.27 �0.69 �0.395 �0.843 �1.061 �1.102 �1.237 �0.40993 0.417148
36 A1 Benzyl Me H �0.83 1.01 �1.20 �0.30 �0.69 �0.451 �0.886 �1.095 �1.082 �1.165 �0.52608 0.337008
37 A1 Benzyl H Br �1.22 0.12 �0.76 0.14 �0.69 �0.388 �0.766 �0.980 �1.018 �1.073 �0.82401 0.231433
38 A1 Benzyl Br H �0.79 �0.06 �1.12 �0.22 �0.69 �0.416 �0.853 �1.084 �1.057 �1.000 �1.79239 �0.33675
39 A1 3-Methylbutyl H H 0.09 1.38 �0.08 �0.05 0.17 �0.477 �0.828 �0.883 �0.708 �0.353 0.231515 0.959745
40 A1 3-Methylbutyl OMe H �1.25 �0.06 �0.51 �0.47 0.17 �0.455 �0.726 �0.782 �0.754 �0.827 �0.84502 0.186936
41 A1 3-Methylbutyl H OMe �0.05 1.18 0.23 0.26 0.17 �0.242 �0.719 �0.876 �0.689 �0.503 1.146922 1.681376
42 A1 3-Methylbutyl H OH 0.41 1.37 �0.14 �0.11 0.17 0.774 0.911 0.593 0.670 0.765 0.208935 0.844165
43 A1 3-Methylbutyl H –OCH2CH2CH3 �0.21 0.031 0.49 0.52 0.17 0.025 �0.440 �0.505 �0.143 0.129 0.090485 0.762435
44 A1 3-Methylbutyl H –OCH2CO2t-Bu �0.70 0.07 �0.24 �0.21 0.17 0.670 �0.174 �0.314 �0.089 �0.262 0.00103 0.800711
45 A1 3-Methylbutyl H –OCH2COOH 0.44 1.24 0.22 0.25 0.17 1.350 0.562 0.400 0.288 0.471 0.535334 1.26938
46 A1 3-Methylbutyl H –OCH2CONMe2 0.03 1.15 0.38 0.41 0.17 0.412 �0.173 �0.314 0.034 �0.019 1.029653 1.510461
47 A1 3-Methylbutyl H –OCH2CONHMe 0.74 1.096 0.36 0.39 0.17 0.969 0.648 0.284 0.400 0.168 1.044727 1.490862
48 A1 3-Methylbutyl H –OCH2CONH2 1.34 1.79 0.44 0.47 0.17 1.471 1.356 1.303 1.141 1.213 1.73724 2.088696
49 A1 3-Methylbutyl H –-OCH2CH2NH2 0.20 1.29 0.44 0.48 0.17 1.308 0.934 0.823 0.461 0.739 �0.80414 0.145144
50 A1 3-Methylbutyl H –OCH2CN 0.85 1.60 0.30 0.33 0.17 0.432 0.080 0.184 0.797 1.049 0.990781 1.383639
51 A1 i-Pentyl H –NH2 0.51 1.63 0.28 0.31 0.17 0.637 1.536 1.422 1.290 1.165 0.908638 1.42696
52 A1 i-Pentyl H –NH2CH2CN 0.92 1.61 0.65 0.69 0.17 0.964 1.143 1.024 1.212 0.939 2.120819 2.363365
53 A1 i-Pentyl H –NH2CH2CONH2 0.33 1.46 0.88 0.91 0.17 1.217 1.384 1.086 1.050 1.034 0.127902 0.888252
54 A1 i-Pentyl H –NHCOCF3 0.04 1.15 1.03 1.06 0.17 0.654 0.545 0.289 0.366 0.195 0.342872 1.006582
55 A1 i-Pentyl H –NHSO2Ph 1.39 2.15 1.73 1.77 0.17 0.689 1.145 1.338 1.665 1.571 2.08722 2.330182
56 A1 i-Pentyl H –NHSO2iPr 2.10 2.52 1.94 1.97 0.17 0.519 0.789 0.885 1.195 1.536 2.19691 2.215868
57 A1 i-Pentyl H –NHSO2(CH2)3CH3 1.66 2.30 1.56 1.59 0.17 0.750 1.327 1.410 1.635 1.679 2.65758 2.53373
58 A1 i-Pentyl H –NHSO2Me 2.70 2.22 1.56 1.59 0.17 0.817 1.551 1.520 1.725 2.005 2.99897 2.869289
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Table 4
Structures and activities of N-alkyl-4-hydroxyquinolon-3-yl-benzothiadiazine

N N

N
H

S
N

O O

OH

O

H
N

S
O2

H
N O

O

R

Name Structure FR Observed –logIC50 Topomer CoMFA AMANDA Liaison

R Genotype1a Genotype1b PRED R1 R2 LV1 LV2 LV3 LV4 LV5 Genotype1a
pred

Genotype1b
pred

59 CH3 A1 1.20 1.18 1.21 0.17 0.817 1.551 1.520 1.725 2.005
60 CH2CH2Cl A1 0.72 1.10 1.13 0.17 0.938 1.182 0.796 0.778 1.057
61 CH2CHCH2 A1 1.06 1.13 1.16 0.17 1.305 1.219 1.081 1.028 0.962
62 CH2CCH A1 1.14 1.15 1.18 0.17 1.311 1.111 0.989 1.038 0.740
63 CH2CH2CN A1 1.46 1.10 1.13 0.17 1.115 1.407 1.259 1.319 1.078
64 CH2Ph A1 1.24 1.10 1.13 0.17 1.520 1.255 1.334 1.414 1.617
65 CH2CH2NH2 A1 1.68 1.10 1.14 0.17 1.388 1.387 1.335 1.408 0.948
66 CH2CO2CH2CH3 A1 1.21 1.10 1.14 0.17 1.777 2.111 1.850 1.475 1.613
67 CH2CH2OCH3 A1 1.06 1.11 1.14 0.17 1.470 1.033 0.689 0.633 0.703
68 CH2CH2OCH2Ph A1 1.02 1.11 1.14 0.17 1.496 0.743 0.779 0.717 1.017
69 CH2COOH A1 1.30 1.09 1.12 0.17 1.288 1.107 0.839 0.984 0.777

Table 5
Structures and activities of N-alkyl-4-hydroxyquinolon-3-yl-benzothiadiazine

N N

N
H

S
N

O O

OH

O

H
N

S
O2

H
N

X

Y

Z

Name Structure FR Observed �logIC50 Topomer CoMFA AMANDA Liaison

X Y Z Genotype1a Genotype1b PRED R1 R2 LV1 LV2 LV3 LV4 LV5 Genotype1a
pred

Genotype1b
pred

70 H H COOMe A1 1.32 1.45 1.49 0.17 1.773 0.705 0.964 0.837 1.265
71 H H COOH A1 1.70 1.42 1.45 0.17 1.327 1.462 1.331 1.386 1.457
72 H H CONHMe A1 1.37 1.48 1.51 0.17 1.648 0.984 1.628 1.663 1.620
73 H H CONH2 A1 1.74 1.47 1.50 0.17 1.470 1.410 1.550 1.486 1.128
74 H COOEt H A1 0.88 1.17 1.20 0.17 1.836 1.659 1.964 1.858 1.649
75 H COOH H A1 0.94 1.23 1.26 0.17 1.066 1.517 1.348 1.359 1.122
76 H CONH2 H A1 1.37 1.24 1.27 0.17 1.651 1.323 1.198 0.856 0.667
77 H CONHCH2CONH2 H A1 1.37 1.19 1.22 0.17 1.744 1.460 1.666 1.478 1.334
78 COOMe H H A1 0.89 1.19 1.22 0.17 2.079 1.023 1.826 1.574 1.209
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The best tree was the first tree with a cross-validated ROC score of
0.746 (see Fig. S4 in Supplementary data).

The compounds were divided according to their activity into
bins ranging from 1 to 10. The tree begins by dividing the whole
series into two major categories: those with amino sulfonamide
and those without. Compounds with amino sulfonamide are more
active: Activity-bin was 6 and above. The tree also indicates that
the isoamyl moiety is the best hydrophobic tail in this class. In
addition, it points out that ring A, as pyridine, is more active than
benzene. Regarding aminosulfonamide, it should be short in gen-
eral indicating that it binds in a narrow pocket as increasing bulk-
iness decreases activity relatively. The pocket hydrophilic nature
prefers polar expandability than those hydrophobic substituents
with aromatic ring.

Specifically here, the recursive partitioning was used in order to
aid the interpretation of MIF Analysis by pointing out to those



Table 6
Structures and activities of N-alkyl-4-hydroxyquinolon-3-yl-benzothiadiazine

N N

N
H

S
N

O O

OH

O

H
N

S
O2

N
R2

R1

Name Structure FR Observed –logIC50 Topomer CoMFA AMANDA Liaison

R1 R2 Genotype 1a Genotype1b PRED R1 R2 LV1 LV2 LV3 LV4 LV5 Genotype1a
pred

Genotype1b
pred

79 H CH2CH2Ph A1 1.74 1.47 1.50 0.17 1.550 1.280 1.060 1.142 1.031
80 H Ch2Ph A1 2.26 1.83 1.86 0.17 1.111 1.782 1.862 1.975 1.809
81 H Ph A1 1.39 1.40 1.43 0.17 1.172 1.811 1.938 2.027 1.722
82 H CH2CH2OH A1 0.97 1.65 1.68 0.17 0.862 1.414 1.454 1.603 1.456
83 H Cyclohexyl A1 1.17 1.61 1.65 0.17 1.040 1.327 1.218 1.196 1.363
84 H Cyclopentyl A1 1.41 1.68 1.71 0.17 0.831 1.400 1.405 1.497 1.499
85 H CH2CH2NH2 A1 2.00 1.61 1.65 0.17 1.197 1.504 1.518 1.561 1.630
86 H 4-piperidinyl A1 1.49 1.65 1.68 0.17 1.654 2.176 2.000 1.688 1.945
87 H CH2CH2CONH2 A1 1.70 1.49 1.53 0.17 1.259 1.155 1.669 1.591 1.914
88 H 4-MeOC6H4CH2 A1 2.00 1.85 1.88 0.17 1.914 1.319 1.612 1.615 2.056
89 H 3-MeOC6H4CH2 A1 1.82 1.84 1.87 0.17 1.215 1.428 1.475 1.703 1.576
90 H 2-MeOC6H4CH2 A1 1.24 1.67 1.71 0.17 1.465 1.713 1.651 1.741 1.701
91 Piperidinyl A1 1.29 1.34679 1.35 1.39 0.17 1.319 1.297 1.575 1.673 1.484 1.69243 2.067777
92 Pyrrolidinyl A1 1.57 1.62 1.65 0.17 0.736 1.081 1.252 1.525 1.277
93 Azetidinyl A1 1.62 1.75 1.78 0.17 0.881 1.408 1.374 1.597 1.702

94

N N

N
H

S
N

O O

OH

O

H
N

S
O2

N

O

O

A1 0.92 1.06 1.09 0.17 0.929 1.505 1.662 2.037 2.004
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95

N N

N
H

S
N

O O

OH

O

H
N

S
O2

NH2

A1 2.05 2.55 1.81 1.85 0.17 1.081 1.033 0.957 1.154 0.821 1.04576 1.521574

96

N N

N
H

S
N

O O

OH

O

H
N

S
O2

H
N

A1 1.85 1.92 1.96 0.17 1.202 1.925 1.870 1.780 2.304

97

N N

N
H

S
N

O O

OH

O

HN

H
N

S
O2

NH2

A1 2.28 3.4 2.22 1.85 0.57 1.267 1.703 1.624 1.510 1.618 2.424 2.44256

98

N N

N
H

S
N

O O

OH

O

HN

H
N

S
O2

H
N

A1 2.06 2.33 1.96 0.57 1.210 2.149 2.036 1.769 2.155
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Figure 3. Topomer CoMFA results. (A) Green contours favor steric bulk. Adding substituents that reach into these areas can improve activity. It is generally well illustrated
above that increasing bulkiness in this position increase activity but to certain limit indicated by the yellow contour, (B) Contour maps at the hydrophobic tail indicate that
the sub pocket is relatively narrow as the yellow contour limits the extending of the substituent, (C) Blue contours indicate favorable electropositive groups represented
idealistically by NH groups, while red contours represent favorable electronegative regions (sulfonyl oxygen), (D) The linear relationship between experimental (x-axis) and
predicted activity (y-axis) yielding Q2 of 0.777 and R2 of 0.864.
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important features that should be taken into consideration. In
addition, it facilitates picking up those compounds which include
these features. The way it is used to aid interpretation is exempli-
fied in Figure S5 of the Supplementary data. Finally, the model val-
idation using confusion matrix and ROC analysis was done in
Supplementary data (1.3 recursive partitioning).

3.1.1.1.2. Protein-based method. SuperStar42 technique was
used here. It is given in Section 1.4 in the Supplementary data. In
this work, it was used to investigate the protein binding site in or-
der to assign the position of the hotspots contributing in the favor-
able interactions that comply with those obtained from the ligand
based MIF analysis. Actually, SuperStar (see Section 1.4 in Supple-
mentary data for full analysis) was used together with 2D interac-
tion diagram (Fig. 5) (generated after passing the complex through
a MD production run) to highlight the main pockets of the binding
site (pockets I, II and III) and the amino acids which form them (Ta-
ble 9): pocket I consists of Phe415, Met414 and Gly410, pocket II
consists of Pro197 and Leu384 and finally pocket III consists of
Ser288, Ser556, Asn291 and Asp318. Besides, it was used mainly
to solve the issue of structural water molecules in the binding site
which are essential for binding. This is shown by the pharmaco-
phore points (Figs. S6, S7 and S10 in Supplementary data) that indi-
cate the importance of two structural water molecules that should
be included in the docking study (Table 9 and Fig. 5). The first
water molecule interacts with both the ligand sulfonyl oxygen
and Ser556 (acts as a bridge) while the second water interacts with
both NH of Gly449 and the ligand enolic oxygen and similarly acts
as another bridge. Superstar analysis, as mentioned before, is given
in details in the Supplementary data in Section 1.4. In addition, we
provided the total 2D interaction diagrams of all the complexes of
benzothiadiazine and benzothiazines in Section 1.8 in the Supple-
mentary data to confirm the importance of the features corre-
sponding to the hotspots and pharmacophore features.

3.1.1.2. Pharmacophore elements extraction. Pharmacophore
features were extracted using molecular dynamics and energy-
based pharmacophore and this is described in the ligand–protein
approach below.

3.1.1.2.1. Ligand–protein complex method. Energy-optimized
pharmacophores (E-pharmacophores)27 are based on mapping of
the energetic terms of the Glide XP scoring function onto atom cen-
ters. Ligand-receptor complex was refined using Glide XP. After
that, the energy terms computed were mapped onto the molecule
atoms to guide the pharmacophore generation. The features are
energy weighed because each feature is the sum of the Glide XP
energies of the atoms forming it (Fig. 6). The energies of each site
are used for ranking where the most favorable sites are selected
to generate the hypothesis. GLide XP was chosen to be energeti-
cally dissected as it accounts for more complex energy terms than
traditional molecular mechanics or empirical scoring functions
such as ChemScore.43 These extra features (e.g., hydrophobic
enclosure term and hydrophobic interactions motifs detection)
are well illustrated in our case. For example, hydrophobic enclo-
sure is detected when lipophilic ligand atoms are enclosed on
opposite sides by lipophilic protein atoms, producing a large ener-
getic reward as a consequence of the release of unfavorable water
molecules that were previously present in the hydrophobic envi-
ronment. Pockets I and II represent examples of this enclosure. Fur-
thermore, Glide XP recognizes common hydrophobic interaction
motifs such as p� � �p and p� � �cation interactions.44 This was also



Figure 4. AMANDA MIF analysis for the benzothiadiaizines as HCV polymerase inhibitors: (A) PLS pseudo-coefficients plot showing the importance of single descriptors to
explain Y-variable: positive values of a coefficient indicates direct correlation to the Y and negative ones indicate an inverse correlation to the Y. Large values mean a strong
impact and low values mean a marginal impact. In this special plot, variables 238 and 362 are highlighted showing a high positive value while variable 299 shows high
negative value, (B) Var 299 (Dry-N1 grind descriptor) with negative coefficient shows the negative impact of aromatic ring as hydrophobic tail on the activity, (C) Var 362 (O-
N1 grind descriptor) showing importance of H-bond donor NH group of methansulfonamide and H-bond acceptor feature of the enolic group, (D) Var 238 (DRY-O grind
descriptor) with positive coefficient showing importance of the hydrophobic aromatic group (ring A) and the H-bond donor of the NH of the methansulfonamide.

Table 7
Statistical results of the AMANDA model

LV SSX SSXacc SDEC SDEP R2 R2acc Q2acc

1 57.11 57.11 0.62 0.64 0.65 0.65 0.63
2 5.71 62.83 0.47 0.52 0.15 0.80 0.76
3 4.53 67.36 0.42 0.50 0.04 0.84 0.77
4 4.07 71.43 0.38 0.51 0.03 0.87 0.76
5 2.22 73.66 0.32 0.54 0.04 0.90 0.74

(a) SSX: percentage of the X sum of squares explained by this LV; (b) SSXacc:
accumulative percentage of the X sum of squares explained by the model; (c)
SDEC: standard deviation error of the calculations. It is an index of model fitting
on the training set; the lower the better; (d) SDEP: standard deviation error of
the predictions. It is an index of the model predictive ability obtained by cross-
validation; the nearer to SDEC the better. (e) R2: contribution of the current LV
to the coefficient of determination (r2) of the model; (f) R2acc: coefficient of
determination (r2) of the model. It is an index of model fitting on the training
set; the nearer to 1.00 (theoretical maximum) the better; (g) Q2acc: equivalent to
r2 but obtained from cross-validation. It is an index of the model predictive
power. It is obvious that the best descriptive model is the one with three latent
variables as q2 reached a ceiling level where further increase in latent variables
decrease q2.

Table 8
AMANDA important grind variables which are illustrated in Figure 5

Grind variable Fig. Importance

Var 238 (DRY-O grind descriptor).The distance range
of this variable is 14.8–15.2 A

5D NH of the Methanesulfon
Postive PLS coefficient in

Var 362 (O-N1 grind descriptor) The distance range
of this variable is 10.8–11.2 A

5C NH of the methansulfon
positively with activity

Var 299 (dry-N1 grind descriptor) The distance
range of this variable is 12.4–12.8 A

5B The bulky groups as a hy
negative one
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depicted in the interaction diagram of 3HHK complex which shows
the p� � �cation interaction between MET414 and ring A and that be-
tween PHE193 and ring D (Fig. 5).

In this study E-pharmacophore together with 2D interaction
diagrams were deployed to analyze molecular dynamics simula-
tion snapshots along production trajectory and the outcome can
be summarized as following:

1. The important information extracted using this method is
related to the main scaffold (constant part). This information
cannot be obtained via ligand-based methods which describe
difference in activity as a function of the structure variability.

2. The enolic oxygen proved to be essential feature as it forms H-
bond with Tyr448 directly and indirectly via water bridge with
Gly449 (Fig. 6).

3. Met414 is important in the formation of sigma–pi interaction
with ring A.

4. Phe193 is important in the formation of sigma–pi interaction
with ring D.
amide group and hydrophobic aromatic feature (Ring A) are important hotspots.
dicates direct correlation with activity

amide group and the enolic group are important features which correlate

drophobic tail have negative impact on the activity. The effect of this variable is



Figure 5. 2D ligand–protein interaction diagram showing detailed analysis of the binding site. The importance of water molecules in the interaction is shown: structural
water acts as a bridge with Gly449 while the other acts as a bridge with Ser 556. Hydrophobic interaction of the isoamyl tail with Pro 197 and Leu 384 (greasy green residues)
is obvious. Two important pi sigma interactions are depicted: Met 414 with ring A and Phe193 with ring D. Three hydrophobic pockets are red boxed. Polar amino acids are
green-boxed. Structural water molecules are blue-boxed.

Table 9
Binding pockets of palm site I

Region in protein Components Description Complementary feature in drug Method of detection

Pocket I Consists of residues Phe415,
Met414, Asn411 and Gly410,
close to the surface of the enzyme

A hydrophobic
shallow and wide
sub-pocket

The benzo moiety (ring-A) of the benzothiadiazine E-pharmacophore ring
aromatic hydrophobic
feature and Superstar
contours

Pocket II Consists of residues Pro197 and
Leu384

Deep and narrow
hydrophobic sub-
pocket

The hydrophobic tail at attached to the ring A E-pharmacophore
hydrophobic
feature,Ligand-based
methods and Superstar

Pocket III Consists of Ser288, Ser556,
Asn291 and Asp318.

Relatively narrow
hydrophilic
subpocket

The methansulfonamide at position 7 of ring D Ligand based methods and
2D-interaction diagram

Polar amino acid
residues

Tyr448,Gly449 and Ser 556 Involved in polar
interactions with
inhibitor

The enol moiety forms Hbond directly with Tyr 448
and indirectly via water bridge with Gly449
The sulfonyl oxygen and ser 556 are bridged by
water molecule

Superstar, 2D interaction-
map and E-pharmacophore.

Structural water
molecules

Two water molecules Figure 5 Forms water
bridge between
ligand and the
protein

The interaction between sulfonyl oxygen and serine
556 is bridged by a structural water molecule
The oxygen atom of the enol moiety forms Hbond
with a structural water molecule, which itself forms
H-bond to the backbone NH of Gly449

Superstar and interaction-
map
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5. Sulfonyl oxygen proved to be important in the formation of H-
bond with Ser556 via water bridge.

The energy-based pharmacophore method was preferred to
contact-based methods45 where accuracy can be achieved by
passing the complex through a nanosecond MD production. The
E-pharm was extracted along the trajectory and thus, each phar-
macophore feature represents the average energy across trajectory.
Molecular dynamics was performed by replicating literature
results while shortening production time to 1 ns instead of 10.20

To sum up, we summarized the results obtained in Table 9.
3.1.2. Generation of the structure-based activity prediction
model

The structure-based activity prediction model is composed of
two components: field template followed by guided docking. This
model was validated after that and its scope was extended to be
able to predict the activity of various genotypes.

3.1.2.1. Field template. Field template is a structure-based phar-
macophore that is used before docking as shown in the workflow.
It uses field points which describe the van der Waals and electro-
static (both positive and negative) minima and maxima that



Figure 6. Energy optimized pharmacophore. It is clear that hydrophobic tail and the enolic oxygen of ring B are essential features. Green spheres represent hydrophobic
features; the red sphere represents hydrogen-bond acceptor feature and the orange circle represents ring aromatic feature. The table shows the energy weight of each feature.
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surround molecules. The field points are generated using the ex-
tended electron distribution (XED) force field46 which explicitly
represents electron anisotropy as an expansion of point charges
around each atom, whereas in classical molecular mechanics
charges are placed on the centers of atoms. They are calculated
by moving different probes on a grid of points placed above the
Van der Waals molecular surface. As depicted in Figure 7, field
points are color coded (see Supplementary data for the key in
Figure 7. Field template was used as a guide for ligand placement. Small blue spheres
spheres indicate positive electrostatic field. Constraints were applied on some importan
Section 1.5) and their radius represents the depth of the energy
well.

Field template has two main roles in the workflow:
First, it was used to align ligands in the binding site with respect

to the main bound conformer of the reference ligand such that they
are placed in a good orientation and position. This is like providing
initial good poses to the docking engine to speed up convergence
(i.e., reaching a good solution very fast). In other words, docking
indicate H-bond acceptor; Yellow spheres represent hydrophobic fields while red
t hotspots as indicated in the figure.
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will be restricted on just pose refinement and assessment. Field
template was chosen as a best choice for this task and was pre-
ferred to any geometrical features structural-based pharmaco-
phore for the following reasons:

a. Success of MIF analysis in describing the activity with good
correlation suggested the suitability of using field points in
alignment.

b. The fact that structure-based pharmacophore (based on geo-
metrical features) cannot keep the RMSD between ligands to
a minimum. On the other hand, the ideal tool for accurate
ligand alignment, when the compounds share the same scaf-
fold, is the field alignment. It is one of the best choices to
supply aligned ligands for COMFA analysis.

c. Molecules are aligned based on their molecular fields, not on
their structure. The interaction between a ligand and a pro-
tein involves electrostatic fields and surface properties (e.g.,
hydrogen bonding, hydrophobic surfaces and so on). Two
molecules which both bind to a common active site tend
to make similar interactions with the protein and hence
have highly similar field properties.

Second, it was used in finding the best scoring function which
correlates well with the activity.

In order to carry out these two functionalities, we had to build
the field template first. This template needs the reference bound li-
gand to extract field points and a protein to be used as an excluded
volume. The process of building the template was carried out in
two steps:

a The bound conformer and the protein were prepared as fol-
lowing: the crystal structure of genotype 1a was used
because the MIF analysis showed good correlation with the
reported activities for this genotype. Previously, Homological
model of Genotype 1a18 was used in studying of benzothiadi-
azines to inspect binding mode. However, the first 3D struc-
ture of the subtype 1a NS5B polymerase in complex with an
inhibitor (a novel sulfone-benzodiazepine derivative) was
publicly disclosed (PDB ID 3HKW) recently.28 In order to
use it in this study, we had to insert the benzothiadiaizine
in the palm I site of this deposited crystal. Thus, alignment
was done using 3HHK (genotype 1b with benzothiadiazine
ligand) as a template using 3DMA program to align the
sequences of the two protein structures according to their
3D structural similarity. 3HHK bound conformer was then
copied to 3HKW binding site and clashing waters were
removed. It was obvious that water molecules responsible
for forming water bridges (with SER556 and GLY449) were
present in genotype 1a crystal. The complex was then opti-
mized using LigX algorithm.

b The field template was generated using 3HHK bound con-
former and 3HKW protein as excluded volume while using
the extracted hotspots as constraints (Fig. 7).

After we generated the field template, we used it to find the
suitable scoring function. The template was used to align the li-
gands of the dataset (98 compounds). This type of alignment takes
place on a ligand level and avoids clashing with the protein using a
soft potential but it does not take interactions with protein into
consideration. Therefore; an optimization step was needed to re-
fine the ligands after alignment. After that, the ligands were scored
to assess ligand binding. The scoring functions used were:

1. LigScore1,47 LigScore2,47 PLP1,48 PLP2,48 Jain,49 PMF,50 LUDI1,51

LUDI251 and LUDI 3.51 These were evaluated after in situ ligand
minimization using CHARMm (Accelrys Discovery Studio).
2. Goldscore, Chemscore ASP, CHEMPLP.52 This was done using
Gold 5 suite.

3. Moldock score53 using Moldock optimizer in Molegro Virtual
Docker.

4. Glide score44 using Schrodinger Glide XP refinement.

Correlation matrix was generated and Moldock score proved to
correlate well with activity yielding r2 of 0.62. This result is not
commonly found in literature as scoring functions are normally
not measured in chemical units and are not likely to correlate with
the activity. They are mainly used to achieve good enrichment or
ranking in screening. Despite this fact, this is sometimes achieved
in some cases.54

3.1.2.2. Knowledge-based docking. Guided docking is a knowl-
edge-based strategy which is guided by both pharmacophore fea-
tures and ligand–protein interaction. Moldock was used in this
study as an example for this type of docking. The inputs of the
docking engine can be listed as follows:

1. Pharmacophore template and this was obtained as a function of
the bound conformer using the energy-based pharmacophore
and molecular dynamics results. It is used to guide docking
depending on the template similarity score which evaluates
compliance of the docked poses with the pharmacophore
template.

2. Interaction score and we choose Moldock score (variant of PLP)
since it correlates well with activity.

3. Aligned ligands which emerge from the field template in a good
orientation and position thus restricting docking role on refine-
ment and assessment.

Guided docking was used here for general and specific reasons.
In general, guided docking is used because it applies similarity
corrections (according to the pharmacophore supplied) through-
out the entire ligand incremental construction process, thus
affecting not only the relative ordering of solutions but also ac-
tively guiding the ligand docking. In the end, the use of a similar-
ity-weighted docking score aims at promoting target ligand
orientations after the binding mode observed for the reference
structure and penalize those diverging from the observed binding
mode. The final best docking solutions should result in docking
orientations of the ligand that provide a balance between main-
taining favorable interactions (guided by docking score) with the
receptor without deviating too much from the observed binding
mode of the reference structure used (guided by template similar-
ity score).

Guided docking was used specifically in this case because:

1. Palm I site is wide and can accept the ligand in many different
orientations which differ drastically from the ideal pattern.

2. The rotatable bond joining ring B and C allows flipping of the
hydrophobic tail, especially when it is bulky, from the narrow
pocket II to the wider pocket I.

The algorithm used in this study for the guided docking is based
on an evolutionary algorithm (EA).26 (See Supplementary data for
details concerning the algorithm and why it was used in Section
1.6). The EA used by the Moldock optimizer was guided by the pose
score which consists of: Moldock score and a Template similarity
score which is normalized to �500.

The uses of guided docking can be tailored here either for vir-
tual screening or activity prediction. Virtual screening can be car-
ried out using the combined score (pose score) which is the sum
of the interaction and similarity scores. This is to obtain final best
docking solutions with a balance between maintaining favorable
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interactions with the receptor without deviating too much from
the binding mode described by the template. On the other hand,
activity can be predicted using the interaction score as it is the
one which correlates with the activity. This is carried out by dock-
ing using the combined score as a guide during sampling and final-
ly predicting the activity using the interaction score.

3.1.2.3. Validation. Validation was carried for both prediction and
screening capabilities. For screening validation, ROC analysis29,30

was done using 1000 diverse ligands from zinc database as decoys
(supplied with Sybyl). It was repeated twice: once using the com-
bined score and the other using the interaction score. The com-
bined score proved superiority in screening (AUC = 0.914 if
compared to Interaction score which have AUC = 0.748) as it guar-
antees that ligands which lack essential chemical features will be
penalized and will have lowered overall score (see Fig. S12 in the
Supplementary data).

For prediction capability validation, correlation study was done
using the Moldock score and the activity in the form of �log (IC50)
after increasing the number of iterations of the EA to 10,000. The
analysis yielded r2 of 0.8 (see Fig. S13 in the Supplementary data)
which is superior to the previous correlation using energy minimi-
zation for the aligned ligands (r2 = 0.62).This is a strong indication
that multiple parameter optimization deployed in the EA
algorithm can yield better results.

Model extrapolative capability was tested using ligands which
do not belong to the benzothiadiazine class to evaluate the model
extrapolative capabilities and compare it with ligand-based MIF
analysis described early in the study. 1,5 Benzodiazepine was used
as a test (pdb 3HKW). It acts by the same mechanism on the allo-
steric site (palm I)55 and its activity is around 10 nM (i.e., �log
(IC50) = 2). Using AMANDA as an example for ligand-based MIF
analysis, the activity predicted for this compound was �0.218
using 3 latent variables. Using Moldock optimizer, on the other
hand, as an example for guided docking; the activity predicted
was 1.8 with RMSD of 1.5. As a result, one can conclude that the
receptor-based model can be extrapolated to other series without
losing predictability or pose accuracy. This proved that structure-
based activity prediction models have wider application than that
of ligand based ones.

3.1.2.4. Extending model applicability. In this workflow, it was
important to have a valid procedure to predict the activity differ-
ence among various genotypes.21 This is because palm I site is
the least conserved among the other allosteric sites of HCV and
thus will have effect on the activity of its inhibitors. For instance,
the model was used to describe genotype 1a; however, in biologi-
cal assay genotype 1b is used as a first choice because the activity
level is generally higher for the same ligand.21 Another example is
the genotype 4 which is another variant of HCV. It shows high
mutation in the binding site amino acids and is more likely to ex-
hibit dramatic change in the activity. In addition, it is the most pre-
valent genotype in our country (Egypt). Generally, activity
variation can be studied by modeling when using more accurate
methods for binding energy prediction like FEP (free energy pertur-
bation).56 The FEP is the ideal method to be used in this case but it
needs many nanoseconds of explicit solvation molecular dynamics
Table 10
Palm I allosteric site amino acids variation among different genotypes

Residue position 410 411 412 413 414 415 446

1b G N I I M Y Q
1a_2 — — — — — F E
4a_26 — — — — V — D
production to achieve a reasonable result. Thus, we shifted to a less
exhaustive computational method which is the linear interaction
energy.57 It was used to calculate binding energy of the poses
retrieved from docking thus it was used as a rescoring or a post-
docking scoring engine. It is a QSAR method that depends on
finding the correlation between the binding energy and several
energy terms which includes electrostatic and van der waals inter-
actions (see Section 1.9 in the Supplementary data for detailed
description of the method).

3.1.2.4.1. Genotype 1a/1b profiling. First, we investigated the
actual correlation between the observed activities of both geno-
types using a group of 61 compounds with reported activities on
both genotypes36–38 (see Tables 2, 3 and 6). The correlation be-
tween the activity of the benzothiadiazines of genotype 1a and
1b is shown in Figure S15 in the Supplementary data. It is clear
from that graph that the impact of this difference is almost con-
stant (about 0.7–1.2 log unit for �log (IC50) of 1b more than
1a)21and the activity of 1b is generally greater than 1a.This trig-
gered us to investigate genotype 1b using Topomer CoMFA analysis
but the results were not good as genotype 1a (r2 = 0.722,
q2 = 0.467).This may explain why CoMFA studies in literature were
never carried out using genotype 1b.Thus we shifted to linear
interaction energy method to predict the activity difference be-
tween genotype 1a and 1b. These two genotypes have only two dif-
ferent amino acids (415 and 446) in the palm I allosteric site (Table
10). Genotype 1b has Glutamine 446 instead of glutamic acid (in
genotype 1a) and Tyrosine 415 instead of phenylalanine (in geno-
type 1a). Due to this small difference in the binding site between
the two genotypes, we carried out point mutations in the binding
site of genotype 1a crystal (as a way of expressing genotype natural
polymorphism) and applied LIA equation trained using genotype
1a on the genotype 1b. This was done in order to minimize vari-
ance between the two genotypes and decrease time required for
convergence in minimization simulation employed during LIA
optimization step.

Practically, this method was done using Schrodinger 200958

Glide for refinement of the ligand poses in the binding site of geno-
type 1a crystal employing XP mode. Following this, the LIE energy
terms were calculated using Liasion. Finally, Strike was used to
make a multiple linear regression (MLR yielding a q2 of 0.7 using
leave one out (LOO) for cross validation while neural network
regression yielded q2 of 0.75. The equation was employed using
3HKW (genotype1a). After that, the equation was applied by carry-
ing out the two point mutations on the two amino acids 415 and
446 and the activities were predicted. It was generally observed
that the difference between the activities of one ligand in the
two genotypes ranges from 0.7 to 1.2 log units which were consis-
tent with the general finding above (see Fig. S16 in the Supplemen-
tary data). Liaison results are also given in the tables of the training
data set.

3.1.2.4.2. Genotype 4. Another approach was followed to study
genotype 4 due to the big variation in the binding site region (Table
10). The approach is divided into two main aspects:

1. Studying the effect of each amino acid variation by calculating
mutation binding-energy and detect the destabilizing effect if
exists.
447 448 449 450 451 551 555 556

I Y G A C F Y S
— — — — — — — —
M — — V T — A G



Table 11
Mutation binding energy calculated for interacting amino acids of palm I site for
genotype 4

Residue Mutated to Mutation energy(kcal/mol) Effect

MET414 VAL 0.91 Destabilizing
GLN446 ASP 0.42 Neutral
ILE447 MET 0.07 Neutral
TYR555 ALA �0.16 Neutral
SER556 GLY 0.11 Neutral

The destabilizing effect of MET414 is shown.
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The main variations in genotype 4 (M414V, Q446D, I447M,

A450V, C451T, Y555A, S556G) were studied using an approach
implemented in Accelrys discovery studio which depends on calcu-
lating free energy of binding of AB complex either mutated or not.
The protocol used was described in the Supplementary data in Sec-
tion 1.11.

The method was applied on the amino acids which interact di-
rectly with the benzothiadiazines (Table 11). The results comply
well with the literature data about the effect of mutation on the
activity of the benzothiadiazines: It is obvious that MET414 plays
an important role interacting with pocket I and its mutation, in nat-
ural polymorphism of genotypes, is deleterious on the activity.21

2. Creating a homological model using genotype 1b (3H98) as a
template and applying the LIA equation derived from genotype
1a on it. The Homological model was based on the alignment of
the sequence of genotype 4 with that of genotype 1b (see
Fig. S17 in the Supplementary data). The template chosen was
3H98. Details are mentioned in Section 5.

The homological model of genotype 4 was aligned with geno-
type 1a crystal structure in order to copy the docked poses from
1a to 4. Refinement of these poses was done using Glide XP. After
that, Liaison parameters were calculated and substituted in the
general equation created using genotype 1a. After that, an equation
was derived by applying MLR (multiple linear regressions) relating
the predicted activity on genotype 4 (by applying LIA model on the
homology model) and the genotype 1b reported activity. The dif-
ference in the activities can be illustrated as follows:

Predicted genotype 4 = 0.994659 ⁄ neg1b�1.70595 where neg1b is
the binding energy of genotype 1b

It is obvious that the general trend observed is the decrease in
activity by about 2 log units (it means 100-fold decrease in activ-
ity).This is somehow consistent with the results published.21

Further analysis was carried out on the effect of the mutation of
genotype 4 (Met414 to valine) using molecular dynamics and ra-
dial distribution function of the sigma-pi interaction that can be
Figure 8. Reaction A is used to build a combinatorial virtual library. It is a one pot reaction
using Scifinder to build the virtual library. Dashed lines are used to indicate unspecified
formed between Met414 and ring A (see Section 1.13 in the Sup-
plementary data).

Up till now, we have created two main components which are
the detailed SAR analysis and the development of the virtual
screening and activity prediction models. The integrity of the
workflow and the non-redundancy of its components are discussed
in details in Section 1.14 in the Supplementary data. What is left is
the way that this model can be applied for new inhibitors design or
discovery. This model can be used in designing new ligands by
many methods:

1. Virtual screening of commercial databases (not used in this
study but was validated using decoys sets).This can be used
for discovery of benzothiadiaizine analogues.

2. Virtual screening of virtual libraries that are built while taking
into consideration the essential structural requirements (this
takes into consideration the detailed SAR analysis provided by
the workflow).

3. De-novo ligand design directed by the correlating scoring func-
tion (PLP).

Herein, we will give a simple experimental example based on
method-2 where we will try to find a new template that can be fur-
ther exploited by SAR analysis.
3.1.3. Virtual library generation
As mentioned above, we have chosen virtual library screening

method to apply model on. This approach of designing new deriv-
atives of benzothiadiazine is based on fragment hopping. The de-
signed ligands can be prioritized after that by evaluating their
activity using the generated model. Initially, a combinatorial vir-
tual library was built using library design module in discovery stu-
dio that is based on reaction enumeration. The reaction was
selected according to a literature method in which aldehydes react
with orthanilamides in the presence of sodium bisulfite at 150 �C
(Fig. 8).59

The reactants were selected such that they are synthetically fea-
sible and meet the essential SAR analysis. They were searched
using Scifinder due to its wide scope where it includes compounds
synthesized in literature and thus avoiding limitations of using the
commercially available substances which cover a narrow range of
synthetically feasible compounds. Initially, the aldehydes were
searched such that: the N-substituted alkyl group at position 3
with respect to the aldehyde group should exist (Fig. 8B), usage
of dashed bonds in Scifinder to avoid specific bond type and
searching is by substructure search to get diverse solutions. The re-
sults were retrieved in the form of pdf (portable document format)
file which was converted into structure data (sd) file using a
chemical OCR (Clide Pro).60
between an aldehyde and an orthanilamide. The aldehyde was searched by query B
bonds and the aldehyde group is placed at 3-position with respect to N.



Figure 10. Docking of the hit found using virtual screening in the palm I site.
Docking was performed on the homological model of genotype 4 which shows a
mutation of Met414 to Val414. The methansulfonamide can form H-bond with
Asn291 and Asp318.
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Additional constraints were applied on the aldehydes retrieved
by applying post-filters. The first filter applied was a one which re-
moves aldehydes having less than two hydrogen-bond acceptors.
This was based on the fact that the hydrogen bond acceptor feature
which exists in the quinolinone (oxygen of the keto-enol) system is
essential for interaction with Tyr448 and Gly449 residues. This was
added to the second acceptor which exists by default taking into
consideration that the retrieved hits are aldehydes (i.e., carbonyl
group of the aldehyde). The filtered hits were further modified
by substituting the alkyl group at N by isoamyl group in order uni-
fy the hydrophobic tail among the candidates.

The second filter applied was a pharmacophore filter which
keeps only aldehydes which have the proper shape and orientation
of hydrogen bond acceptor. This was done using Accerlys Discov-
ery studio catalyst module. First, the quinolinone substructure
was used as a template for creating the shape query and assigning
the proper position to the other essential features. Based on the
reaction selected to make the focused library, the benzothiadizine
and quinolinone were dissected along the bond joining the ring B
and C such that aldehyde group was added to the quinolinone.
After that, an aldehyde custom feature was created such that it
maps C and O atoms of the aldehyde where the number of hydro-
gen atoms suitable for substitution at C was assigned one. Finally,
the query was created as shown in the Figure 9a manually such
that A represents the hydrogen-bond acceptor feature, B represents
the aldehyde feature, C represents the hydrophobic tail and D rep-
resents shape of the ligand. The filtered aldehydes were used to
construct the virtual library by reacting them with orthanilamides
that were selected from HCV literature such that they have a short
polar substituent at position 7 (e.g., methansulfonamide).

3.1.4. Virtual screening
The Virtual library was screened using the model and one of the

top hits (an indole based hit) was selected to be further explored
through experimental validation (another hits were found but we
have chosen to explore the hit which is considered in itself a
new scaffold if we considered that we are rescaffolding the quinoli-
none). The hits retrieved and methods deployed are exemplified in
Section 1.15 in the Supplementary data.

This mentioned hit was selected because of the following rea-
sons (Fig. 10):

I. Hydroxyl group at the 4 position of the indole makes H-bond
directly with Tyr448 and indirectly with both Gly449 and
Asp 446 via water molecules.
Figure 9. (A) The manual pharmacophore used to filter aldehydes which were used
represents aldehyde, Feature C represents hydrophobic feature which corresponds to th
quionlinone shows good superposition of the main features.
II. Simple molecular dynamics simulation pointed out to the for-
mation of an internal hydrogen bond between indole OH and
benzothiadiazine N2. This gives some rigidity to the structure
and increase propensity of the desired conformation.

III. Indole benzene ring is aromatic and can form sigma–pi
interaction with Met414.

IV. The methansulfonamide group forms a network of H-bonds
with Asn291 and Asp318 that can compensate loss of the
activity due to Met414 mutation in genotype 4.

V. Topological polar surface area (TPSA) of the ligand is 146
which is near the desired range. This may improve the phar-
macokinetic properties of this class which is known to suffer
from poor bioavailability due to the large PSA.

VI. The aldehyde fragment, which formed the hit, showed per-
fect mapping with the pharmacophore and perfect align-
ment with the reference as shown in the Figure 9b.

Further assessment of this compound was specifically carried
out by synthesis and biological evaluation which proved its activity
(IC50 against polymerase enzyme was 0.3 lM).

3.1.5. Focused library generation
In order to validate the model experimentally, a small focused

library of ligands was synthesized based on the hit retrieved and
was further biologically evaluated. The library members are listed
to construct the virtual library. Feature A represents H-bond acceptor, feature B
e tail and Feature D represents the shape feature; (B) mapping of the hit with the
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in Scheme 3 as compounds III (a–o) and Scheme 4 as compounds
IV (a–f). The library was created while aiming at further decreasing
the topological polar surface (TPSA) in order to increase the bio-
availability, therefore, the hydroxyl group on the 4-position of
the indole ring was omitted depending on the following theories.
We will deal with classic keto-enol system of 4-hydroxyquinolin-
2(1H)-one as a reference. The keto-enol system seems to be
necessary for the formation of internal hydrogen bonding with
the two nitrogen atoms of the 1,1 dioxo-4H-1,2,4-benzothiadiazine
(Fig. S22 in Supplementary data). This was validated in literature
using ab-initio technique.61,62 The internal hydrogen bonding re-
sulted in a 20� tilt between the two systems (hydroxyquinolinone
and benzothiadiazine) (Fig. 5) that leads to the positioning of the
hydrophobic tail (e.g., isoamyl tail) in the correct way necessary
for interaction with the hydrophobic pocket (pocket II) amino acid
residues. Despite the above facts, the ligands designed below were
based on bypassing the internal hydrogen bonding depending on a
Hartree–Fock conformational sampling of the ligand. It proved that
the ideal conformer, which can achieve proper binding, is a local
minimum that only differs by 0.9 Kcal/mol from the global mini-
mum which can interact similarly but less efficient (due to the flip-
ping pattern) (Fig. 11) (see Section 1.16 in the Supplementary data
for complete details).

Further validation was done by embedding the synthesized
compounds in a library comprising of 1000 zinc decoys and 98 ac-
tive compounds used in the study. The library was screened using
the combined workflow and it was found that the synthesized
compounds are in the top 10% of the ranked library together with
the actives.

3.2. Synthesis

The synthesis of the target compounds was carried out using
a one pot reaction of orthanilamide59 (or one of its derivatives)
and the corresponding aldehyde. This reaction is efficient for
easy building up of combinatorial libraries of this class of com-
pounds. Orthanilamides were synthesized according to Schemes
1 and 4. 2-Aminobenzenesulfonamide (I-a) was prepared starting
from the commercially available o-nitrobenzensulfonylchloride
which was reacted with ammonia to give the amide that was
further reduced by catalytic hydrogenation. Compound (I-b)
was synthesized via direct bromination of the orthanilamide
(I-a) using bromine/acetic acid while compound (I-d) was syn-
thesized via direct iodination using NIS (N-iodosuccinimide).
Compound (I-c) was prepared according to a modified procedure
starting from the compound (I-a). In this procedure, orthanila-
Figure 11. Conformational analysis of the indole derivative revealing local and global m
difference between local and global minimum is 0.9 Kcal/mol. Analysis was carried out b
to span 180�.
mide was protected by fusion with urea to give 2H-1,2,4-benzo-
thiadiazin-3(4H)-one 1,1-dioxide which was nitrated, further
de-protected and reduced to give 2,5-diaminobenzenesulfona-
mide.This was alkylated using methansulfonyl chloride to
give 2-amino-5-methanesulfonylamino-benzenesulfonamide. This
pathway has many advantages to the other procedures mainly
used to synthesize this important intermediate (see Supplemen-
tary data for details of other procedures of I-c synthesis in Sec-
tion 1.17): It is very economical, yet effective modified method,
it avoids drastic reagents like chlorosulfonyl isocayante, harsh
conditions like Friedel–Crafts acylation at �40 �C. In addition;
it avoids sulfonation reaction of p-nitroanline which can lead to
polymerization reaction if conditions are slightly uncontrolled.63

2-Amino-5-bromo-pyridine-3-sulfonamide, an analogue to
orthanilamide in Scheme 4, was prepared starting from 2-amino-
pyridine. This was carried out by brominating 2-aminopyridine
to give 2-amino-5-bromopyridine which was chlorosulfonated
and further reacted with ammonia to give 2-amino-5-bromo-pyr-
idine-3-sulfonamide.

Substituted indole carbaldehydes were synthesized according
Scheme 2. The reaction starts by indoles formylation via Vilsme-
ier–Haack reaction using DMF and phosphorus oxychloride mix-
ture for in situ formation of the formylating agent. This was
followed by N-alkylation using various alkyl halides. Substituted
5-bromo indole carbaldehydes were synthesized starting by in-
doles via bromination in three steps. First, indole was converted
into Sodium Indoline-2-sulfonate using sodium bisulfite. Second,
it was acetylated using acetic anhydride to give sodium 1-acety-
lindoline-2-sulfonate.Third; bromination was carried out on this
protected indole followed by deprotection using sodium hydrox-
ide. The resulting 5-bromo indole was further formylated and
substituted as above.

The synthesis of the target compounds III (a–o) was carried
out using the one pot reaction of orthanilamide (or one of its
derivatives) and the corresponding aldehyde. This was done by
heating the mixture in dimethylacetamide in the presence of so-
dium bisulfite at 150 �C. On the other hand, the target com-
pounds IV (a–f) were synthesized via modified procedure
which uses pressure tube in addition to the aforementioned
procedure.

3.3. Biological evaluation

Biological evaluation was carried out for the synthesized com-
pounds using replicon assay against genotype 1b (Table 12).64 It
was found that biological activities of the above mentioned
inima. Local minimum is at angle 159 while global minimum is at angle 22. The
y Spartan 2010 using Hartee-Fock 3-21G in vacuum while letting the torsional angle



Scheme 1. Reagents and conditions (a) NH3; (b) Pd/C, NH2NH2, reflux,2 h; (c) Br2, glacial acetic acid; (d)NH2CONH2,180 �C; (e) HN03/H2SO4, 20 h; (f) 50% H2S04,130 �C; (g) (i)
Pd/C, H2, THF, 5 h, (ii) CH3SO2Cl, acetonitrile, pyridine, 20 h; (h) NIS, CHCl3, reflux, 24 h.

Scheme 2. Reagents and conditions (a) (i) POCl3, DMF, 1 h, 0 �C; (ii) alkyl halide, NaH, DMF,4 h; (b) (i) NaHSO3, (ii) acetic anhydride, (iii) Br2; (c) (i) POCl3, DMF, 1 h, 0 �C; (ii)
alkyl halide, NaH, DMF, 4 h.

M. A. H. Ismail et al. / Bioorg. Med. Chem. 20 (2012) 2455–2478 2473
compounds comply with the model described. The most active li-
gands were having isoamyl substituent as a hydrophobic tail and
methansulfonamide in the pocket III. Methansulfonamide capabil-
ity to form extensive hydrogen bonding network with pocket III
amino acids is illustrated in Figure S26 in the Supplementary
data. Additionally, in this investigation we explored the effect of
substituting methansulfonamide with halogen and see the effect
of halogen bonding (see Figs. S27 and S28 in the Supplementary
data). It was obvious from the biological data that these com-
pounds are of equivalent potency but with higher toxicity. To
confirm the activity mechanistically, ligand III-m was selected
for polymerase enzymatic inhibition assay and its IC50 was found
to be 1.2 lM. In our opinion, the most important conclusion is
that indole proved to be a good alternative for the quionolinone
system and that 4-hydroxy substituted indole was more potent
due to the importance of a hydrogen bond acceptor at this posi-
tion. This concluded one of the main aims of the article which is
drifting away from the chemotype trap using guided structure-
based models.

The assay was performed, in addition, on genotype 4 and all
compounds showed almost no activity except those with meth-
ansulfonamide group that showed moderate inhibition (60%) at
10 lM. The reason can be due to the hydrogen bonding network
which is formed by the methansulfonamide group that compen-
sates the loss of the activity due to Met414 mutation. This phe-
nomenon actually confirms the computational studies carried
out on the mutation effect where the molecular dynamics (using
radial distribution function on the sigma–pi interaction between



Scheme 3. Reagents and conditions (a) NaHSO3, DMA, 150 �C, 2 h.

Scheme 4. (a) Br2, acetic acid; (b) (i) ClSO3H, 160 �C, 3 h, (ii) NH3; (C) NaHSO3, DMA, 150 �C, pressure vessel.

Table 12
Biological data of various synthesized compounds using replicon assay
against genotype 1b

Compound CC50 (lM) EC50 (lM)

III-a >50 ND
III-b >50 4.15
III-d >50 8.01
III-e >50 1.86
III-f >50 19.7
III-i >50 18.4
III-j 37.2 9.9
III-o 49.2 7.7
V-a >50 25.4
V-b 16.6 2.96
V-d 21.9 5.89
V-e >50 20.2
V-f >50 7.07
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ring A and Val414) proved the less frequent interaction (see
Section 1.13 in the Supplementary data). Additionally, the muta-
tion binding energy method which was carried out using
Abagyan and Tortov algorithm proved the same concept.

Allover, one can deduce that the model was used in this study to
retrieve ligands which are likely to be active because of the
pharmacophoric and binding pattern similarity they share with
the main active compounds.
4. Conclusion

In summary, we provided a comprehensive workflow to study
benzothiadiazines as important HCV NS5b polymerase inhibitors
acting on palm I allosteric site. The workflow is a multipurpose
one that can be used for:

1. SAR analysis of this class using a combined approach by apply-
ing Topomer CoMFA (q2 = 0.77), AMANDA (same q2) and recur-
sive partitioning (ROC = 0.746).

2. Binding mode prediction using Guided docking.
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3. Activity estimation using PLP scoring function which was
proved to correlate well with activity (q2 = 0.65 and after opti-
mization of the whole protocol gave q2 = 0.8).

4. Virtual screening enrichment by using consensus of both inter-
action and template similarity scores which was validated by
ROC analysis (AUC = 0.91).

5. Genotypes profiling using linear interaction energy to calculate
binding energy of the ligand with different genotypes and
mutation binding energy calculation.

6. R-screening using validated Topomer CoMFA and general ligand
screening using pentacle model or recursive partitioning.

Extensive validation was carried out for this model using both
statistical and experimental methods. Statistically, cross valida-
tion was used throughout this study to validate different correla-
tions. Experimentally, model was validated by using it as a tool
for fragment-hopping. A virtual library, enumerated on reaction
basis, was created such that it complies with SAR analysis. It
was further screened and one of the top scoring hits (indole-
based) was further investigated by considering it a template for
focused library creation. Synthesis of this focused library was fol-
lowed by biological evaluation which proved the activity of the
indole-based derivatives (most active ligand showed activity of
1.86 lM).

Regarding synthesis, one step reaction was adopted to easy syn-
thesize this class of compounds and a facile synthesis of the 2-ami-
no-5-methanesulfonylamino-benzenesulfonamide was provided
in details due to its importance as an intermediate in synthesis
of HCV inhibitors.

In our opinion, this workflow can be used generally to study
congeneric series of drugs. It uses field-alignment followed by
guided docking. The protocol described provides a mean to gener-
ate a receptor-based QSAR model which relies on the field align-
ment in decreasing the RMSD between ligands in the binding site
to the degree that permits finding a correlating scoring function.
It is worth to validate this workflow on other datasets as its appli-
cability domain is generally wider than that of the ligand-based
approaches.
5. Experimental data

Molecular modeling and biological testing experimental proce-
dures are mentioned in Sections 1.20.1 and 1.20.3 in the Supple-
mentary data.

5.1. Synthesis

General methods. Starting materials were either commercially
available or prepared as reported previously in the literature, un-
less otherwise noted. Solvents and reagents were used without fur-
ther purification. Reactions were monitored by TLC, performed on
silica gel glass plates containing F-254 indicator (Merck).Visualiza-
tion on TLC was achieved by UV. Proton and carbon NMR spectra
were recorded on a Bruker ARX-300. Chemical shifts (ä) are re-
ported in ppm downfield from internal TMS standard or from sol-
vent references. Mass spectra were recorded on API-SCIEX 2000.
HRMS were recorded using an Agilent MSD-TOF (G1969A) con-
nected to an Agilent 1100 HPLC system. Melting points were deter-
mined on a Stuart melting point apparatus (Stuart Scientific,
Redhill, UK) and are uncorrected.

5.1.1. Intermediates synthesis
5.1.1.1. Compounds I (a–o). Procedures of synthesis are men-
tioned in Supplementary data in Section 1.20.2.1 according to
Scheme I.
5.1.1.2. Compounds II (a–j). Procedures of synthesis are men-
tioned in Supplementary data in Section 1.20.2.2 according to
Scheme II.

5.1.1.3. 2-Amino-5-bromopyridine. 28.2 g (0.3 moles) of 2-ami-
nopyridine were dissolved in 50 ml of acetic acid. The solution is
cooled to below 20� by immersion in an ice bath, and 48 g
(15.4 ml, 0.3 moles) of bromine dissolved in 30 ml of acetic acid
is added dropwise with vigorous stirring over a period of 1 h. Ini-
tially the temperature is maintained below 20�. After half the bro-
mine solution has been added, it is allowed to rise to 50� to delay as
long as possible the separation of the hydrobromide of 2-amino-5-
bromopyridine. At 50� the hydrobromide usually begins to crystal-
lize when about three-quarters of the bromine has been added.
When addition of bromine is completed, the mixture is stirred
for 1 h and is then diluted with 75 ml of water to dissolve the
hydrobromide. The contents of the flask are transferred to a
500 ml beaker and are neutralized, with stirring and cooling,
by the addition of 120 ml of 40% sodium hydroxide solution.
2-Amino-5-bromopyridine, contaminated with some 2-amino-3,5-
dibromopyridine,was filtered and dried. The 2-amino-3,5-dib-
romopyridine is removed from the product by washing with three
500-ml. portions of hot petroleum ether. The yield of 2-amino-5-
bromopyridine, is 32–34.7 g (62–67%). mp 134 �C (literature65

mp 132–135�C)

5.1.1.4. 2-Amino-5-bromo-pyridine-3-sulfonamide. It was pre-
pared according to the literature method.66

5.1.2. Target compounds synthesis
5.1.2.1. Compounds III (a–o). They were synthesized according to
Scheme III. This was carried out using the general procedure pro-
posed by Imai et al.59

General procedure: sodium hydrogen sulfite (0390 g 3.75 mmol)
is added to a solution of o-aminobenzenesulfonamide (0.430 g,
2.5 mmol) and the aldehyde (2.5 mmol) in dimethyl acetamide
(3 ml). The mixture is heated with stirring at 150 �C for 2 h and
then poured into water (500 ml). A precipitate forms which is col-
lected and dried (recrystallized is generally from ethanol or any
appropriate alcohol).

5.1.2.1.1. 3-(1-Allyl-1H-indol-3-yl)-7-bromo-4H-pyrido[2,3-e]
[1,1270 2,4] thiadiazine 1,1-dioxide (IV-a). Yield: 50%. 1H NMR
(300 MHz, DMSO) d = 11.58 (s, 1H), 8.48 (d, J = 3.2, 1H), 8.39 (dt,
J = 6.6, 2.7, 1H), 7.82 (dt, J = 7.8,2,1H), 7.76–7.20 (m, 6H), 6.21–
6.00 (m,1H), 5.35–5.12 (m,2H), 4.98(dq, J = 5.5, 2.3, 1.9, 2H). 13C
NMR (75 MHz, DMSO) d = 141.9, 136.1, 134.6, 133.3, 129.2, 127.3,
124.2, 122.8, 120.5, 119.8, 117.6, 114.5, 110.6, 100.2, 49.3. HRMS
calcd for C18H15N3O2S: 337.0885; found: 337.0873. Anal. Calcd
for C18H15N3O2S: C, 64.08; H, 4.48; N, 12.45. Found: C, 64.12; H,
4.46; N, 12.43.

5.1.2.1.2. 3-(1-Propyl-1H-indol-3-yl)-4H-1,2,4-benzothiadiazine
1,1-dioxide (III-b).Yield: 60%. 1H NMR (300 MHz, DMSO) d = 11.70
(s, 1H), 8.51 (d, J = 2.5, 1H), 8.39–8.30 (m, 1H), 7.98–7.83 (m, 3H),
7.67 (d, J = 7.6, 1H), 7.51 (dd, J = 8.8,2.4,1H), 7.32 (ddd, J = 7.2,5,
1.9,2H), 4.28 (t, J = 7.3, 2H), 1.89 (q, J = 7.5, 2H), 0.91 (t, J = 7.4,3H).
13C NMR (75 MHz, DMSO) d = 141.7, 136.7, 134.4, 127.3, 127.9,
125.2, 124.9, 122.3, 120.9, 119.4, 117.8, 110.1, 98.1, 52.0, 21.0,
11.9.HRMS calcd for C18H17N3O2S: 339.1041; found: 339.1053.
Anal. Calcd for C18H17N3O2S: C, 63.70; H, 5.05; N, 12.38. Found: C,
63.73; H, 5.02; N, 12.35

5.1.2.1.3. 3-(1-Isopropyl-1H-indol-3-yl)-4H-1,2,4-benzothiadiazine
1,1-dioxide (III-c). Yield: 65%. 1H NMR (300 MHz, DMSO)
d = 11.40 (s, 1H), 8.54 (d, J = 1.4, 1H), 8.35 (m, 1H), 7.95–7.62 (m,
3H), 7.54–7.23 (m, 4H),4.90 (m, 1H), 1.37 (d, J = 6.0, 6H). 13C
NMR (75 MHz, DMSO) d = 142.3, 136.9, 135.8, 135.1, 133.1, 129.2,
127.1, 125.2, 124.1, 120.5, 120.2, 119.3, 116.9, 112.4, 97.8, 53.9,
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18.8.HRMS calcd for C18H17N3O2S: 339.1041; found: 339.1032.
Anal. Calcd for C18H17N3O2S: C, 63.70; H, 5.05; N, 12.38. Found:
C, 63.73; H, 5.03; N, 12.36

5.1.2.1.4. 3-(1-Butyl-1H-indol-3-yl)-4H-1,2,4-benzothiadiazine
1,1-dioxide (III-d). Yield: 56%. 1H NMR (300 MHz, DMSO)
d = 11.58 (s, 1H), 8.52 (d, J = 1.4, 1H), 8.36 (dt, J = 6.3, 1.7, 1H),
7.87–7.62 (m, 3H), 7.58–7.23(m, 4H), 4.33 (t, J = 7.0, 2H), 1.84 (p,
J = 7.1, 2H), 1.32 (p, J = 7.4, 2H), 0.93 (td, J = 7.5, 1.3, 3H).13C NMR
(75 MHz, DMSO) d = 142.2, 136.4, 135.6, 127.8, 127.7, 124.8,
124.8, 123.4, 121.6, 115, 118.6, 110.4, 98.1, 49.8, 28.7, 20.7, 14.0.
HRMS calcd for C19H19N3O2S: 353.1198; found: 353.1188. Anal.
Calcd for C19H19N3O2S: C, 64.57; H, 5.42; N, 11.89. Found: C,
64.59; H, 5.40; N, 11.88

5.1.2.1.5. 3-(1-Benzyl-1H-indol-3-yl)-4H-1,2,4-benzothiadiazine
1,1-dioxide (III-e). Yield: 45%. 1H NMR (300 MHz, DMSO)
d = 11.64 (s, 1H), 8.59 (d, J = 3.6, 1H), 8.39 (dd, J = 6.0, 3.5, 1H),
7.82 (m,1H), 7.75–7.58(m,2H), 7.57–7.23 (m, 9H) 5.59 (d, J = 3.5,
2H). 13C NMR (75 MHz, DMSO) d = 141.9, 137.1, 136.1, 134.5,
131.4, 128.5, 127.9, 127.1, 124.2, 122.7, 120.4, 119.8, 117.6,
110.8, 100.4, 52.6. HRMS calcd for C22H17N3O2S: 387.1041; found:
387.1049. Anal. Calcd for C22H17N3O2S: C, 68.20; H, 4.42; N, 10.85.
Found: C, 68.23; H, 4.40; N, 10.83.

5.1.2.1.6. 3-[1-(3-Methylbutyl)-1H-indol-3-yl]-4H-1,2,4-benzothi-
adiazine 1,1-dioxide (III-f). Yield: 60%. 1H NMR (300 MHz, DMSO)
d = 11.58 (s, 1H), 8.51 (d, J = 1.4, 1H), 8.35 (dt, J = 6.3, 1.7, 1H), 7.98
(dd, J = 7.5, 1.5, 1H), 7.63–7.36 (m, 4H), 7.24–7.08 (m, 2H), 0.98 (d,
J = 7, 6H), 1.56 (m, 2H), 1.74 (m, 1H), 4.16 (m, 2H). 13C NMR
(75 MHz, DMSO) d = 143.1, 137.3 (s), 136.1, 129.1, 127.1, 126.3,
125.3, 128.9, 121.2, 118.9, 118.2, 110.4, 97.9, 48.9, 36.9, 27.1,
22.7.HRMS calcd for C20H21N3O2S: 367.1354 found: 367.1345.
Anal. Calcd for C20H21N3O2S: C, 65.37; H, 5.76; N, 11.44. Found:
C, 65.39; H, 5.74; N, 11.42

5.1.2.1.7. 3-(1-Benzyl-2-methyl-1H-indol-3-yl)-4H-1,2,4-benzothi-
adiazine 1,1-dioxide (III-g). Yield: 55%. 1H NMR (300 MHz, DMSO)
d = 11.58 (s, 1H), 8.39 (dt, J = 6.6, 2.7, 1H), 7.80–7.2(m, 12H), 5.59
(s, 1H), 2.48 (m, 3H). 13C NMR (75 MHz, DMSO) d = 143.3, 140.9,
136.9, 136.1, 134.6, 129.0, 128.4, 128.0, 127.1, 124.2, 123.8,
120.3, 119.8, 119.4, 117.6, 103.8, 103.0, 47.9, 14.2. HRMS calcd
for C23H19N3O2S:401.1198; found: 401.1185. Anal. Calcd for
C23H19N3O2S: C, 68.81; H, 4.77; N, 10.47. Found: C, 68.84; H,
4.75; N, 10.46.

5.1.2.1.8. 3-(1-Benzyl-5-bromo-1H-indol-3-yl)-4H-1,2,4-benzothi-
adiazine 1,1-dioxide (III-h). Yield: 70%. 1H NMR (300 MHz, DMSO)
d = 11.64 (s, 1H), 8.59 (d, J = 3.6, 1H), 8.39 (dd, J = 6.0, 3.5, 1H), 7.99
(dd, J = 7.5, 1.5, 1H), 7.84 (d, J = 7.5, 1H), 7.71–7.51 (m,2H), 7.40–
7.08 (m,7H), 5.59 (d, J = 3.5, 2H). 13C NMR (75 MHz, DMSO)
d = 141.8, 137.3, 136.3, 135.4, 134.6, 132.7, 129.6, 128.9, 127.8,
127.7, 124.3, 124.6, 122.7, 119.5, 117.7, 112.6, 110.9, 99.0, 52.6.
HRMS calcd for C22H16Br(79)N3O2S: 465.0147; found: 465.0135;
calcd for C22H16Br(81)N3O2S: 467.0126; found: 467.0135. Anal.
Calcd for C22H16BrN3O2S: C, 56.66; H, 3.46; N, 9.01. Found: C,
56.68; H, 3.45; N, 9.00.

5.1.2.1.9. 3-[5-Bromo-1-(3-methylbutyl)-1H-indol-3-yl]-4H-1,2,4-
benzothiadiazine 1,1-dioxide (III-i). Yield: 55%. 1H NMR (300 MHz,
DMSO) d = 11.58 (s, 1H), 8.52 (d, J = 1.4, 1H), 8.36 (dt, J = 6.3, 1.7,
1H), 7.99 (dd, J = 7.4,1.5), 7.72–7.48 (m, 3H), 7.23–7.08 (m, 2H),
4.16 (m, 2H), 1.74 (m, 1H),1.56 (m, 2H), 0.98 (d, J = 7, 6H). 13C
NMR (75 MHz, DMSO) d = 142.3, 136.5, 135.6, 134.6, 130.1, 127.1,
126.6, 124.2, 122.9, 119.8, 117.6, 111.9, 111.6, 97.4, 49.7, 36.3,
27.1, 22.7.HRMS calcd for C20H20Br(79)N3O2S: 445.0460; found:
445.3615,calcd for C20H20Br(81)N3O2S: 447.0439; found:
447.0446. Anal. Calcd for C20H20BrN3O2S: C, 53.82; H, 4.52; N,
9.41. Found: C, 53.85; H, 4.50; N, 9.40.

5.1.2.1.10. 3-(5-Bromo-1-butyl-1H-indol-3-yl)-4H-1,2,4-benzothi-
adiazine 1,1-dioxide (III-j). Yield: 60%. 1H NMR (300 MHz, DMSO)
d = 11.58 (s, 1H), 8.51(d, J = 1.5, 1H), 8.34 (dt, J = 6.2, 1.6, 1H), 7.81
(dd, J = 7.4,1.5),7.62–7.38 (m,3H),7.13–7.09 (m,2H), 4.03 (t, J = 7.3,
2H), 1.79 (p, J = 7.1, 2H), 1.31 (m, 2H), 0.93 (t, J = 7.3, 3H). 13C
NMR (75 MHz, DMSO) d = 143.6, 135.1, 135.4, 134.9, 139.6, 126.5,
127.1, 123.9, 123.1, 118.9, 118.1, 112.3, 112.6, 97.6, 49.8, 28.7,
20.7, 14.0. HRMS calcd for C19H18Br(79)N3O2S: 431.0303; found:
431.0310; calcd for C19H18Br (81) N3O2S:433.0283 found
433.0273. Anal. Calcd for C19H18BrN3O2S: C, 52.78; H, 4.20; N,
9.72. Found C, 52.80; H, 4.18; N, 9.70.

5.1.2.1.11. 7-Bromo-3-(1-propyl-1H-indol-3-yl)-4H-1,2,4-benzo-
thiadiazine 1,1-dioxide (III-k). 1H NMR (300 MHz, DMSO) d =
11.70 (s, 1H), 8.51 (d, J = 2.5, 1H), 8.39–8.30 (m, 1H), 7.71–7.36
(m, 5H), 7.15 (d, J = 7.4, 1H), 4.20 (t, J = 7.3, 2H), 1.93 (q, J = 7.3,
2H), 0.98 (t, J = 7.3, 3H). 13C NMR (75 MHz, DMSO) d = 141.9,
136.4, 134.7, 131.2, 129.2, 127.8, 125.1, 122.9, 121.5, 120.6,
119.2, 110.4, 98.1, 52.0, 21.0, 11.9.HRMS calcd for C18H16-
Br(79)N3O2S: 417.0147; found 417.0143, C18H16Br(81)N3O2S:
419.0126; found: 419.0134. Anal. Calcd for C18H16BrN3O2S: C,
51.68; H, 3.86; N, 10.05. Found: C, 51.69; H, 3.84; N, 10.03.

5.1.2.1.12. 7-Iodo-3-(1-propyl-1H-indol-3-yl)-4H-1,2,4-benzothi-
adiazine 1,1-dioxide (III-l). Yield: 60%. 1H NMR (300 MHz, DMSO)
d = 11.58 (s, 1H), 8.52 (d, J = 1.4, 1H), 8.41 (d, J = 1.7,1H), 8.36 (dt,
J = 6.3, 1.7, 1H), 7.78 (dd, J = 7.5,1.5,1H), 7.63–7.36 (m, 3H), 6.96
(d, J = 7.5,1H), 4.26 (t, J = 7.3,2H),1.90 (q, J = 7.5,2H), 0.90(td,
J = 7.4,2.3,3H).13C NMR (75 MHz, DMSO) d = 148.7, 141.9, 134.7,
134.2, 127.8, 125.2, 124.6, 122.9, 121.2, 120.6, 110.4, 103.3, 98.1,
52.0, 21.0, 11.9. HRMS calcd for C18H16IN3O2S:465.0008; found:
465.0015. Anal. Calcd for C18H16IN3O2S: C, 46.46; H, 3.47; N,
9.03. Found: C, 46.43; H, 3.49; N, 9.05.

5.1.2.1.13. N-{3-[1-(3-Methylbutyl)-1H-indol-3-yl]-1,1-dioxido-
4H-1,2,4-benzothiadiazin-7-yl}methansulfonamide (III-m). Yield:
46%. 1H NMR (300 MHz, DMSO) d = 11.55 (s, 1H), 9. 21 (s, 1H), 8.52
(d, J = 1.4, 1H), 8.36 (dt, J = 6.3, 1.7, 1H), 7.63–7.29 (m, 4H), 7.21 (d,
J = 1.5, 1H), 7.11 (d, J = 7.5, 1H), 4.30 (m, 2H), 1.89–1.58 (m, 3H),
0.91(d, J = 6.2,6H). 13C NMR (75 MHz, DMSO) d = 141.4, 135.5,
134.7, 128.6, 127.8, 125.2, 123.3, 122.9, 120.9–120.4 (m), 113.8,
110.4, 98.1, 49.7, 42.9, 36.3, 27.1, 22.7.HRMS calcd for C21H24N4O4S2:
460.1239; found:460.1224. Anal. Calcd for C21H24N4O4S2: C, 54.76;
H, 5.25; N, 12.16. Found: C, 54.77; H, 5.23; N, 12.14

5.1.2.1.14. N-[3-(1-Benzyl-1H-indol-3-yl)-1,1-dioxido-4H-1,2,4-
benzothiadiazin-7-yl]methansulfonamide (III-n). Yield: 54%. 1H
NMR (300 MHz, DMSO) d = 11.64 (s, 1H), 9.13 (s,1H), 8.59 (d,
J = 3.6, 1H), 8.39 (dd, J = 6.0, 3.5, 1H), 7.69–7.55 (m,1H), 7.43–7.18
(m, 9H), 7.10(d, J = 7.5, 1H), 5.56 (s, 2H), 3.22 (s, 3H). 13C NMR
(75 MHz, DMSO) d = 141.9, 137.1, 135.5, 134.4, 131. 3,
128.7–128.3(m), 127.9, 127.0, 123.3, 122.7, 120.6–120.2 (m),
113.8, 110.8, 100.4, 52.6, 42.9. HRMS calcd for C23H20N4O4S2:
480.0926; found: 480.0943. Anal. Calcd for C23H20N4O4S2: C,
57.48; H, 4.19; N, 11.66. Found: C, 57.49; H, 4.17; N, 11.65

5.1.2.1.15. N-[3-(5-Bromo-1-butyl-1H-indol-3-yl)-1,1-dioxido-
4H-1,2,4-benzothiadiazin-7-yl]methansulfonamide (III-o). Yield:
60%. 1H NMR (300 MHz, DMSO) d = 11.58 (s, 1H), 9.21 (s,1H),
8.52 (d, J = 1.4, 1H), 8.36 (dt, J = 6.3, 1.7, 1H), 7.67 (d, J = 1.2, 2H),
7.46–7.34 (m, 1H), 7.28 (d, J = 1.5, 1H), 7.12 (d, J = 7.5, 1H), 4.31
(t, J = 7.7, 2H), 1.82 (p, J = 7.8, 2H), 1.31 (tq, J = 7.7, 6.5, 2H), 0.89
(t, J = 6.6, 3H). 13C NMR (75 MHz, DMSO) d = 141.3, 136.1, 136.4,
130.1, 128.9, 126.4, 123.9, 123.1, 121.4, 121.5, 112.9, 110.9,
111.6, 97.4, 49.8, 42.9, 28.7, 20.7, 14.0. HRMS calcd for:
C20H21Br(79)N4O4S2:524.0188; found:524.0174;calcd for C20H21-
Br(81)N4O4S2:526.0167; found: 526.0175. Anal. Calcd for
C20H21BrN4O4S2: C, 45.72; H, 4.03; N, 10.66. Found: C, 45.74; H,
4.01; N, 10.64

5.1.2.2. Compounds IV (a–j). They were synthesized according to
the following general procedure.

Sodium hydrogen sulfite (0.390 g, 3.75 mmol) is added to a
solution of 2-amino-5-bromo-pyridine-3-sulfonamide (0.59 g,
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2.5 mmol) and the aldehyde (2.5 mmol) in dimethyl acetamide
(3 ml). The mixture is heated with stirring at 150� for 2 h and then
poured into water (500 ml). A precipitate forms which is collected
and dried (recrystallization is generally from ethanol or any appro-
priate alcohol).

5.1.2.2.1 3-(1-Allyl-1H-indol-3-yl)-7-bromo-4H-pyrido[2,3-e][1,
2, 4]thiadiazine 1,1-dioxide (IV-a).

Yield: 50%. 1H NMR (300 MHz, DMSO) d = 11.69 (s, 1H), 8.54 (s,
1H), 8.35 (m, 1H), 8.12 (m, 1H), 7.72 (m, 1H), 7.42–7.25 (m, 3H),
6.21–6.00 (m,1H), 5.35–5.12 (m,2H), 4.98 (dq, J = 5.5, 2.3, 1.9,
2H). 13C NMR (75 MHz, DMSO) d = 152.0, 141.7, 141.3, 140.5,
134.5, 133.3, 129.2, 127.4, 122.8, 121.2, 120.5, 118.7, 114.5,
110.6, 100.2, 49.3.HRMS calcd for C17H13Br(79)N4O2S: 415.9943;
found: 415.9934, calcd for C17H13Br(81)N4O2S: 417.9922; found
417.9934. Anal. Calcd for C17H13BrN4O2S: C, 48.93; H, 3.14; N,
13.43. Found: C, 48.95; H, 3.12; N, 13.41.

5.1.2.2.2. 7-Bromo-3-(1-propyl-1H-indol-3-yl)-4H-pyrido[2,3-
e][1,2,4]thiadiazine 1,1-dioxide (IV-b). Yield: 56%. 1H NMR
(300 MHz, DMSO) d = 11.58 (s, 1H), 8.48 (s, 1H), 8.39 (m, 1H),
8.02 (m, 1H), 7.59 (m, 1H), 7.51–7.23 (m, 3H), 4.15 (t,J = 7.1, 2H),
1.93 (q, J = 7.3,2H), 0.96 (td, J = 7.3,2.3,3H). 13C NMR (75 MHz,
DMSO) d = 151.4, 141.8, 142.3, 140.5, 134.7, 127.8, 125.2, 122.9,
121.2, 120.6, 118.7, 110.4, 98.1, 52.0, 21.0, 11.9.HRMS calcd for
C17H15Br(79)N4O2S: 418.0099; found: 418.0080, calcd for
C17H15Br(81)N4O2S: 420.0079;found: 420.0092. Anal. Calcd for
C17H15BrN4O2S: C, 48.70; H, 3.61; N, 13.36; Found: C, 48.72; H,
3.60; N, 13.34.

5.1.2.2.3. 7-Bromo-3-(1-isopropyl-1H-indol-3-yl)-4H-pyrido[2,3-
e][1,2,4]thiadiazine 1,1-dioxide (IV-c). Yield: 75%. 1H NMR
(300 MHz, DMSO) d = 11.64 (s, 1H), 8.52 (s, 1H), 8.27 (m, 1H),
8.13 (m, 1H), 7.63 (m, 1H), 7.46–7.22 (m, 3H), 4.90 (m, 1H), 1.37
(d, J = 6.0, 6H). 13C NMR (75 MHz, DMSO) d = 152.0, 141.7, 141.3,
140.5, 137.3, 132.5, 128.7, 123.9, 121.2, 120.5, 118.6, 111.9, 97.8,
54.1 18.8. HRMS calcd for C17H15Br(79)N4O2S: 418.0099; found
418.0080, calcd for C17H15Br(81)N4O2S: 420.0079; found:420.0065.
Anal. Calcd for C17H15BrN4O2S: C, 48.70; H, 3.61; N, 13.36. Found:
C, 48.71; H, 3.60; N, 13.35.

5.1.2.2.4. 7-Bromo-3-(1-butyl-1H-indol-3-yl)-4H-pyrido[2,3-
e][1,2,4]thiadiazine 1,1-dioxide (IV-d). Yield: 60%. 1H NMR
(300 MHz, DMSO) d = 11.70 (s, 1H), 8.49 (s, 1H), 8.34 (m, 1H),
8.14 (m, 1H), 7.62 (m, 1H), 7.63–7.36 (m, 3H), 4.12 (t, J = 7.3, 2H),
1.78 (p, J = 7.1, 2H), 1.31 (p, J = 7.4, 2H), 0.93 (t, J = 7.3,3H). 13C
NMR (75 MHz, DMSO) d = 152.2, 141.9, 141.5, 140.7, 134.9, 127.6,
124.9, 123.1, 122.2, 120.7, 118.8, 110.4, 98.1, 49.8, 28.7, 20.7,
14.0.HRMS calcd for C18H17Br(79)N4O2S: 432.0256 found:
432.0243 calcd for C18H17Br(81)N4O2S: 434.0235;found:
434.0225. Anal. Calcd for C18H17BrN4O2S: C, 49.89; H, 3.95N,
12.93. Found: C, 49.92; H, 3.92; N, 12.91.

5.1.2.2.5. 3-(1-Benzyl-1H-indol-3-yl)-7-bromo-4H-pyrido[2,3-
e][1,2,4]thiadiazine 1,1-dioxide (IV-e). Yield: 66%. 1H NMR
(300 MHz, DMSO) d = 11.52 (s, 1H), 8.53 (s, 1H), 8.35(m, 1H),
8.12 (m, 1H), 7.72 (m, 1H), 7.69–7.55 (m, 1H), 7.43–7.20 (m, 7H),
5.56 (s, 2H). 13C NMR (75 MHz, DMSO) d = 152.0, 141.7, 141.3,
140.5, 137.1, 134.4, 131.4, 128.5, 127.9, 127.0, 122.7, 121.2,
120.4, 118.7, 110.8, 100.4, 52.6. HRMS calcd for
C21H15Br(79)N4O2S:: 466.0099; found: 466.0088, calcd
for C21H15Br(81)N4O2S: 468.0079; found: 468.0098. Anal. Calcd
for C21H15BrN4O2S: C, 53.97; H, 3.24; N, 11.99. Found: C, 53.99;
H, 3.23; N, 11.97.

5.1.2.2.6. 3-(1-Isopentyl-1H-indol-3-yl)-7-bromo-4H-pyrido[2,3-
e][1,2,4]thiadiazine 1,1-dioxide (IV-f). Yield: 43%. 1H NMR
(300 MHz, DMSO) d = 11.69 (s, 1H), 8.50 (s, 1H), 8.35 (m, 1H),
8.21 (m, 1H), 7.65 (m, 1H), 7.42–7.22 (m, 3H), 4.21 (m, 2H), 1.72
(m, 1H), 1.54 (m, 2H),0.96 (d, J = 7,6H). 13C NMR (75 MHz, DMSO)
d = 152.0, 141.7, 141.3, 140.5, 134.7, 127.8, 125.2, 122.9, 121.2,
120.6, 118.7, 110.4, 98.1, 49.7, 36.3, 27.1, 22.7.HRMS calcd for
C19H19Br(79)N4O2S: 446.0412; found: 446.0408, calcd for
C19H19Br(81)N4O2S: 448.0392; found: 448.0388. Anal. Calcd for
C19H19BrN4O2S: C, 51.01; H, 4.28; N, 12.52. Found: C, 51.03; H,
4.26; N, 12.50.
Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.bmc.2012.01.031.
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