Base-Free Palladium-Catalyzed Borylation of Aryl Chlorides with Diborons

Yutaro Yamamoto,^[a] Hiroshi Matsubara,^{*[b]} Hideki Yorimitsu,^{*[a]} and Atsuhiro Osuka^[a]

The base-free palladium-catalyzed borylation of aryl chlorides with diborons was achieved. The base-free conditions offered acceptable functional group compatibility. Based on experimental and computational studies, it was shown that smooth boryl transfer from the diborons to the arylpalladium chloride was promoted by strong interaction between the Lewis acidic boron and the chlorine atom on palladium.

Arylboronate esters are versatile reagents for organic synthesis, and they are employed in the preparation of various C–O, C–N, and C–C bonds.^[1] Thus, the development of new methods to synthesize arylboronate esters under mild reaction conditions is important in modern organic chemistry.^[2-19] Accordingly, transition-metal-catalyzed borylation reactions of aryl halides with diborons have emerged as efficient and reliable methods.^[2-4,5b,6b,9f,g,11] In these catalytic borylation reactions, the presence of a base is essential to activate the diboron for smooth boryl transfer. It would be desirable to develop base-free conditions to achieve the synthesis of arylboronates bearing base-sensitive functional groups.

Very recently, we reported the activator-free palladium-catalyzed silylation of aryl chlorides with silylsilatrane, which is a new unsymmetrical disilane having a Lewis acidic silatrane moiety (Scheme 1).^[20] This silylation reaction converts aryl chlorides without the need for a base by taking advantage of the strong interaction between the Lewis acidic silicon and the chlorine atom on the palladium center in the silyl-transfer step. From these results, we envisioned that Lewis acidic diborons could serve as borylating agents under base-free conditions on a mechanistic basis similar to that of silylsilatranes. This is indeed the case, and we describe herein the palladium-catalyzed borylation of aryl chlorides with diborons without the use of any activators.

First, we utilized the reaction conditions of our previous silylation^[20a] for the base-free borylation. Treatment of 4-chloroanisole with B_2pin_2 [bis(pinacolato)diboron, 1.2 equiv.] in the presence of $Pd_2(dba)_3$ (3 mol%; dba=dibenzylideneacetone)

[a]	Y. Yamamoto, Prof. Dr. H. Yorimitsu, Prof. Dr. A. Osuka Department of Chemistry, Graduate School of Science Kyoto University Sakyo-ku, Kyoto 606-8502 (Japan) F-mail: vori@kuchem kvoto-u.ac in
[6]	
נסן	Prot. Dr. H. Matsubara
	Department of Chemistry, Graduate School of Science
	Osaka Prefecture University
	Naka-ku, Sakai 599-8531 (Japan)
	E-mail: matsu@c.s.osakafu-u.ac.jp
	Supporting Information for this article can be found under http:// dx.doi.org/10.1002/cctc.201600456.

Scheme 1. Base-free palladium-catalyzed silylation and borylation of aryl chlorides with Lewis acidic bimetallic species.

and SPhos (2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl, 9 mol%) in toluene at 100 °C (0.33 M) resulted in moderate conversion and afforded the corresponding borylated product in 43% yield. After extensive optimization of the reaction conditions, we discovered that a higher loading of B_2pin_2 (1.5 equiv.), a longer reaction time (15 h), and a higher concentration (0.40 M) led to the highest yield (93%, as determined by NMR spectroscopy) of the desired product (Table 1, entry 1).^[21]

With the optimized conditions in hand, the scope of the borylation reaction was then investigated (Table 1). Interestingly, we applied these base-free conditions to base-sensitive siloxyand NMeFmoc-substituted aryl chlorides (Fmoc=9-fluorenylmethoxycarbonyl) without observable deprotection (Table 1, entries 2-4).^[22] As a protecting group of NH₂, phthalimido protection was also tolerated (Table 1, entry 5). Heteroaromatic chlorothiophenes and π -extended chloronaphthalenes also participated in the reaction (Table 1, entries 6-9). Not only meta- and para-substituted aryl chlorides but also a sterically congested ortho-substituted aryl chloride reacted to afford the corresponding products in excellent yields (Table 1, entries 10-12). Electron-deficient substrates such as fluoro-, trifluoromethyl-, ethoxycarbonyl-, and cyano-substituted aryl chlorides reacted smoothly (Table 1, entries 13-16). Unfortunately, our attempts to borylate aryl chlorides bearing acid-sensitive functional groups such as 4-chloroacetophenone, N-tert-butoxycarbonyl (Boc)-protected 4-chloroaniline, and 4-chlorobenzaldehyde dimethyl acetal failed, probably because of the high Lewis acidity of B-chloropinacolborane. The borylation was efficient enough to borylate 1,4-di- and 1,3,5-trichlorobenzene with a larger amount of the diboron reagent (Scheme 2).

1

Table 1. Borylation of aryl chlorides with B ₂ pin ₂ .							
,	3 mol % Pd ₂ (dba) ₃ 9 mol % SPhos 1.5 equiv B ₂ pin ₂ no base toluene (0.40 M) 100 °C, 15 h	R Bpin MeO	PCy ₂ OMe SPhos				
Entry	Ar	1	Yield ^[a] [%]				
1	4-MeOC ₆ H ₄	1a	93 (82)				
2	4-tBuMe ₂ SiOC ₆ H ₄	1 b	92 (86)				
3	4-TMSOC ₆ H ₄	1 c	87				
4	4-FmocMeNC ₆ H₄	1 d	90 (84)				
5		1e	96 (91)				
6	2-thienyl	1 f	90 (79)				
7	3-thienyl	1 g	86 (76)				
8	1-naphthyl	1 h	86 (68)				
9	2-naphthyl	1i	95 (92)				
10 ^[b]	2-MeC ₆ H ₄	1j	83 (82)				
11	3-MeC ₆ H ₄	1 k	91 (89)				
12	4-MeC ₆ H ₄	11	95 (90)				
13	4-FC ₆ H ₄	1 m	91 (84)				
14	$4-F_3CC_6H_4$	1 n	88 (77)				
15	4-EtO ₂ CC ₆ H ₄	10	93 (78)				
16	4-NCC ₆ H ₄	1р	94 (92)				
[a] Yield	I was determined by NMR s	pectroscopy by using	1,1,2,2-tetra-				

chloroethane as an internal standard. Yield of isolated product given in parentheses and is slightly lower than the corresponding yield determined by NMR spectroscopy owing to the instability of arylboronates on silica gel (see the Supporting Information). [b] $Pd_2(dba)_3$ (5 mol%), SPhos (15 mol%).

Scheme 2. Double and triple borylation. Yields of the isolated products are given in parentheses.

Scheme 3. Scope of the diboron reagents. Yields of the isolated products are given in parentheses.

The scope of the diborons was surveyed (Scheme 3). The reaction proceeded with bis(hexyleneglycolato)diboron to give **3a** in good yield. Bis(neopentyl glycolato)diboron was less reactive yet participated in the borylation with the aid of higher loadings of $Pd_2(dba)_3$ and SPhos. Unfortunately, bis-(catecholato)diboron reacted sluggishly.

Attempted borylation of aryl bromides and triflates (OTf) resulted in sluggish conversions under similar reaction conditions (Table 2, entries 1–4). Similar phenomena were observed

Table 2. Borylation of aryl bromides and triflates. 3 mol % Pd ₂ (dba) ₃ 9 mol % SPhos 1.5 equiv B ₂ pin ₂ 0 or 1.5 equiv LICl solvent, 100 °C, 15 h								
Entry	R	Х	Solvent	LiCl [equiv.]	Yield ^[a] [%]			
1	OMe	Br	toluene	0	4			
2	OMe	OTf	toluene	0	12			
3	CO ₂ Et	Br	toluene	0	1			
4	CO ₂ Et	OTf	toluene	0	2			
5	OMe	Br	dioxane	1.5	70			
6	OMe	OTf	toluene	1.5	79			
7	CO ₂ Et	Br	dioxane	1.5	79			
8 ^[b]	CO₂Et	OTf	toluene	1.5	70			
[a] Yield was determined by NMR spectroscopy. [b] Pd ₂ (dba) ₃ (5 mol%), SPhos (15 mol%).								

in our previous silylation, and we proved that the chloride of the arylpalladium chloride plays a key role in successful silyl transfer to palladium.^[20] To replace the bromide or triflate on the palladium center with chloride after oxidative addition, we added lithium chloride to promote boryl transfer to palladium. The effect of lithium chloride was dramatic in promoting the borylation (Table 2, entries 5–8).^[23,24]

To clarify the positive effect of chloride for boryl transfer, DFT calculations were performed with Gaussian 09.^[25,26] We chose boryl transfer from B₂qly₂ (2,2'-bi-1,3,2-dioxaborolane) to SM_X (PhPdX(2-dimethylphosphino-2'-methoxybiphenyl) as a model reaction for computational simplicity (Figure 1). The oxygen atom on the phosphine ligand in SM_CI weakly coordinates to palladium. Boryl transfer from B₂gly₂ to SM_Cl was calculated to proceed concertedly via four-membered transition state **TS_CI** with an activation barrier of 51.6 kJ mol⁻¹. The lengths of the developing Pd-B bond and the dissociating B-B bond in TS_CI were calculated to be 2.121 and 2.426 Å, respectively. Boryl transfer results in the formation of Prod_Cl, in which the chloride atom weakly coordinates to the palladium center and the oxygen atom on the phosphine ligand is dissociated from palladium. The overall reaction is endothermic by 38.8 kJ mol⁻¹. Moreover, the activation energy for boryl transfer from B_2gly_2 to **SM_Br** was calculated to be 80.5 kJ mol⁻¹, and **TS_Br** is more difficult to reach than **TS_Cl** by 28.9 kJmol^{-1} . The length of the Pd–B bond in TS_Br is slightly shorter than that in **TS_CI** by 0.019 Å, whereas the length of the B–B bond is longer by 0.207 Å. These differences in the bond lengths imply that TS_Br is a later transition state than TS_CI. The for-

www.chemcatchem.org

Figure 1. Energy profile of boryl transfer obtained by DFT calculations at the M06-2X/6-31G*+ECP(Pd,P,Cl,Br) level. Energies are in $kJmol^{-1}$.

mation of product **Prod_Br** is significantly endothermic (72.5 kJ mol⁻¹), which also correlates with **TS_Br** as a later transition state of higher energy. These results show that the efficient borylation of aryl chlorides is based on an intrinsically strong interaction between the boron and chlorine atoms in the boryl transfer.

We then expected that such a strong boron-chlorine interaction would benefit the base-free reduction of aryl chlorides with pinacolborane (HBpin) by selective hydride transfer. To our delight, palladium-catalyzed hydrodechlorination of electron-deficient, electron-rich, and sterically congested aryl chlorides with HBpin proceeded under conditions similar to those used for borylation with diboron (Scheme 4). To the best of our knowledge, this represents the first example of the basefree palladium-catalyzed hydrodechlorination of aryl chlorides with pinacolborane.^[27]

Scheme 4. Palladium-catalyzed reduction of aryl chlorides with pinacolborane. In conclusion, we developed the base-free palladium-catalyzed borylation of aryl chlorides with diborons. These borylation reactions allowed the synthesis of arylboronates bearing base-sensitive siloxy and *N*-(9-fluorenylmethoxycarbonyl)-*N*methyl groups without observable deprotection owing to the absence of a basic activator. Experimental and computational investigations disclosed that the success of the base-free borylation reaction depends on smooth boryl transfer from the diboron reagent to the arylpalladium chloride with the help of the affinity between the chloride atom on the palladium center and the Lewis acidic boron. This concept was applied to the palladium-catalyzed hydrodechlorination of aryl chlorides with pinacolborane. Further studies to realize new base-free reactions are underway in our laboratory.

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers JP24685007, JP26620081, JP16H01019, and JP16H04109. Y.Y. acknowledges JSPS for a Predoctoral Fellowship. H.Y. acknowledges the Japan Association for Chemical Innovation for financial support.

Keywords: boron · borylation · noncovalent interactions · palladium · transmetalation

- a) Boronic Acids, 2nd ed. (Ed: D. G. Hall), Wiley-VCH, Weinheim, Germany,
 2011; b) N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457; c) S. Kotha, K. Lahiri, D. Kashinath, Tetrahedron 2002, 58, 9633; d) N. Miyaura, Bull. Chem. Soc. Jpn. 2008, 81, 1535; e) A. J. J. Lennox, G. C. Lloyd-Jones, Chem. Soc. Rev. 2014, 43, 412.
- [2] For reviews on transition-metal-catalyzed carbon-boron bond formation, see: a) T. Ishiyama, N. Miyaura, J. Organomet. Chem. 2000, 611, 392; b) T. Ishiyama, N. Miyaura, J. Organomet. Chem. 2003, 680, 3; c) T. Ishiyama, N. Miyaura, Chem. Rec. 2004, 3, 271.
- [3] Palladium-catalyzed borylation of aryl bromides, iodides, and triflates with diborons: a) T. Ishiyama, M. Murata, N. Miyaura, J. Org. Chem. 1995, 60, 7508; b) T. Ishiyama, Y. Itoh, T. Kitano, N. Miyaura, Tetrahedron Lett. 1997, 38, 3447; c) T. Ishiyama, N. Miyaura, J. Synth. Org. Chem. Jpn. 1999, 57, 503; d) P. Appukkuttan, E. V. Eycken, W. Dehaen, Synlett 2003, 1204; e) L. Zhu, J. Duquette, M. Zhang, J. Org. Chem. 2003, 68, 3729; f) H. Fang, G. Kaur, J. Yan, B. Wang, Tetrahedron Lett. 2005, 46, 1671; g) V. Diemer, H. Chaumeil, A. Defoin, C. Carré, Tetrahedron 2010, 66, 918; h) W. Tang, S. Keshipeddy, Y. Zhang, X. Wei, J. Savoie, N. D. Patel, N. K. Yee, C. H. Senanayake, Org. Lett. 2011, 13, 1366.
- [4] Palladium-catalyzed borylation of aryl chlorides with diborons: a) T. Ishiyama, K. Ishida, N. Miyaura, *Tetrahedron* 2001, *57*, 9813; b) A. Fürstner, G. Seidel, Org. Lett. 2002, *4*, 541; c) K. L. Billingsley, T. E. Barder, S. L. Buchwald, Angew. Chem. Int. Ed. 2007, *46*, 5359; Angew. Chem. 2007, *119*, 5455; d) G. A. Molander, S. L. J. Trice, S. D. Dreher, *J. Am. Chem. Soc.* 2010, *132*, 17701; e) S. Kawamorita, H. Ohmiya, T. Iwai, M. Sawamura, Angew. Chem. Int. Ed. 2011, *50*, 8363; Angew. Chem. 2011, *123*, 8513; f) W. K. Chow, O. Y. Yuen, C. M. So, W. T. Wong, F. Y. Kwong, *J. Org. Chem.* 2012, *77*, 3543; g) T. Iwai, T. Harada, R. Tanaka, M. Sawamura, *Chem. Lett.* 2014, *43*, 584.
- [5] Palladium/copper-catalyzed borylation of aryl iodides with dialkoxyboranes or diborons: a) Y.-L. Song, C. Morin, *Synlett* **2001**, 266; b) J. Ratniyom, N. Dechnarong, S. Yotphan, S. Kiatisevi, *Eur. J. Org. Chem.* **2014**, 1381.
- [6] Copper-catalyzed borylation of aryl halides with dialkoxyboranes or diborons: a) W. Zhu, D. Ma, Org. Lett. 2006, 8, 261; b) C. Kleeberg, L. Dang, Z. Lin, T. B. Marder, Angew. Chem. Int. Ed. 2009, 48, 5350; Angew.

3

ChemPubSoc Europe

Chem. 2009, 121, 5454; c) F. Labre, Y. Gimbert, P. Bannwarth, S. Olivero, E. Duñach, P. Y. Chavant, Org. Lett. 2014, 16, 2366.

- [7] Palladium-catalyzed borylation of aryl halides with dialkoxyboranes in the presence of base: a) M. Murata, S. Watanabe, Y. Masuda, J. Org. Chem. 1997, 62, 6458; b) M. Murata, T. Oyama, S. Watanabe, Y. Masuda, J. Org. Chem. 2000, 65, 164; c) O. Baudoin, D. Guénard, F. Guéritte, J. Org. Chem. 2000, 65, 9268; d) M. Melaimi, F. Mathey, P. L. Floch, J. Organomet. Chem. 2001, 640, 197; e) M. Melaimi, C. Thoumazet, L. Ricard, P. L. Floch, J. Organomet. Chem. 2004, 689, 2988; f) P.-E. Broutin, I. Čerňa, M. Campaniello, F. Leroux, F. Colobert, Org. Lett. 2004, 6, 4419; g) M. Murata, T. Sambommatsu, S. Watanabe, Y. Masuda, Synlett 2006, 1867; h) M. Murata, T. Oda, S. Watanabe, Y. Masuda, Synthesis 2007, 39, 351; i) K. L. Billingsley, S. L. Buchwald, J. Org. Chem. 2008, 73, 5589; j) K. C. Lam, T. B. Marder, Z. Lin, Organometallics 2010, 29, 1849.
- [8] Palladium-catalyzed borylation of aryldiazonium ions: a) D. M. Willis, R. M. Strongin, *Tetrahedron Lett.* **2000**, *41*, 8683; b) Y. Ma, C. Song, W. Jiang, G. Xue, J. F. Cannon, X. Wang, M. B. Andrus, *Org. Lett.* **2003**, *5*, 4635; c) W. Erb, M. Albini, J. Rouden, J. Blanchet, J. Org. Chem. **2014**, *79*, 10568.
- [9] Nickel-catalyzed borylation of aryl chlorides, bromides, iodides, mesylates, triflates, and aryltrimethylammonium ions with dialkoxyboranes or diborons: a) B. M. Rosen, C. Huang, V. Percec, Org. Lett. 2008, 10, 2597; b) D. A. Wilson, C. J. Wilson, B. M. Rosen, V. Percec, Org. Lett. 2008, 10, 4879; c) C. Moldoveanu, D. A. Wilson, C. J. Wilson, P. Corcoran, B. M. Rosen, V. Percec, Org. Lett. 2009, 11, 4974; d) D. A. Wilson, C. J. Wilson, C. Moldoveanu, A.-M. Resmerita, P. Corcoran, L. M. Hoang, B. M. Rosen, V. Percec, J. Am. Chem. Soc. 2010, 132, 1800; e) C. Moldoveanu, D. A. Wilson, C. J. Wilson, P. Leowanawat, A.-M. Resmerita, C. Liu, B. M. Rosen, V. Percec, J. Org. Chem. 2010, 75, 5438; f) T. Yamanoto, T. Morita, J. Takagi, T. Yamakawa, Org. Lett. 2011, 13, 5766; g) G. A. Molander, L. N. Cavalcanti, C. García-García, J. Org. Chem. 2013, 78, 6427; h) J. Hu, H. Sun, W. Cai, X. Pu, Y. Zhang, Z. Shi, J. Org. Chem. 2016, 81, 14.
- [10] Zinc-catalyzed borylation of aryl bromides and iodides with diborons: a) Y. Nagashima, R. Takita, K. Yoshida, K. Hirano, M. Uchiyama, J. Am. Chem. Soc. 2013, 135, 18730; b) S. K. Bose, T. B. Marder, Org. Lett. 2014, 16, 4562; c) S. K. Bose, A. Deißenberger, A. Eichhorn, P. G. Steel, Z. Lin, T. B. Marder, Angew. Chem. Int. Ed. 2015, 54, 11843; Angew. Chem. 2015, 127, 12009.
- [11] Transition-metal-catalyzed C-F borylation with diborons: [Rh] a) S. I. Kalläne, M. Teltewskoi, T. Braun, B. Braun, *Organometallics* 2015, 34, 1156;
 b) W.-H. Guo, Q.-Q. Min, J.-W. Gu, X. Zhang, *Angew. Chem. Int. Ed.* 2015, 54, 9075; *Angew. Chem.* 2015, 127, 9203. [Ni] c) X.-W. Liu, J. Echavarren, C. Zarate, R. Martin, *J. Am. Chem. Soc.* 2015, 137, 12470. [Ni/Cu] d) T. Niwa, H. Ochiai, Y. Watanabe, T. Hosoya, *J. Am. Chem. Soc.* 2015, 137, 14313.
- [12] Transition-metal-catalyzed direct C–H borylation: [Ir] a) I. A. I. Mkhalid, J. H. Barnard, T. B. Marder, J. C. Murphy, J. F. Hartwig, *Chem. Rev.* 2010, *110*, 890; b) S. Kawamorita, H. Ohmiya, K. Hara, A. Fukuoka, N. Sawamura, *J. Am. Chem. Soc.* 2009, *131*, 5058. Also see: ref. 3 b. [Rh] c) H. Y. Chen, S. Schlecht, T. C. Semple, J. F. Hartwig, *Science* 2000, *287*, 1995; d) S. Shimada, A. S. Batsanov, J. A. K. Howard, T. B. Marder, *Angew. Chem. Int. Ed.* 2001, *40*, 2168; *Angew. Chem.* 2001, *113*, 2226; e) S. Kawamorita, T. Miyazaki, H. Ohmiya, T. Iwai, M. Sawamura, *J. Am. Chem. Soc.* 2011, *133*, 19310. [Pd] f) H.-X. Dai, J.-Q. Yu, *J. Am. Chem. Soc.* 2012, *134*, 134. [Pt] g) T. Furukawa, M. Tobisu, N. Chatani, *J. Am. Chem. Soc.* 2015, *137*, 12211. [Fe] h) T. Hatanaka, Y. Ohki, K. Tatsumi, *Chem. Asian J.* 2010, *5*, 1657; i) G. Yan, Y. Jiang, C. Kuang, S. Wang, H. Liu, Y. Zhang, J. Wang, *Chem. Commun.* 2010, *46*, 3170; j) T. Dombray, C. G. Werncke, S. Jiang, M. Grellier, L. Vendier, S. Bontemps, J.-B. Sortais, S. Sabo-Ettenne, C. Darcel, *J. Am. Chem. Soc.* 2015, *137*, 4062. [Co] k) S. P. Semproni, P. J.

Chirik, J. Am. Chem. Soc. 2014, 136, 4133. [Ni]: I) T. Furukawa, M. Tobisu, N. Chatani, Chem. Commun. 2015, 51, 6508; m) H. Zhang, S. Hagihara, K. Itami, Chem. Lett. 2015, 44, 779. [Cu/Fe]: n) T. J. Mazzacano, N. P. Mankad, J. Am. Chem. Soc. 2013, 135, 17258. [Re] o) H. Y. Chen, J. F. Hartwig, Angew. Chem. Int. Ed. 1999, 38, 3391; Angew. Chem. 1999, 111, 3597.

- [13] Transition-metal-catalyzed borylation of aryl ethers through C–O bond cleavage: [Rh] a) H. Kinuta, M. Tobisu, N. Chatani, J. Am. Chem. Soc. 2015, 137, 1593. [Ni] b) C. Zarate, R. Manzano, R. Martin, J. Am. Chem. Soc. 2015, 137, 6754.
- [14] Nickel-catalyzed borylation of *N*-Aryl Amides via aromatic C–N bond cleavage: M. Tobisu, K. Nakamura, N. Chatani, *J. Am. Chem. Soc.* 2014, 136, 5587.
- [15] Rhodium-catalyzed borylation of aryl nitriles through the cleavage of C-CN bond: a) M. Tobisu, H. Kinuta, Y. Kita, E. Rémond, N. Chatani, J. Am. Chem. Soc. 2012, 134, 115; b) Y.-Y. Jiang, H.-Z. Yu, Y. Fu, Organometallics 2013, 32, 926.
- [16] Transition-metal-free borylation of aryl bromides and iodides with silylborane: a) E. Yamamoto, K. Izumi, Y. Horita, H. Ito, J. Am. Chem. Soc. 2012, 134, 19997; b) R. Uematsu, E. Yamamoto, S. Maeda, H. Ito, T. Taketsugu, J. Am. Chem. Soc. 2015, 137, 4090.
- [17] Cs_2CO_3 -mediated borylation of aryl iodides: J. Zhang, H.-H. Wu, J. Zhang, *Eur. J. Org. Chem.* **2013**, 6263.
- [18] Transition-metal-free borylation of aromatic amines with tert-butyl nitrite: a) F. Mo, Y. Jiang, D. Qiu, Y. Zhang, J. Wang, Angew. Chem. Int. Ed. 2010, 49, 1846; Angew. Chem. 2010, 122, 1890; b) D. Qiu, L. Jin, Z. Zheng, H. Meng, F. Mo, X. Wang, Y. Zhang, J. Wang, J. Org. Chem. 2013, 78, 1923.
- [19] Lewis acid-catalyzed electrophilic borylation of electron-rich arenes:
 a) M. J. Ingleson, Synlett 2012, 23, 1411; b) T. S. De Vries, A. Prokofjevs, E. Vedejs, Chem. Rev. 2012, 112, 4246.
- [20] a) Y. Yamamoto, H. Matsubara, K. Murakami, H. Yorimitsu, A. Osuka, *Chem. Asian J.* 2015, *10*, 219; b) J.-D. Guo, T. Sasamori, Y. Yamamoto, H. Matsubara, S. Nagase, H. Yorimitsu, *Bull. Chem. Soc. Jpn.* 2016, *89*, 192.
- [21] For details of optimization of conditions, see Table S1 in Supporting Information.
- [22] Admirably, borylations of siloxy- and NMeFmoc-substituted aryl chlorides under Buchwald's protocol using KOAc as a base in Ref. 4c afforded the corresponding borylated products in good yields without observable deprotection.
- [23] This ligand exchange process was confirmed by ³¹P NMR analysis in our previously reported silylation reaction in ref. 20a.
- [24] The borylation of 4-chloroanisole with lithium chloride (1.5 eq) resulted in a lower conversion. This result implies that the chloride ion would not activate the diboron for smooth boryl transfer through the formation of chloride-coordinated borate.
- [25] Gaussian 09, rev. C.01, M. J. Frisch, et al., Gaussian, Inc., Wallingford, CT, 2010. For full citation, see Supporting Information.
- [26] Computational perspectives on the mechanisms of Pd-catalyzed crosscoupling reactions were summarized nicely: a) M. García-Melchor, A. A. C. Braga, A. Lledós, G. Ujaque, F. Maseras, Acc. Chem. Res. 2013, 46, 2626; b) L. Xue, Z. Lin, Chem. Soc. Rev. 2010, 39, 1692; c) M. Sumimoto, N. Iwane, T. Takahama, S. Sakaki, J. Am. Chem. Soc. 2004, 126, 10457. Also see: ref. 4 c.
- [27] Palladium-catalyzed hydrodeiodination of aryl iodide with pinacolborane in the presence of base was reported in ref. 7 a.

Received: April 19, 2016 Published online on ■■ ■, 0000

COMMUNICATIONS

um-catalyzed borylation of aryl chlorides with diborons is achieved. The base-free conditions offer acceptable functional group compatibility. Based on experimental and computational

transfer from the diborons to the arylpalladium chloride is promoted by strong interaction between the Lewis acidic boron and the chlorine atom on palladium.

Y. Yamamoto, H. Matsubara,* H. Yorimitsu,* A. Osuka

Base-Free Palladium-Catalyzed Borylation of Aryl Chlorides with