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Site-selective borylation of simple arenes was realized in one pot via an electrophilic thianthrenation/Pd-catalyzed borylation sequence. The key to achieve 
this operatically simple process is the use of Pd catalysis which could tolerate the solvent and acidic conditions used in the thianthrenation step. This 
protocol features mild conditions, broad functional group tolerance, and simple manipulations, and is suitable for late-stage functionalization of a wide 
range of pharmaceuticals and complex bioactive molecules.  

 

Background and Originality Content 
Site-selective functionalization of undirected simple arenes 

remains a great challenge in synthetic community due to the subtle 
differences of several reactive sites regarding the electronic and 
steric properties in the same molecule.1,2 Previously, site-
selectivity has been obtained using electron rich anisole, aniline or 
heteroarenes in electrophilic aromatic substitution reaction3. By 
adopting sterically guided transition metal catalysts, excellent site-
selectivity was realized when concerning 1,2- and 1,3-disubstituted 
simple arenes.4 More recently, both covalent and noncovalent 
directing group approaches for transition metal catalysis allow the 
site-selective functionalization of aromatics with polar functional 
group assistance.5,6 However, limited success on site-selective 
functionalization of simple arenes, especially monosubstituted 
electron-neutral and electron-deficient arenes, has been reported.  

Recently, Ritter group has demonstrated a series of late-stage 
functionalization of arenes via the isolated aryl thianthrenium salts, 
in which remarkable site-selectivity was obtained.7-9 Almost at the 
same timeline, we were developing a transient mediator approach 
for para-selective functionalization of monosubstituted simple 
arenes, and found thianthrene S-oxide (TTSO) and phenoxathiine 
10-oxide could serve as the most selective and efficient mediators 
via sulfide dication intermediates (Scheme 1a).10a Ideally, this 
approach could provide a powerful alternative strategy providing a 
remarkable selectivity for a wide range of aromatics. However, this 
approach suffers from multiple manipulations requiring the 
isolation of sulfonium salts or removal of the solvent and acid in the 
first step. For example, our previous photoredox process cannot 
tolerate with the solvent, acidic conditions used in the first 

sulfonium salts formation step. Herein, we reported a simplified 
procedure for site-selective borylation of simple arene using this 
mediator approach (Scheme 1b), and the full scope of various 
monosubstituted and multisubstituted simple arenes were 
evaluated. The key to achieve this operatically simple process is the 
use of a Pd/phosphine catalyst which could tolerate the solvent and 
wastes in the thianthrenation step. In addition, a suitable base is 
also crucial to alter the pH value of the reaction system. This 
reaction features mild conditions, broader functional group 
tolerance, and simple manipulations in comparison to our previous 
photoredox process, thus makes it high value for late-stage 
functionalization of pharmaceuticals and bioactive complex 
molecules.  
Scheme 1  Site-selective borylation via thianthrenation/Pd-catalyzed 
desulfurative borylation 

(a) TTSO mediated para-borylation of monosubstituted arenes via photoredox catalysis

(b) This work:  TTSO mediated site-selective borylation of simple arenes via Pd catalysis
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Results and Discussion 
Organoborons are appealing synthetic linchpin which are 

widely used in organic synthesis, and pharmaceutical industry.11 As 
such, development of efficient site-selective borylation of 
undirected arenes are desired. Inspired by our recently TTSO 
mediated para-arylation and alkenylation reaction of 
monosubstituted arenes with Pd catalyst,10b we hypothesized that 
the TTSO-mediated site-selective borylation of simple arene could 
be realized with one synthetic operation via a thianthrenation/Pd- 

Table 1 Evaluation of reaction parameters.a,b 

Fe

Entry Solvent Yield (%) of 2a/3
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80/10
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aReaction conditions: 1) toluene (0.2 mmol), TTSO (0.24 mmol), Tf2O (0.24 
mmol), DCM (1.0 mL), N2; -40 oC for 30 min, then rt for another 1 h; 2) [Pd] 
(5.0 mol %), Ligand (5.0 mol %), (Bpin)2 (2.0 equiv), base (3.0 equiv), solvent 
(1.0 mL). bThe yield was determined by 1H NMR using CH2Br2 as the internal 
standard; only para-borylated product was observed. cIsolated yield. 

Table 2 Para-borylation of monosubstituted arenes.a,b 
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aReaction conditions: 1) 1 (0.2 mmol), Thianthrene S-oxide (0.24 mmol), 
Tf2O (0.24 mmol), DCM (1.0 mL), N2; -40 oC for 30 min, then rt for 1 h; 2) 
Pd(OAc)2 (5.0 mol %), XPhos (5.0 mol %), (Bpin)2 (2.0 equiv), NaOPiv (3.0 
equiv), Acetone (1.0 mL); Only para-borylation products were observed in 
crude 1H NMR. bIsolated yield. cDCM (0.2 mL) was used. dPd(OAc)2 (10 
mol %), XPhos (10 mol %) were used. 

catalyzed desulfurative borylation sequence. We are glad to find 
that the Pd-catalyzed borylation reaction showed superior 
compatibility with the conditions used in the first sulfonium salts 
formation step. The desired para-borylated toluene could be 
obtained in 95% isolated yield in the presence of Pd(OAc)2 (5.0 
mol%), XPhos (5.0 mol%), sodium pivalate (3.0 equiv) in 
DCM/acetone (1/1, v/v) after systematically evaluation of the 
solvents and bases (entries 1-6). The use of sodium pivalate is 
crucial for this one-pot reaction, which could inhibit the formation 
of a dimerization byproduct. Based on our previous para-arylation 
with arylborons, we hypothesized that the biaryl byproduct 
derived from the coupling of the sulfonium salts intermediate with 
the arylboron product. A series of phosphine ligands (entries 7-12) 
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were also investigated, in which SPhos gave similar activity with 
XPhos albeit the others all led to inferior yields.  

With the optimal conditions in hand, monosubstituted arenes 
were firstly evaluated. As summarized in Table 2, all substrates 
listed in the table gave excellent positional selectivities, and only 
para-borylated products were observed in crude 1H NMR. 

Moreover, this newly developed protocol typically provided 
broader substrates scope in comparison with the photoredox 
catalysis. For instance, the Ac-protected benzyl alcohol (1m), Phth-
protected benzyl amine (1n), Phth-protected phenethylamine (1o), 
Phth-protected 3-phenyl-1-propanamine (1p), native 2-
phenylpropionic acid (1u) and amino acid derivative (1w) resulted 
in very low yields, and the dehalogenation happened for 1-chloro-
3-phenylpropane (1q) under the previous photoredox conditions. 
Not surprisingly, alkylated benzene derivatives (1a-e), anisole (1f), 
Ac-protected phenol (1g), phenyl ether (1h), aniline derivatives (1j-
k) were all compatible with this one-pot procedure, giving the 
desired arylborons in moderate to high yields. Fluorobenzene (1l) 
provided the para-borylated product in 52% yield. Other functional 
groups on alkyl chain did not significantly affect the efficiency of 
this process, like ester (2r, 2t, 2v), ether (2s), masked amino alcohol 
(2x), and epoxide (2y). Substituted phenyl ether (1z) and biphenyl 
(1aa) were also tolerated under current conditions, yielding the 
targeted products in 89% and 62% yields, respectively. Electron-
deficient arenes and electron-deficient heterocycles are 
incompatible with this protocol probably due to the electrophilic 
properties of the sulfide dication intermediate in the 
thianthrenation step. 

Table 3 Site-selective borylation of multi-substituted arenes.a,b 

4

1) TTSO, Tf2O, DCM
-40 oC to rt, N2, 1.5 h

BpinH
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N
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a Reaction conditions: 1) 2 (0.2 mmol), Thianthrene S-oxide (0.24 mmol), 
Tf2O (0.24 mmol), DCM (1.0 mL), N2; -40 oC for 30 min, then rt for 1 h; 2) 
Pd(OAc)2 (5.0 mol %), XPhos (5.0 mol %), (Bpin)2 (2.0 equiv), NaOPiv (3.0 
equiv), Acetone (1.0 mL). bIsolated yield. cPd(OAc)2 (10 mol %), XPhos (10 
mol %) were used. 

Next, we turned our attention to explore the scope of the 
multisubstituted arenes. Typically, the boron group was installed 
to the most electron rich sites in the arenes due to the highly 

electrophilic properties of the thianthrenium dication intermediate. 
A wide range of disubstituted arenes (4a-g) and trisubstituted 
arene (4h) are suitable substrates for this TTSO-mediated 
borylation protocol. Notably, the electron-rich heterocycles 
including indoline (4i), 1,2,3,4-tetrahydroquinoline (4j), 1,2,3,4-
tetrahydroquinolin-2-one (4k), and carbazole (4l) are also suitable 
substrates for this reaction, selectively delivering the boron group 
to the para-position to the nitrogen on those heterocycles.  

Due to the remarkable site-selectivity and versatility of 
arylborons as a synthetic linchpin, the TTSO-mediated site-
selective borylation represents a charming process for late-stage 
functionalization of drugs and complex bioactive molecules. With 
our newly developed one-pot process, site-selective borylation of 
pharmaceuticals, Pyriproxyfen (6a), Nimesulide (6b), Flurbiprofen 
(6c), Biscalid (6d), and Isoxepac methyl ester (6e) were 
demonstrated.  

Table 4 Late-stage functionalization of bioactive scaffolds.a,b 

O

O

Bpin

Pyriproxyfen

Me

ON

7a, 50%c

O

Bpin

NHMs

NO2

CO2H

Me
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Bpin
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7c, 61%d7b, 90%

N Cl

N
H

O

Cl
Biscalid
7d, 53%

Bpin

O

O
Bpin

7e, 49%

CO2Me

f rom Isoxepac

6

1)
 
TTSO, Tf2O, DCM
-40

 oC
 
to

 rt,
 
1.5

 
h

BpinH
2)

 
(Bpin)2

, Pd(OAc)2/XPhos    
Acetone/DCM

 
(1/1)

, N2    
NaOPiv, rt,

 
12

 
h

S

S

O

TTSO

Ar Ar

7

 
aReaction conditions: 1) 6 (0.2 mmol), Thianthrene S-oxide (0.24 mmol), 
Tf2O (0.24 mmol), DCM (1.0 mL), N2; -40 oC for 30 min, then rt for 1 h; 2) 
Pd(OAc)2 (5.0 mol %), XPhos (5.0 mol %), (Bpin)2 (2.0 equiv), NaOPiv (3.0 
equiv), Acetone (1.0 mL). bIsolated yield. cPd(OAc)2 (10 mol %), XPhos (10 
mol %) were used. dDCM (0.2 mL) was used. 

The scalability of this process was demonstrated by the 
borylation of 3,4-dihydro-2(1H)-quinolinone (4k) on 7.0 mmol scale, 
and 78% yield of targeted arylboron was obtained. Most 
importantly, the mediator thianthrene S-oxide (TTSO) could be 
recycled in 86% total yield upon the oxidation of recovered 
thianthrene (Scheme 2). In addition, drug molecule Vesnarinone 
could be obtained in one step employing borylated 3,4-dihydro-
2(1H)-quinolinone as starting material. . 

This article is protected by copyright. All rights reserved.
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Scheme 2  Gram-scale reaction and synthetic application 
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Conclusions 
In summary, thianthrene S-oxide mediated selective C-H 

borylation of a wide range of arenes has been demonstrated via Pd 
catalyzed desulfurative borylation reaction. This synthetically 
simple one-pot process is highly useful for the late-stage 
functionalization of bioactive molecules and for the synthesis of 
bioactive compounds.  

Experimental 
General procedure for site-selective borylation: A 10 mL 

Schlenk tube was charged with thianthrene S-oxide (55.7 mg, 0.24 
mmol, 1.2 equiv.), CH2Cl2 (1.0 mL) and 1a (0.2 mmol, 1.0 equiv.) 
under a nitrogen atmosphere. The suspension was then cooled to 
-40 °C, followed by the dropwise addition of Tf2O (44 μL, 0.24 mmol, 
1.2 equiv.). The resulting blue mixture was stirred at -40 °C for 30 
min, and was allowed to stir at room temperature for another 1 
hour. Then, bis(pinacolato)diboron (0.4 mmol, 2.0 equiv), Pd(OAc)2 
(2.4 mg, 5.0 mol%), XPhos (4.8 mg, 5.0 mol%), sodium pivalate 
(74.5 mg, 0.6 mmol, 3.0 equiv) were added under a nitrogen 
atmosphere, followed by the addition of acetone (1.0 mL). The 
reaction mixture was stirred at room temperature for 12 hours. 
Subsequently, the mixture was passed through a pad of Celite with 
DCM as the eluent to remove the insoluble precipitate. The 
resulting solution was concentrated and purified by preparative 
thin-layer chromatography to afford the desired product 2a.  
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The supporting information for this article is available on the 

WWW under https://doi.org/10.1002/cjoc.2018xxxxx. 
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