Copper(II)-Catalyzed Esterification of Arenecarboxylic Acids with Aryl- and Vinyl-Substituted Trimethoxysilanes

Fang Luo,^a Changduo Pan,^b Pengcheng Qian,^a Jiang Cheng*^a

^a College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325000, P. R. of China Fax +86(577)56998939; E-mail: jiangcheng@wzu.edu.cn

^b Wenzhou Institute of Industry & Science, Wenzhou 325000, P. R. of China

Received 24 February 2010; revised 16 March 2010

Abstract: In this paper, the copper(II)-catalyzed esterification reaction of arenecarboxylic acids with aryl- or vinyl-substituted trimethoxysilanes is described. A series of aryltrimethoxysilanes and arenecarboxylic acids worked well under this procedure, affording aryl benzoate derivatives in moderate to good yields. Notably, trimethoxy(vinyl)silanes also worked well under this procedure giving a facile and versatile method to access vinyl benzoate derivatives.

Key words: copper(II) catalyzed, trimethoxysilanes, carboxylic acids, esters, silver(I) fluoride

Benzoate derivatives are important building blocks in the synthesis of natural and pharmacological compounds.¹ The direct esterification of benzoic acid and phenol² as well as transesterification reactions³ are often conducted under strongly acidic or basic conditions, which might limit the scope of functional groups and cause side reactions, such as carbonization, oxidation, etc.⁴ The Baeyer–Villiger oxidation⁵ reaction may suffer from low regiose-lectivity. In the past few years, the synthesis of alkyl benzoate derivatives starting from aldehydes and ketones has been developed.^{6,7} However, less attention has been paid to the synthesis of aryl benzoate derivatives. Thus, from a synthetic point of view, it is a highly desirable goal to develop a versatile approach for the synthesis of aryl benzoate derivatives in a simple way.

The Chan-Lam coupling reaction, which allows aryl carbon-heteroatom bond formation via the oxidative coupling of arylboronic acids, stannanes, or siloxanes with N–H^{8,9f} or O–H⁹ containing compounds, has been widely studied in the last few years. Trialkoxy(aryl)silanes have been widely used as the transmetalation reagent in C-C,¹⁰ C–N,¹¹ and C–S¹² bond formation, because of their low cost, easy availability, nontoxic byproducts, and stability under many reaction conditions. However, to the best of our knowledge, the scope of Chan-Lam reaction for the formation of C-O bonds was limited to phenol and alcohols, and the application of both carboxylic acids, as heteroatom nucleophiles, and siloxanes in the Chan-Lam reaction for the formation of the C-O bond was less widely reported.^{9,13} In 2006, trimethoxy(phenyl)silane was used for the oxidative esterification of aldehydes.¹⁴ We

Advanced online publication: 29.04.2010

DOI: 10.1055/s-0029-1218759; Art ID: F03910SS

 Table 1
 Effects of Copper Sources, Solvents, and Fluoride Sources on Formation of Phenyl Benzoate (3aa)

Ph	+ PhSi(OMe) ₃ DH	copper source (2 additive, sol	20 mol%) vent	Ph O Ph
1a	2a			3aa
Entry	Cu source	F source	Solvent	Yield ^a (%)
1	Cu(OAc) ₂	TBAF·3 H_2O	toluene	10
2	Cu(OAc) ₂	KF	toluene	<5
3	Cu(OAc) ₂	CsF	toluene	<5
4	Cu(OAc) ₂	FeF ₃	toluene	<5
5	Cu(OAc) ₂	CuF ₂	toluene	30
6	Cu(OAc) ₂	AgF	toluene	65
7	Cu(OAc) ₂	AgF	DMF	<5
8	Cu(OAc) ₂	AgF	DMSO	<5
9	Cu(OAc) ₂	AgF	NMP	<5
10	Cu(OAc) ₂	AgF	DCE	30 ^b
11	Cu(OAc) ₂	AgF	MeCN	31 ^b
12	CuF ₂	AgF	toluene	72 (80) ^c
13	CuSO ₄	AgF	toluene	50
14	CuBr ₂	AgF	toluene	30
15	Cu(OTf) ₂	AgF	toluene	32
16	Cu(acac) ₂	AgF	toluene	<5
17	Cu ₂ O	AgF	toluene	33
18	CuI	AgF	toluene	30
19	CuBr	AgF	toluene	<5
20	CuF ₂	-	toluene	12
21	-	AgF	toluene	0

^a Reaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), Cu source (20 mol%), additive (2 equiv), anhyd solvent (2 mL), 130 °C, under air, 24 h. Isolated yield.

^b 90 °C.

° AgF (3 equiv).

SYNTHESIS 2010, No. 12, pp 2005-2010

 $[\]ensuremath{\mathbb{C}}$ Georg Thieme Verlag Stuttgart \cdot New York

have devoted our efforts to the application of trialkoxy(aryl)silanes in many reactions.^{10c,i-k,11a,b} Herein, we report the copper(II)-catalyzed esterification reaction of arenecarboxylic acids with aryl- or vinyl-substituted trimethoxysilanes under an air atmosphere, affording aryl or vinyl benzoate derivatives in moderate to good yields.

Initial studies were performed using benzoic acid (1a) with trimethoxy(phenyl)silane (2a) as model substrates, employing copper(II) acetate as the catalyst at 130 °C in a sealed tube (Table 1). Considering that C–Si bonds generally needs a fluoride source to activate it, we first focused screening for the fluoride source (2 equiv) and found that silver(I) fluoride showed good activity (Table 1, entry 6). The copper source used had a dramatic effect. Among the copper sources used, copper(II) fluoride exhibited the highest catalytic reactivity and **3aa** was isolated in 72% yield (Table 1, entry 12). The yield of **3aa** improved to 80% using three equivalents of silver fluoride (Table 1, entry 12). A profound solvent effect was also observed and toluene was found to be superior. In addition, **3aa** was

CuE

Ar²Si(OMe)

Ar¹COOH

formed in only 12% yield in the absence of silver(I) fluoride (Table 1, entry 20) and no desired product was detected without a copper source (Table 1, entry 21). Biphenyl, which is often detected in transition-metal-catalyzed coupling reactions, was formed as a byproduct.

With the optimized conditions in hand (Table 1, entry 12), we then explored the scope of this method. As expected, a series of aryltrimethoxysilanes **2a–e** worked well under these reaction conditions. Electron-donating as well as electron-neutral aryltrimethoxysilanes **2a–e** coupled effciently with benzoic acid (**1a**), and good yields of the products **3aa–ae** were obtained (Table 2, entries 1–5). Steric hindrance on the aryltrimethoxysilane or the acid has no obvious effect on the reaction (Table 2, entries 2, 3, 6–8). For example, **3ab**, **3ca**, **3fa**, and **3ha** were isolated in 83%, 90%, 84%, and 81% yields, respectively. This procedure tolerated a series of functional groups, such as OMe, Cl, Br, and NO₂ groups. Particularly, halogen-substituted carboxylic acids **1g–i** worked well with trimethoxy(phenyl)silane (**2a**) (Table 2, entries 11–14) and

Table 2 Copper(II)-Catalyzed Esterification Reaction of Arenecarboxylic Acids with Aryltrimethoxysilanes^a

. 1

	7.1 0.(0.1.0)3	AgF, toluene	$\int -\Delta r^2$			
1	2	-	3			
Entry	Substrate 1	Ar ¹	Substrate 2	Ar ²	Product	Yield ^b (%)
1	1a	Ph	2a	Ph	3aa	80 (73) ^c (62) ^d
2	1a	Ph	2b	$4-MeC_6H_4$	3ab	83
3	1a	Ph	2c	$2-MeC_6H_4$	3ac	81
4	1a	Ph	2d	$3,5-Me_2C_6H_3$	3ad	65
5	1a	Ph	2e	1-naphthyl	3ae	70
6	1b	$4-MeC_6H_4$	2a	Ph	3ba	82
7	1c	$2-MeC_6H_4$	2a	Ph	3ca	90
8	1d	$3-\text{MeC}_6\text{H}_4$	2a	Ph	3da	81
9	1e	$4-MeOC_6H_4$	2a	Ph	3ea	83
10	1f	$2-MeOC_6H_4$	2a	Ph	3fa	84
11	1g	$4-ClC_6H_4$	2a	Ph	3ga	79
12	1h	$2-ClC_6H_4$	2a	Ph	3ha	81
13	1i	$3-ClC_6H_4$	2a	Ph	3ia	76
14	1j	$4-BrC_6H_4$	2a	Ph	3ja	60
15	1k	$3-O_2NC_6H_4$	2a	Ph	3ka	70
16	11	CH=CHPh	2a	Ph	3la	45
17	1m	Bn	2e	1-naphthyl	3me	36

^a Reaction conditions: $Ar^{1}CO_{2}H \mathbf{1}$ (0.2 mmol), $Ar^{2}Si(OMe)_{3}\mathbf{2}$ (0.3 mmol), CuF_{2} (20 mol%), AgF (3 equiv), anhyd toluene (2 mL), 130 °C, 24 h. ^b Isolated yield.

^c Scale increased to 0.5 mmol.

^d Scale increased to 1.0 mmol.

the remaining halogen atom could be valuable for further manipulation. It is worth noting that cinnamic acid (11) was subjected to the standard procedure and phenyl cinnamate (3la) was obtained in moderate yield (Table 2, entry 16). Under the optimized reaction conditions, the reaction conducted on 0.5-mmol and 1-mmol scales formed the product 3aa in 73% and 62% yields, respectively (Table 2, entry 1). Disappointingly, aliphatic acids did not react efficiently with aryltrimethoxysilanes. For example, 11 and 1m provided the product 3la and 3me in only 45% and 36% yields, respectively, and only a trace of the desired product was detected using acetic acid as the substrate. Importantly, the method obviated the use of an acyl chloride and phenol in the synthesis of benzoate derivatives. Thus, it represents an exceedingly practical and alternative method to access aryl benzoate derivatives.

Having demonstrated the utility of the optimized conditions on aryltrimethoxysilanes, we chose trimethoxy(vinyl)silane (**2f**) as the reaction partner. Fortunately, it ran smoothly and vinyl esters were obtained in moderate yields (Table 3). The direct addition of carboxylic acids to terminal alkynes catalyzed by Hg,¹⁵ Ru,¹⁶ or Ir¹⁷ is a straightforward and atom-economical process for the synthesis of enol esters. However, the use of toxic mercury salts or expensive catalysts greatly diminished the scope of the aforementioned procedure. Thus, our procedure represents a practically alternative method to access vinyl esters.

The stoichiometric reaction of trimethoxy(phenyl)silane (2a) with copper(II) benzoate was conducted and phenyl benzoate (3aa) was isolated in 60% yield (Scheme 1). A working mechanism was proposed as outlined in Scheme 2. In step (i), the reaction of copper(II) acetate with benzoic acid forms copper(II) benzoate **A**. In step (ii), phenyl is transferred to the Cu(II) center from $[RSiF(OMe)_3]^-$ **B**, which derives from the coordination of aryltrimethoxysilane 2 with F⁻, producing intermediate C takes place to afford the target product **3** and generate the Cu(0) species, which is oxidized to a Cu(II) species by Ag(I).¹⁹ It should be noted that a mechanism involving Cu(III) could not be completely excluded.²⁰

Scheme 1 Stoichiometric reactions of copper(II) benzoate with trimethoxy(phenyl)silane

In conclusion, we have developed a novel esterification reaction of carboxylic acids with the facile prepared aryland vinyl-substituted trimethoxysilanes. The procedure obviates the use of acyl chloride and phenol, which represents a practically alternative method for the synthesis of aryl and vinyl benzoate derivatives.
 Table 3
 Copper(II)-Catalyzed Esterification Reaction of Arenecarboxylic Acids with Trimethoxy(vinyl)silane^a

^a Reaction conditions: $ArCO_2H$ **1** (0.2 mmol), trimethoxy(vinyl)silane (**2f**, 0.3 mmol), CuF_2 (20 mol%), AgF (3 equiv), anhyd toluene (2 mL), 130 °C, 24 h.

^b Isolated yield.

¹H and ¹³C NMR spectra were measured on a 300 or 500 MHz Bruker spectrometer (¹H 300 MHz, ¹³C 75 or 125 MHz), in CDCl₃ with TMS as the internal standard at r.t. Column chromatography was performed using EM Silica gel 60 (300–400 mesh).

Arenecarboxylic Acid Esters 3; General Procedure

Under air, a sealed tube was charged with carboxylic acid 1 (0.2, 0.5, or 1.0 mmol), trimethoxysilane 2 (1.5 equiv), CuF_2 (20 mol%), AgF (3 equiv), and anhyd toluene (2, 3, or 5 mL). The mixture was stirred at 130 °C. The mixture was refluxed for 24 h, the solvent was evaporated under reduced pressure, and the residue was purified by flash column chromatography (silica gel) to give the product.

Phenyl Benzoate (3aa)²¹

¹H NMR (300 MHz, CDCl₃): δ = 8.22 (d, *J* = 7.2 Hz, 2 H), 7.67–7.62 (m, 1 H), 7.54–7.41 (m, 4 H), 7.31–7.21 (m, 3 H).

Scheme 2 Possible mechanism

¹³C NMR (75 MHz, CDCl₃): δ = 165.2, 150.9, 133.6, 130.1, 129.6, 129.5, 128.5, 125.8, 121.7.

o-Tolyl Benzoate (3ab)22

¹H NMR (300 MHz, CDCl₃): $\delta = 8.23$ (d, J = 7.8 Hz, 2 H), 7.65– 7.63 (m, 1 H), 7.55-7.50 (m, 2 H), 7.30-7.25 (m, 2 H), 7.22-7.14 (m, 2 H), 2.25 (s, 3 H).

¹³C NMR (75 MHz, CDCl₃): δ = 164.8, 149.5, 133.5, 131.1, 130.3, 130.1, 129.5, 128.6, 126.9, 126.0, 121.9, 16.2.

m-Tolyl Benzoate (3ac)23

¹H NMR (300 MHz, CDCl₃): $\delta = 8.21$ (d, J = 7.2 Hz, 2 H), 7.67– 7.62 (m, 1 H), 7.54–7.49 (m, 2 H), 7.34–7.29 (m, 1 H), 7.10–7.01 (m, 3 H), 2.40 (s, 3 H).

¹³C NMR (75 MHz, CDCl₃): δ = 165.3, 150.9, 139.6, 133.5, 130.1, 129.7, 129.2, 128.5, 126.6, 122.3, 118.6, 21.3.

3,5-Dimethylphenyl Benzoate (3ad)²⁴

¹H NMR (300 MHz, CDCl₃): $\delta = 8.20$ (d, J = 8.1 Hz, 2 H), 7.63– 7.61 (m, 1 H), 7.53–7.48 (m, 2 H), 6.91 (s, 1 H), 6.84 (s, 2 H), 2.35 (s, 6 H).

¹³C NMR (75 MHz, CDCl₃): δ = 165.3, 150.8, 139.3, 133.4, 130.1, 129.7, 128.5, 127.6, 119.2, 21.2.

Naphthalen-1-vl Benzoate (3ae)²⁵

¹H NMR (300 MHz, CDCl₃): $\delta = 8.36$ (d, J = 7.8 Hz, 2 H), 7.94– 7.90 (m, 2 H), 7.82–7.68 (m, 2 H), 7.61–7.50 (m, 5 H), 7.39 (d, J = 7.7 Hz, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 165.2, 146.8, 134.7, 133.8, 130.3, 129.4, 128.7, 128.0, 126.9, 126.49, 126.46, 126.1, 125.5, 121.2, 118.2.

Phenyl 4-Methylbenzoate (3ba)^{6a}

¹H NMR (300 MHz, CDCl₃): δ = 8.11 (d, J = 8.2 Hz, 2 H), 7.46– 7.41 (m, 2 H), 7.33-7.20 (m, 5 H), 2.46 (s, 3 H).

¹³C NMR (75 MHz, CDCl₃): δ = 165.2, 151.0, 144.4, 130.2, 129.4, 129.3, 126.8, 125.8, 121.8, 21.7.

Phenyl 2-Methylbenzoate (3ca)²⁶

¹H NMR (300 MHz, CDCl₃): δ = 8.18 (d, *J* = 7.9 Hz, 1 H), 7.52– 7.42 (m, 3 H), 7.36–7.28 (m, 3 H), 7.24–7.21 (m, 2 H), 2.69 (s, 3 H). ¹³C NMR (75 MHz, CDCl₃): δ = 165.8, 150.9, 141.3, 132.7, 131.9, 131.1, 129.5, 128.6, 125.9, 125.8, 121.8, 21.9.

Phenyl 3-Methylbenzoate (3da)²⁷

¹H NMR (300 MHz, CDCl₃): δ = 8.02 (d, J = 7.2 Hz, 2 H), 7.47– 7.38 (m, 4 H), 7.30–7.20 (m, 3 H), 2.45 (s, 3 H).

¹³C NMR (75 MHz, CDCl₃): δ = 165.3, 150.9, 138.4, 134.3, 130.6, 129.4, 128.4, 128.2, 127.3, 125.8, 121.7, 21.3.

Phenyl 4-Methoxybenzoate (3ea)^{6a}

¹H NMR (300 MHz, CDCl₃): $\delta = 8.17$ (d, J = 8.8 Hz, 2 H), 7.45– 7.40 (m, 2 H), 7.29–7.19 (m, 3 H), 6.99 (d, J = 8.8 Hz, 2 H), 3.89 (s, 3 H).

¹³C NMR (75 MHz, CDCl₃): δ = 164.9, 163.9, 151.1, 132.3, 129.4, 125.7, 121.9, 121.8, 113.8, 55.5.

Phenyl 2-Methoxybenzoate (3fa)²⁸

¹H NMR (300 MHz, CDCl₃): $\delta = 8.03$ (d, J = 7.6 Hz, 1 H), 7.58– 7.53 (m, 1 H), 7.45-7.40 (m, 2 H), 7.28-7.22 (m, 3 H), 7.08-7.03 (m, 2 H), 3.94 (s, 3 H).

¹³C NMR (75 MHz, CDCl₃): δ = 164.4, 159.9, 150.9, 134.3, 132.2, 129.3, 125.7, 121.8, 120.2, 119.1, 112.2, 56.0.

Phenyl 4-Chlorobenzoate (3ga)²⁹

¹H NMR (300 MHz, CDCl₃): $\delta = 8.15$ (d, J = 8.6 Hz, 2 H), 7.51– 7.41 (m, 4 H), 7.31–7.20 (m, 3 H).

¹³C NMR (75 MHz, CDCl₃): δ = 164.3, 150.7, 140.1, 131.5, 129.5, 128.9, 128.0, 126.0, 121.6.

Phenyl 2-Chlorobenzoate (3ha)³⁰

¹H NMR (300 MHz, CDCl₃): δ = 8.04 (d, J = 7.8 Hz, 1 H), 7.52– 7.42 (m, 5 H), 7.29-7.24 (m, 3 H).

¹³C NMR (75 MHz, CDCl₃): δ = 164.1, 150.7, 134.3, 133.1, 131.8, 131.3, 129.5, 129.3, 126.7, 126.0, 121.6.

Phenyl 3-Chlorobenzoate (3ia)²⁷

¹H NMR (300 MHz, CDCl₃): $\delta = 8.19$ (s, 1 H), 8.10 (d, J = 7.8 Hz, 1 H), 7.63–7.60 (m, 1 H), 7.49–7.42 (m, 3 H), 7.32–7.20 (m, 3 H).

¹³C NMR (75 MHz, CDCl₃): δ = 163.9, 150.7, 134.7, 133.6, 131.3, 130.1, 129.9, 129.5, 128.2, 126.0, 121.5.

Phenyl 4-Bromobenzoate (3ja)³¹

¹H NMR (300 MHz, CDCl₃): $\delta = 8.06$ (d, J = 8.5 Hz, 2 H), 7.65 (d, J = 8.5 Hz, 2 H), 7.46–7.41 (m, 2 H), 7.31–7.19 (m, 3 H).

¹³C NMR (75 MHz, CDCl₃): δ = 164.5, 150.7, 131.9, 131.6, 129.5, 128.8, 128.4, 126.0, 121.6.

Phenyl 3-Nitrobenzoate (3ka)³²

¹H NMR (300 MHz, CDCl₃): δ = 9.04 (s, 1 H), 8.54–8.48 (m, 2 H), 7.74 (m, 2 H), 7.46 (m, 2 H), 7.34-7.23 (m, 2 H).

¹³C NMR (75 MHz, CDCl₃): δ = 163.0, 150.4, 135.7, 131.3, 129.8, 139.63, 129.61, 127.9, 126.3, 125.0, 121.4.

Phenyl Cinnamate (3la)²⁷

¹H NMR (300 MHz, CDCl₃): δ = 7.88 (d, J = 16.0 Hz, 1 H), 7.61– 7.58 (m, 2 H), 7.44–7.39 (m, 5 H), 7.28–7.23 (m, 1 H), 7.17 (d, J = 7.9 Hz, 2 H), 6.64 (d, J = 16.0 Hz, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 165.4, 150.8, 146.5, 134.2, 130.6, 129.4, 128.9, 128.3, 125.7, 121.6, 117.3.

Vinyl Cinnamate (3lf)33

¹H NMR (300 MHz, CDCl₃): δ = 7.80 (d, *J* = 16.0 Hz, 1 H), 7.56–7.54 (m, 2 H), 7.46–7.40 (m, 4 H), 6.46 (d, *J* = 16.0 Hz, 1 H), 4.98 (d, *J* = 13.9 Hz, 1 H), 4.64 (d, *J* = 6.2 Hz, 1 H).

¹³C NMR (125 MHz, CDCl₃): δ = 163.9, 146.6, 141.2, 134.0, 130.7, 128.9, 128.2, 116.6, 97.7.

Naphthalen-1-yl 2-Phenylacetate (3me)³⁴

¹H NMR (300 MHz, CDCl₃): δ = 7.85 (d, J = 8.0 Hz, 1 H), 7.73 (d, J = 8.2 Hz, 1 H), 7.60–7.39 (m, 9 H), 7.26–7.22 (m, 1 H), 4.03 (s, 2 H).

 ^{13}C NMR (125 MHz, CDCl₃): δ = 169.9, 146.5, 134.6, 133.5, 129.4, 128.8, 127.9, 127.5, 126.7, 126.43, 126.41, 126.0, 125.3, 121.0, 118.0, 41.6.

Vinyl 4-Methylbenzoate (3bf)35

¹H NMR (300 MHz, CDCl₃): $\delta = 8.00$ (d, J = 8.2 Hz, 2 H), 7.51 (dd, $J_1 = 14.0, J_2 = 6.3$ Hz, 1 H), 7.28–7.26 (m, 2 H), 5.06 (dd, $J_1 = 14.0, J_2 = 1.5$ Hz, 1 H), 4.69 (dd, $J_1 = 6.3, J_2 = 1.5$ Hz, 1 H), 3.88 (s, 3 H). ¹³C NMR (75 MHz, CDCl₃): $\delta = 163.7$, 144.4, 141.5, 130.0, 129.2, 97.9, 21.6.

Vinyl 2-Methylbenzoate (3cf)³⁶

¹H NMR (300 MHz, CDCl₃): $\delta = 8.01$ (d, J = 7.6 Hz, 1 H), 7.50 (dd, $J_1 = 13.9, J_2 = 6.2$ Hz, 1 H), 7.46–7.42 (m, 1 H), 7.30–7.26 (m, 2 H), 5.04 (dd, $J_1 = 13.9, J_2 = 1.5$ Hz, 1 H), 4.69 (dd, $J_1 = 6.2, J_2 = 1.5$ Hz, 1 H), 2.63 (s, 3 H).

¹³C NMR (125 MHz, CDCl₃): δ = 164.2, 141.3, 141.1, 132.6, 131.8, 130.9, 128.1, 125.8, 97.9, 21.7.

Vinyl 4-Methoxybenzoate (3ef)³⁷

¹H NMR (300 MHz, CDCl₃): δ = 8.07 (d, *J* = 8.3 Hz, 2 H), 7.52 (dd, *J*₁ = 14.0, *J*₂ = 6.3 Hz, 1 H), 6.95 (d, *J* = 8.3 Hz, 2 H), 5.03 (dd, *J*₁ = 14.0, *J*₂ = 1.6 Hz, 1 H), 4.67 (dd, *J*₁ = 6.3, *J*₂ = 1.6 Hz, 1 H), 3.88 (s, 3 H).

¹³C NMR (75 MHz, CDCl₃): δ = 163.9, 163.3, 141.5, 132.1, 121.1, 113.8, 97.6, 55.4.

Vinyl 2-Methoxybenzoate (3ff)³⁶

¹H NMR (300 MHz, CDCl₃): δ = 7.90 (d, *J* = 7.9 Hz, 1 H), 7.51 (dd, J_1 = 14.0, J_2 = 6.3 Hz, 1 H), 7.51–7.48 (m, 1 H), 7.02–7.6.98 (m, 2 H), 5.01 (dd, J_1 = 14.0, J_2 = 1.5 Hz, 1 H), 4.66 (dd, J_1 = 6.3, J_2 = 1.5 Hz, 1 H), 3.92 (s, 3 H).

¹³C NMR (125 MHz, CDCl₃): δ = 162.7, 159.9, 141.5, 134.3, 132.0, 120.2, 118.5, 112.2, 97.8, 56.0.

Vinyl 3-Nitrobenzoate (3kf)38

¹H NMR (300 MHz, CDCl₃): δ = 8.93–8.92 (m, 1 H), 8.48–8.42 (m, 2 H), 7.73–7.67 (m, 1 H), 7.51 (dd, *J*₁ = 13.9, *J*₂ = 6.2 Hz, 1 H), 5.17 (dd, *J*₁ = 13.9, *J*₂ = 1.9 Hz, 1 H), 4.80 (dd, *J*₁ = 6.2, *J*₂ = 1.9 Hz, 1 H). ¹³C NMR (125 MHz, CDCl₃): δ = 161.6, 148.4, 141.1, 135.5, 130.8, 129.8, 127.9, 124.9, 99.4.

Vinyl Biphenyl-2-carboxylate (3mf)³⁹

¹H NMR (300 MHz, CDCl₃): δ = 7.99–7.96 (m, 1 H), 7.59–7.26 (m, 9 H), 4.59–4.49 (m, 2 H).

¹³C NMR (75 MHz, CDCl₃): δ = 165.2, 143.4, 141.3, 141.0, 131.9, 131.0, 130.4, 129.2, 128.4, 128.0, 127.2, 98.1.

Supporting Information for this article is available online at http://www.thieme-connect.com/ejournals/toc/synthesis.

Acknowledgment

We thank the National Natural Science Foundation of China (No. 20972115) and the Key Project of Chinese Ministry of Education (No. 209054) for financial support.

References

- (a) Moretto, A.; Nicolli, A.; Lotti, M. *Toxicol. Appl. Pharm.* 2007, 219, 196. (b) Beginn, U.; Zipp, G.; Moller, M. *Chem. Eur. J.* 2000, 6, 2016. (c) Barratt, M. D.; Basketter, D. A.; Roberts, D. W. *Toxicol. Vitro* 1994, 8, 823. (d) Child, J. J.; Oka, T.; Simpson, F. J.; Krishnamurty, H. G. *Can. J. Microbiol.* 1971, 17, 1455. (e) Berndt, M. C.; Bowles, M. R.; King, G. J.; Zerner, B. *Biochim. Biophys. Acta* 1996, 1298, 159.
- (2) (a) Ishihara, K. *Tetrahedron* 2009, 65, 1085. (b) Konwar, D.; Gogoi, P. K.; Gogoi, P.; Borah, G.; Baruah, R.; Hazarika, N.; Borgohain, R. *Indian J. Chem. Technol.* 2008, 15, 75. (c) Vijayakumar, B.; Iyengar, P.; Nagendrappa, G.; Prakash, B. S. J. J. Indian Chem. Soc. 2005, 82, 922. (d) Lee, C. K.; Yu, J. S.; Lee, H.-J. J. Heterocycl. Chem. 2002, 39, 1207. (e) Eshghi, H.; Rafei, M.; Karimi, M. H. Synth. Commun. 2001, 31, 771. (f) Ueda, M.; Mori, H. Bull. Chem. Soc. Jpn. 1992, 65, 1636. (g) Ueda, M.; Oikawa, H. J. Org. Chem. 1985, 50, 760. (h) Keshavamurthy, K. S.; Vankar, Y. D.; Dhar, D. N. Synthesis 1982, 506. (i) Lawrence, W. W. Jr. Tetrahedron Lett. 1971, 12, 3453.
- (3) (a) Khalfina, I. A.; Vlasov, V. M. *Russ. J. Org. Chem. (Engl. Transl.)* 2008, 44, 1619. (b) Oohashi, Y.; Fukumoto, K.; Mukaiyama, T. *Bull. Chem. Soc. Jpn.* 2005, 78, 1508.
 (c) Degani, I.; Dughera, S.; Fochi, R.; Serra, E. *Synthesis* 1999, 1200.
- (4) (a) Fischer, E. Ber. Dtsch. Chem. Ges. 1895, 28, 3254.
 (b) Butts, J. J. Am. Chem. Soc. 1931, 53, 3560.
- (5) (a) Olah, G. A.; Wang, Q.; Trivedi, N. J.; Prakash, G. K. S. *Synthesis* 1991, 739. (b) Yadav, J. S.; Reddy, B. V. S.; Basak, A. K.; Narsaiah, A. V. *Chem. Lett.* 2004, *33*, 248. (c) Kotsuki, H.; Arimura, K.; Araki, T.; Shinohara, T. *Synlett* 1999, 462. (d) Toda, F.; Yagi, M.; Kiyoshige, K. J. Chem. Soc., Chem. Commun. 1988, 958.
- (6) (a) Qin, C.; Wu, H.; Chen, J.; Liu, M.; Cheng, J.; Su, W.; Ding, J. Org. Lett. 2008, 10, 1537. (b) Kiyooka, S.-I.; Wada, Y.; Ueno, M.; Yokoyama, T.; Yokoyama, R. Tetrahedron 2007, 63, 12695. (c) Gopinath, R.; Patel, B. K. Org. Lett. 2000, 2, 577. (d) Barkakaty, B.; Talukdar, B.; Patel, B. K. J. Org. Chem. 2003, 68, 2944. (e) Travis, B. R.; Sivakumar, M.; Hollist, G. O.; Borhan, B. Org. Lett. 2003, 5, 1031. (f) Gopinath, R.; Paital, A. R.; Patel, B. K. Tetrahedron Lett. 2002, 43, 5123. (g) McDonald, C. E.; Nice, L. E.; Shaw, A. W.; Nestor, N. B. Tetrahedron Lett. 1993, 34, 2741. (h) Han, R.; Hillhouse, G. L. J. Am. Chem. Soc. 1997, 119, 8135. (i) Espenson, J. H.; Zhu, Z.; Zauche, T. H. J. Org. Chem. 1999, 64, 1191.
- (7) Nakatani, Y.; Koizumi, Y.; Yamasaki, R.; Saito, S. Org. Lett. 2008, 10, 2067.
- (8) For selected references, see: (a) Lam, P. Y. S.; Clark, C. G.; Saubern, S.; Adams, J.; Winters, M. P.; Chan, D. M. T.; Combs, A. *Tetrahedron Lett.* **1998**, *39*, 2941. (b) Combs, A.; Saubern, S.; Rafalski, M.; Lam, P. Y. S. *Tetrahedron Lett.* **1999**, *40*, 1623. (c) Lam, P. Y. S.; Clark, C. G.; Saubern, S.; Adams, J.; Averill, K. M.; Chan, D. M. T.; Combs, A. *Synlett* **2000**, 674. (d) Kantam, M. L.; Venkanna, G. T.; Sridhar, C.; Sreedhar, B.; Choudary, B. M. *J. Org. Chem.* **2006**, *71*, 9522. (e) Quach, T. D.; Batey, R. A. *Org. Lett.* **2003**, *5*, 4397. (f) Sreedhar, B.; Venkanna, G. T.; Kumar, K. B. S.; Balasubrahmanyam, V. Synthesis **2008**,

Synthesis 2010, No. 12, 2005-2010 © Thieme Stuttgart · New York

795. (g) Zhou, C.; Yang, D.; Jia, X.; Zhang, L.; Cheng, J. Synlett 2009, 3198.

- (9) For selected references, see: (a) Chan, D. M. T.; Monaco, K. L.; Wang, R.-P.; Winters, M. P. Tetrahedron Lett. 1998, 39, 2933. (b) Evans, D. A.; Katz, J. L.; West, T. R. Tetrahedron Lett. 1998, 39, 2937. (c) Quach, T. D.; Batey, R. A. Org. Lett. 2003, 5, 1381. (d) Lam, P. Y. S.; Vincent, G.; Bonne, D.; Clark, C. G. Tetrahedron Lett. 2003, 44, 4927. (e) Chan, D. M. T.; Monaco, K. L.; Li, R.; Bonne, D.; Clark, C. G.; Lam, P. Y. S. Tetrahedron Lett. 2003, 44, 3863. (f) Lam, P. Y. S.; Vincent, G.; Clark, C. G.; Deudon, S.; Jadhav, P. K. Tetrahedron Lett. 2001, 42, 3415.
- (10) (a) Li, J.-H.; Deng, C. L.; Xie, Y. X. Synthesis 2006, 969. (b) Shi, S. Y.; Zhang, Y. H. J. Org. Chem. 2007, 72, 5927. (c) Pan, C.; Liu, M.; Zhao, L.; Wu, H.; Ding, J.; Cheng, J. Catal. Commun. 2008, 9, 1685. (d) Dey, R.; Chattopadhyay, K.; Ranu, B. C. J. Org. Chem. 2008, 73, 9461. (e) So, C. M.; Lee, H. W.; Lau, C. P.; Kwong, F. Y. Org. Lett. 2009, 11, 317. (f) Zhang, L.; Qing, J.; Yang, P.; Wu, J. Org. Lett. 2008, 10, 4971. (g) Zhang, L.; Wu, J. J. Am. Chem. Soc. 2008, 130, 12250. (h) Lerebours, R.; Wolf, C. Org. Lett. 2007, 9, 2737. (i) Ye, Z.; Liu, M.; Lin, B.; Wu, H.; Ding, J.; Cheng, J. Tetrahedron Lett. 2009, 50, 530. (j) Lin, B.; Liu, M.; Ye, Z.; Zhang, Q.; Cheng, J. Tetrahedron Lett. 2009, 50, 1714. (k) Ye, Z.; Chen, F.; Luo, F.; Wang, W.; Lin, B.; Jia, X.; Cheng, J. Synlett 2009, 2198. (1) Yang, S.; Li, B.; Wan, X.; Shi, Z. J. Am. Chem. Soc. 2007, 129, 6066.
- (11) (a) Lin, B.; Liu, M.; Ye, Z.; Ding, J.; Wu, H.; Cheng, J. Org. Biomol. Chem. 2009, 7, 869. (b) Pan, C.; Cheng, J.; Wu, H.; Ding, J.; Liu, M. Synth. Commun. 2009, 39, 2082. (c) Song, R.-J.; Deng, C.-L.; Xie, Y.-X.; Li, J.-H. Tetrahedron Lett. 2007, 48, 7845. (d) Lam, P. Y. S.; Deudon, S.; Averill, K. M.; Li, R.; He, M. Y.; DeShong, P.; Clark, C. G. J. Am. Chem. Soc. 2000, 122, 7600. (e) Lam, P. Y. S.; Deudon, S.; Hauptman, E.; Clark, C. G. Tetrahedron Lett. 2001, 42, 2427
- (12) Luo, P.-S.; Yu, M.; Tang, R.-Y.; Zhong, P.; Li, J.-H. Tetrahedron Lett. 2009, 50, 1066.
- (13) (a) Petrassi, H. M.; Sharpless, K. B.; Kelly, J. W. Org. Lett. 2001, 3, 139. (b) Decicco, C. P.; Song, Y.; Evans, D. A. Org. Lett. 2001, 3, 1029. (c) Jung, M. E.; Lazarova, T. I. J. Org. Chem. 1999, 64, 2976. (d) Blouin, M.; Frenette, R. J. Org. Chem. 2001, 66, 9043. (e) Finet, J. P. Chem. Rev. 1989, 89, 1487.
- (14) Lerebours, R.; Wolf, C. J. Am. Chem. Soc. 2006, 128, 13052.
- (15) Hudrlik, P. F.; Hudrlik, A. M. J. Org. Chem. 1973, 38, 4254.

PAPER

- (16) (a) Kawano, H.; Masaki, Y.; Matsunaga, T.; Hiraki, K.; Onishi, M.; Tsubomura, T. J. Organomet. Chem. 2000, 604, 69. (b) Bruneau, C.; Dixneuf, P. H. Chem. Commun. 1997, 507. (c) Doucet, H.; Martin-Vaca, B.; Bruneau, C.; Dixneuf, P. H. J. Org. Chem. 1995, 60, 7247. (d) Rotem, M.; Shvo, Y. Organometallics 1983, 2, 1689.
- (17) Nakagawa, H.; Okimoto, Y.; Sakaguchi, S.; Ishii, Y. Tetrahedron Lett. 2003, 44, 103.
- (18) For the transfer of phenyl from trimethoxy(phenyl)silane to copper(II), see refs 11c-e.
- (19)The formation of a Ag(0) film was observed. We reasoned that Cu(0) is produced after reductive elimination and is then oxidized to Cu(II) by Ag(I).
- (20)King, A. E.; Brunold, T. C.; Stahl, S. S. J. Am. Chem. Soc. 2009, 131, 5044.
- (21) Won, J.-E.; Kim, H.-K.; Kim, J.-J.; Yim, H.-S.; Kim, M.-J.; Kang, S.-B.; Chung, H.-A.; Lee, S.-G.; Yoon, Y.-J. Tetrahedron 2007, 63, 12720.
- (22) Iranpoor, N.; Firouzabadi, H.; Khalili, D.; Motevalli, S. J. Org. Chem. 2008, 73, 4882.
- (23) Ross, J.; Xiao, J. Green Chem. 2002, 4, 129.
- (24) Ishihara, K.; Nakayama, M.; Ohara, S.; Yamamoto, H. Tetrahedron 2002, 58, 8179.
- (25)Barbero, M.; Cadamuro, S.; Dughera, S.; Venturello, P. Synthesis 2008, 3625.
- (26) Song, G.; Cai, Y.; Peng, Y. J. Comb. Chem. 2005, 7, 561.
- (27) Roy, H. N.; Al Mamun, A. H. Synth. Commun. 2006, 36, 2975.
- (28) Liu, Z.; Larock, R. C. J. Org. Chem. 2006, 71, 3198.
- (29) Neuvonen, H.; Neuvonen, K.; Pasanen, P. J. Org. Chem. 2004, 69, 3794.
- (30) Yoshida, H.; Mimura, Y.; Ohshita, J.; Kunai, A. Chem. Commun. 2007, 2405.
- (31) Ramesh, C.; Kubota, Y.; Miwa, M.; Sugi, Y. Synthesis 2002, 2171.
- (32) Williams, F. J. J. Org. Chem. 1977, 42, 3425.
- (33) van Paesschen, G. Makromol. Chem. 1960, 37, 46.
- (34) Chhor, R. B. Synth. Commun. 2003, 33, 2519.
- (35) Ham, G. E. J. Polym. Sci. 1952, 8, 91.
- (36) Lussi, H. Kuntst.-Plast. 1956, 3, 156.
- (37) Trost, B. M.; Malhotra, S.; Mino, T.; Rajapaksa, N. S. Chem. Eur. J. 2008, 14, 7648.
- (38) Shostakovskii, M. F.; Komarova, L. I. Zh. Prikl. Khim. 1966, 39.725.
- (39) Levchenko, A. I.; Nanasenko, B. F.; Khorunzhii, A. P. Dokl. Vses. Konf. Khim. Atsetilena 1972, 4, 2414.