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Alzheimer disease (AD) turned out to be a multifactorial process leading to neuronal decay. So far merely
single target structures which attribute to the AD progression have been considered to develop specific
drugs. However, such drug developments have been disappointing in clinical stages. Multitargeting of
more than one target structure determines recent studies of developing novel lead compounds. Protein
kinases have been identified to contribute to the neuronal decay with CDK1, GSK-3b and CDK5/p25 being
involved in a pathological tau protein hyperphosphorylation. We discovered novel lead structures of the
dihydroxy-1-aza-9-oxafluorene type with nanomolar activities against CDK1, GSK-3b and CDK5/p25.
Structure–activity relationships (SAR) of the protein kinase inhibition are discussed within our first com-
pound series. One nanomolar active compound profiled as selective protein kinase inhibitor. Bioanalysis
of a harmless cellular toxicity and of the inhibition of tau protein phosphorylation qualifies the com-
pound for further studies.

� 2012 Published by Elsevier Ltd.
Alzheimer disease (AD) is the presently most widespread
dementia disease.1 The possibilities to lower the observed neuro-
nal decay are limited to some acetylcholine esterase (ACE) inhibi-
tors and the N-methyl D-aspartat (NMDA) receptor antagonist
memantine. The therapeutical benefit of the ACE inhibitors is poor
and the NMDA receptor antagonist memantine is supposed to
cause neurotoxic effects.2,3 AD histopathology is characterized by
the formation of protein deposites in brain, namely the extracellu-
lar, insoluble amyloide plaques (APs) and the intracellular neurofi-
brillary tangles (NFTs) which consist of hyperphosphorylated tau
protein.4–6 The insoluble APs are discussed to be nontoxic. How-
ever, recent studies suggest an influence of the soluble oligomers
of the APs precursor the amyloide-b protein on the NFTs formation.
The hyperphosphorylation of the tau protein is known to be trig-
gered by the glycogen synthase kinase (GSK) 3-b which is found
being overexpressed in neuronal cells with NFTs.7 Another kinase
contributes to the tau protein hyperphosphorylation, namley the
cycline dependent kinase (CDK) 5 which is physiologically con-
trolled by the protein p35.8 High concentrations of p25 which is
a truncated subunit of p35 were found in the neuronal cells of
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AD patients.9 P25 constitutively activates CDK5 and thus p25 is
made responsible for the tau protein hyperphosphorylation medi-
ated by CDK5.9 The AD progression of the neuronal decay is known
to be a multifactorial process.10,11 Past efforts to develop specifi-
cally acting drugs were disappointing in clinical studies because
the patient benefit in the improvement of cognition or memory
was poor.11–13 Such drugs have been ACE inhibitors or secretase
inhibitors which prevent the formation of the amyloide-b proteins
by the inhibition of their cleavage from the amyloide precursor
protein (APP).

A novel strategy in the development of perspective AD thera-
peutics concentrates on the development of drugs which target
more than one AD relevant structure which contribute to the neu-
ronal decay.14,15 So recent studies tried to optimize a combined ef-
fect of the multitargeting drug Memoquin 1 as ACE inhibitor with
amyloide-b aggregation inhibiting properties.16

Inhibitors of GSK-3b have been reported but they all suffered
from a limited protein kinase selectivity. Only one inhibitor from
the thiadiazolidinone type 2 with micromolar activities reached
clinical trials, but nothing has been reported so far about its selec-
tivity (Fig. 1).17

Flavoperidol 3 as a nonselective CDK inhibitor with micromolar
activities has been investigated in clinical trials but toxic problems
occurred due to its nonselectivity of protein kinase inhibition.18
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Figure 1. Structures of Memoquin 1 and of protein kinase inhibitors in AD relevant clinical trials, namely thiadiazolidinone 2 and flavoperidol 3, including elbfluorene and
our 1-aza-9-oxafluorene starting structure 4.
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Recent studies proved a certain influence of CDK1 on the decay
of neurons in AD brains. CDK1 is found being overexpressed in
such vulnerable neurons which reenter the cell cycle and die.1,19,20

We tried to develop a multifactorially acting protein kinase
inhibitor addressing the AD target structures CDK1, GSK-3b and
CDK5/p25 which contribute to the tau protein hyperphosphoryla-
tion and to the neuronal death by the later formed NFTs.

Early 1-aza-9-oxafluorenes with a 3-carbonyl function like elb-
fluorene showed some CDK1 inhibiting properties.21

We started our search from the 3-methoxy-4-phenyl-1-aza-9-
oxafluorene 4 and consequently varied the substitution patterns
in both the 3- and the 6-position of the molecular scaffold with a
first benzo-annelated compound included. The synthesis of all
derivatives is shown in Scheme 1.

The varying 1-aza-9-oxafluorenes 5–14 have been individually
prepared. The 3,6-dihydroxy derivative 6 was given after treat-
ment of the 3-benzyloxy precursor 5 with hydrogen at a pressure
of 2 bar using palladium on charcoal (10%).22 The 3,6-dimethoxy
substituted derivative 7 was yielded by a methylation reaction of
compound 6 in a small volume of dried THF at room temperature
by the use of two equivalents of methyl iodide.24 Similar reaction
conditions were used to yield the 6-methoxy substituted deriva-
tive 8 from the 3-benzyloxy derivative 5. The used methyl iodide
excess was only the half of the previous reaction to yield 7. Finally,
the 3-hydroxy-6-methoxy compound 9 was given by the reaction
of the 3-benzyloxy derivative 8 with hydrogen and palladium on
charcoal similar to the formation of 6.

The methyl-substituted and the benzo-annelated 1-aza-9-oxa-
fluorenes 12 and 13 were prepared by the reaction of N-acetyl-3-
benzyloxy-1,4-dihydropyridine 10 with methylbenzoquinone or
naphthoquinone in dried dioxane under perchloric acid catalysis
(6%). The non-isolated primary formed tetrahydro derivative 11
was oxidized by the addition of portions of the corresponding qui-
none until no more of this intermediate was detectable by tlc.25

The debenzylation of 13 followed the procedure of the formation
of compound 6.26

Micromolar activities in the inhibition of CDK5/p25 were re-
ported for our starting compound 4.27 We actually determined
the affinity data of 4 towards CDK1, CDK5/p25 und GSK-3b and
the two related serine/threonine kinases CDK2/E and CDK4/D
which both are also discussed to contribute to the tau protein
hyperphosphorylation.1,19,20 The Ki values determined in our pres-
ent assay system are shown in Table 1. We found micromolar affin-
ity data towards CDK1/B and GSK-3b. However, the compound was
completely inactive as CDK5/p25 inhibitor. The determined affini-
ties towards CDK2/E and CDK4/D were poor. While the 3-methoxy
function in 4 may serve as hydrogen bond acceptor function, the
contribution of the 6-hydroxy function to the protein kinase affin-
ity was not clear. Therefore we methylated this functional group. A
hydroxyl function may basically serve as hydrogen bond donator
or as hydrogen bond acceptor function. Compound 7 as twice-
methoxylated derivative showed a complete loss of affinity to all
the considered protein kinases. We concluded that the 6-hydroxy
function may play a central role in the binding to the protein back-
bone of the respective protein kinases. A replacement of the 3-
methoxy function in derivative 7 with a hydroxy function did not
restore the protein kinase affinity as shown with derivative 9
which was also inactive as protein kinase inhibitor. So a methyla-
tion of the 6-hydroxy function turned out as unfavourable to in-
crease the protein kinase affinities of our compounds. A
replacement of the 3-methoxy group of derivative 4 with a 3-ben-
zyloxy function resulted in similar affinities of the resulting com-
pound 5 towards CDK1/B and GSK-b. Obviously, the more bulky
3-benzyloxy substituent is well tolerated if compared to the 3-
methoxy substituent because of some slight affinity improvements
especially towards CDK2/E with a micromolar affinity. The 6-meth-
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oxy derivative 8 showed a significant improvement of the GSK-3b
affinity to nanomolar ranges. A loss of CDK1/B affinity was accom-
panied by a CDK5/p25 activity. While a 6-methoxy function in the
compounds with a smaller either methoxy or hydroxyl function in
the 3-position was unfavourable with respect to the protein kinase
affinity, a 6-methoxy function in derivative 8 with the bulky 3-ben-
zyloxy substitution turned out as favourable. So a different binding
mode towards the protein kinases especially to GSK-3b was sug-
gested because of the main increase in affinity to nanomolar
ranges.

The 6-hydroxy function was favourable for a protein kinase
affinity of our derivative with a 3-methoxy function, so that we re-
placed the 3-methoxy function in derivative 4 with an additional
hydroxyl group. Compound 6 turned out to be a good multikinase
inhibitor with nanomolar affinities towards CDK1/B and GSK-3b
and submicromolar affinities towards CDK5/p25 and CDK2/E. The
increased affinities towards CDK5/p25 meant an improvement in
activity by a factor of 200 if compared to the first CDK5/p25 inhib-
itor 8 of our series. Thus we received the first multitargeting can-
didate for a further evaluation as will be demonstrated below.

We then investigated the influence of an additional 1-aza-9-
oxafluorene skeleton substitution by introducing a methyl group
into the 7-position. Compound 12 showed similar affinities to-
wards CDK1/B and GSK-3b than the non-methylated derivative 5.
However, some CDK5/p25 affinities were measured. We increased
the skeleton substitution by the annelation of a phenyl ring as a
more space demanding substituent in derivative 13. The additional
benzo-substitution led to main increases in the CDK1/B affinities



Table 1
Serine/threonine kinase inhibition profiles of target compounds 4–14

Ki valuesa,b [lM]

CDK1/B CDK2/E CDK4/D CDK5/p25 GSK-3b

4 5.3 24.0 93.6 217 14.8
5 2.3 6.4 36.6 n.a. c 5.8
6 0.01 0.60 18.5 0.11 0.02
7 n.a.c 147 n.a. c n.a. c n.a. c

8 n.a. c n.a. c n.a. c 26.1 0.02
9 n.a. c n.a. c 144 n.a. c n.a. c

12 1.3 n.d. d n.d. d 25.3 5.8
13 0.09 n.d. d n.d. d 2.10 1.60
14 0.70 n.d. d n.d. d 0.07 0.01

a Ki values have been calculated from determined IC50 values of kinase inhibition
following described protocols.31,32

b Standard errors of the Ki values are typically below 20%. In many cases standard
errors below 10% are found.

c n.a., not active (Ki >1000).
d n.d., not determined. Figure 3. Decrease of phosphorylation of tau amino acids serine 202 and threonine

205 in transfected N2A neuroblastoma cells with increased concentrations of
compound 6.
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and micromolar CDK5/p25 affinities were reached if compared to
the non-annelated derivative 5 which was completely inactive as
CDK5/p25 inhibitor. Moreover, the GSK-3b affinities improved.

The debenzylation of derivative 13 finally led the the 3- and 6-
dihydroxy substituted derivative 14 with nanomolar affinities to-
wards CDK5/p25 and GSK-3b and yet submicromolar affinities to-
wards CDK1/B. The additional benzo-annelation in compound 14
proved to be slightly less favourable with respect to the CDK1
affinities, but increased the CDK5/p25 and the GSK-3b affinities if
compared to the non-annelated derivative 6.

So both 3,6-dihydroxy substituted 1-aza-9-oxafluorenes 6 and
14 are excellent multikinase inhibitors of AD relevant kinases with
their nanomolar affinities.

Compound 6 was our best CDK1/B and CDK2/E inhibitor. Beside
the benefit of affecting also these kinases in a multitargeted AD
therapy we investigated possible cell toxic effects of this selected
compound which may be caused by a possible cell cycle
influencing.

Cell toxic effects have been determined in various assay sys-
tems using concentrations up to 90 lM to exclude any possible
toxic problems. We investigated the effects in neuronal-like N2A
neuroblastoma cells. The mitochondrial function was checked in
the MTT assay by determination of the formed formazan crystals
by mitochondrial reduction via dehydrogenases.28 The formed for-
mazan amounts would mainly decrease in the case of a cellular
toxicity. We observed no decrease in the formazan formation up
Figure 2. Cellular toxicity of compound 6 in the lactate dehydrogenase (LDH) assay me
reduced formazan formation displayed right.
to concentrations of 90 lM if compared to the compound-free cells
as shown in Figure 2.

The membrane integrity was additionally examined in the lac-
tate dehydrogenase assay (LDH) by determination of the extracel-
lular activity of this enzyme.28 Also in this assay system
concentrations up to 90 lM showed no cell-toxic effects if com-
pared to the compound-free cells.

We then investigated our nontoxic compound 6 to inhibit pro-
tein kinases from various protein kinase families of the human ki-
nome. We determined Ki values to PKC isoforms of the PKA family
(PKC-a, -c, -e and -iota), to kinases of the receptor tyrosine kinase
family (EGFR, VEGFR2, ERBB2 and TIE2), to the related CDK6/D1
and to kinases of the Casein kinase (Ck) family (WEE1 and Ck1-
a1). Derivate 6 was completely inactive as inhibitor of all these ki-
nase with Ki values >1000 lM. The Ki value towards CDK6/D1 was
little below 1000 lM with a Ki value of 773 lM and the Ki value to-
wards EGFR was about 296 lM which meant less than a residual
activity.

A final bioanalysis was carried out with compound 6 as poten-
tial AD relevant kinases multitargeting inhibitor in N2A neuroblas-
toma cells to prove the ability of a cellular influence on the tau
protein phosphorylation. The neuroblastoma cells have been stably
transfected with a 3-repeat tau protein construct.29 The inhibition
of relevant amino acid phosphorylations of tau by the inhibitor has
been determined with respective antibodies of the representing
asured as increased LDH activity displayed left and in the MTT assay measured as
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phosphorylated amino acids serine 202 and threonine 205 as
shown in Figure 3.

Main reductions of the cellular tau protein amino acid phos-
phorylation of both serine 202 and threonine 205 were observed
at the lowest concentrations. Thus a first proof-of-concept could
be given for effective cellular activities of reducing tau protein
phosphorylation by the AD relevant protein kinases CDK5/p25
und GSK-3b.

Finally, we succeeded in a lead optimization with the discovery
of nanomolar active CDK1, CDK5/p25 and GSK-3b inhibitors of the
3,6-dihydroxy-1-aza-9-oxafluorene type 6 and 14. We demon-
strated nontoxic properties of the selective derivative 6.

Thus, first multikinase inhibitors for a perspective AD multitar-
geted therapy were found and will be investigated in further pre-
clinically directed studies. Moreover, our selective inhibitors will
help to understand the effect of tau phosphorylation on AD
progression.
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