192. Chemie von α -Aminonitrilen¹)

12. Mitteilung

Sondierungen über thermische Umwandlungen von a-Aminonitrilen

von Yi-Bin Xiang²), Susanne Drenkard³), Karl Baumann⁴), Deirdre Hickey⁵) und Albert Eschenmoser*

Laboratorium für Organische Chemie der Eidgenössischen Technischen Hochschule, Universitätstrasse 16, CH 8092 Zürich

(30.IX.94)

Chemistry of α -Amino Nitriles¹). Exploratory Experiments on Thermal Reactions of α -Amino Nitriles

The paper extends a previously published report [4] on chemical properties of α -amino nitriles and of members of the $C_3H_4N_2$ ensemble (Scheme 1) as observed in experiments carried out under non-aqueous conditions. The reactions investigated and the observations made are summarized in some detail in the English footnotes (*) referring to Schemes 1-17 and Fig. 1.

Am Ausgangspunkt unserer seinerzeitigen Arbeiten zur Chemie von α -Aminonitrilen [4] hatte das Ensemble der C₃H₄N₂-Verbindungen 1–6 gestanden (Schema 1)⁶). Diese Verbindungen können einerseits als Abkömmlinge von energiereichen Kohlenstoff-Stickstoff-Verbindungen wie Cyanoacetylen, HCN sowie unstabilen Tautomeren oder Isomeren von Acetonitril aufgefasst werden, andererseits stellen sie aus der Sicht retrosynthetischer Analysen so etwas wie einen 'gemeinsamen strukturellen Nenner' noch nicht hydrolytisch modifizierter Aza-Formen grundliegender Biomolekül-Typen dar. Uns hat das allgemeine chemische Verhalten dieser Verbindungen im Hinblick auf ihre mögliche Bedeutung für die präbiotische Chemie interessiert.

In der ersten Abhandlung dieser Reihe [4] berichteten wir über Ergebnisse, die einen bemerkenswert engen konstitutionellen Zusammenhang der beiden einfachen α -Aminonitrile rac-Glutamindinitril (15) und Glycinnitril (8) mit dem Struktur-Typ des Uroporphyrinogen(Typ III)octanitril (17) aufzeigten (Schema 2). Hier beschreiben wir Versuche, die wir seinerzeit im Anschluss an jene Arbeiten durchführten, und die auf die Offenlegung konstitutioneller Zusammenhänge zwischen α-Aminonitrilen und den Struktur-Typen anderer Biomolekül-Bausteine abzielten. Es sind dies vorab Beziehungen der

^{11.} Mitteilung: [1].

²) ³) ⁴) Vgl. [2].

Vgl. [3].

Postdoktorat, ETH-Zürich, 1984-86.

⁵) Postdoktorat, ETH-Zürich, 1982-83.

Ś In dieser Arbeit wird bei allen Verbindungen, die als Diastereoisomerengemische auftreten, einfachheitshalber nur eines der Diastereoisomeren (E) dargestellt.

*) Constitutional relationships among potentially prebiotic C,H,N molecules, including the ensemble of $C_3H_4N_2$ compounds which are part of our studies on α -amino nitriles.

(E/Z)-6

C₃H₄N₂

н₃с—й≡с 13

(E/Z)-14

CN

HN:

н_м=с

CN

Struktur-Typen des Nicotinsäure- bzw. 1,4-Dihydronicotinsäurenitrils (25 bzw. 18)7), 4-Aminobenzonitrils (39) und Indols (47) mit den Nitril-Formen der Glutaminsäure, der Asparaginsäure, des Alanins und des Glycins, d. h. den Nitril-Formen jener α -Aminosäuren, die sowohl nach den Erfahrungen aus Experimenten des Millerschen Typs [7], als auch aus der Sicht retrosynthetischer Analysen zu den elementaren gehören.

⁷⁾ Über potentiell präbiotische Zugänge zu Nicotinsäurenitril vgl. Arbeiten von Orgel und Mitarbeitern [5] und Miller [6].

*) A relationship between the nitrile forms of glutamic acid, glycine, and uroporphyrinogen. This topic has been dealt with in [4].

Die hier beschriebenen Experimente betreffen die Eigenschaften von α -Aminonitrilen in Abwesenheit von H₂O und entsprechen damit noch den Rahmenbedingungen, die wir uns ursprünglich für die Untersuchungen über die Chemie dieser Verbindungsklasse gestellt hatten [4]. Die Gründe hierfür waren vorab chemischer Art; vorrangig sollten die Arbeiten der experimentellen Charakterisierung des allgemein noch wenig untersuchten, spezifischen Reaktionspotentials von α -Aminonitrilen dienen. Die α -Aminonitril-Gruppierung entspricht einer verkappten Aldehyd-Funktion solange die CN-Gruppe intakt ist, d. h. nicht zur Säureamid- bzw. Carboxy-Funktion hydrolysiert. Die Relevanz dieser konstitutionellen Beziehung für die hier interessierende Problematik wird exemplarisch illustriert durch den in [8] beschriebenen Zusammenhang zwischen Phosphoserinnitril, einem α -Aminosäure-Derivat, und Glycolaldehyd-phosphat, dem einfachsten Vertreter der Zucker-phosphate. Jenes Beispiel zeigt gleichzeitig aber auch die Grenzen der Rahmenbedingung auf: zwar setzt der Übergang von Phosphoserinnitril in Glycolaldehydphosphat die intakte CN-Gruppe des Edukts voraus, doch offensichtlich wird von da ab in Richtung Zucker-phosphate H₂O als Reaktionsmedium unumgänglich.

Nebst der eben genannten Beziehung zwischen einer latenten Aldehyd-Funktion und einer α -Aminonitril-Gruppierung ging es in der vorliegenden Untersuchung u.a. um die Äquivalenz entsprechender Funktionen, wenn sich diese in vinyloger Anordnung befinden, d. h. u.a. um die Frage, ob und unter welchen Bedingungen Derivate des Glutaminsäurenitrils das Reaktionspotential von entsprechenden Derivaten des Acroleinimins aufweisen. Schema 3 veranschaulicht dies im Sinne einer retrosynthetischen Analyse des

^{*)} Retrosynthetic analysis of the structural relationship between the nitrile form of 1,4-dihydronicotinamide, and the glutamic and aspartic acid dinitriles. The relationship rests on the equivalence of glutamic acid dinitrile and acrolein imine under thermal conditions.

konstitutionellen Zusammenhangs zwischen dem Verbindungspaar Glutamin-/Asparagindinitril (15 und 22) und 1,4-Dihydronicotinsäurenitril (18).

Wenn sich eine CN-Gruppe in α -Stellung zu einer NH₂-Gruppe oder in β -Stellung zu einer weiteren CN-Gruppe bzw. einer Imin-Gruppe befindet, kann diese Einheit infolge der Eliminierbarkeit der CN-Gruppe als HCN einer (C=N)- bzw. einer (C=C)-Bindung entsprechen. Glutaminsäuredinitril (15) ist formal dem Ensemble Acroleinimin (21) + 2 HCN äquivalent [9], Asparaginsäuredinitril (22) jenem von 3-Aminoprop-2-ennitril + HCN bzw. Cyanoacetylen + NH₃ + HCN. Die dem Glutamin- und dem Asparaginsäuredinitril zugrundeliegenden Synthone sollten sich in Form von Acroleinimin (21) und 3-Aminoprop-2-ennitril (1) dadurch zu 1,4-Dihydronicotinsäurenitril (18) zusammenfügen lassen, dass man entweder zuerst die (C-C)-Bindung und dann die (C-N)-Bindung knüpft oder umgekehrt. Ersteres würde zunächst eine Michael-Addition verlangen, welcher ein Ringschluss zwischen zwei Imino-Gruppen zu folgen hätte. Der andere Weg begänne mit der (C,N)-Bindungsknüpfung und würde anschliessend eine elektrocyclische Ringschlussreaktion erfordern. Die primäre (C,N)-Verknüpfung gelänge dadurch regioselektiv, dass man sie nicht ausgehend von Acroleinimin (21), sondern durch Kondensation von Glutaminsäuredinitril (15) mit 3-Aminoprop-2-ennitril (1) (oder dessen Äquivalent Asparagindinitril (22)) durchführte, was 19 und 20 ergäbe. Dem anschliessenden elektrocyclischen Ringschluss hätte eine Eliminierung von 2 equiv. HCN voranzugehen. Bemerkenswerterweise bedürfte diese Reaktionsfolge bis hin zum 1,4-Dihydronicotinsäurenitril (18) weder eines Oxidations- noch eines Reduktionsmittels; die Edukte, Produkte und Übergangsstrukturen befinden sich alle auf der gleichen Oxidationsstufe.

Schema 4 gibt eine Übersicht über den experimentellen Nachweis dieser Zusammenhänge. Nicotinsäurenitril (25) und 1,4-Dihydronicotinsäurenitril (18) treten dabei als Pyrolyse-Produkte der Glutamin- und der Asparagindinitril-Derivate, 19 bzw. 20, auf. Schema 4 erinnert im oberen Teil an den experimentellen Zusammenhang zwischen Cyanoacetylen (Prop-2-ynnitrile; 7), 3-Aminoprop-2-ennitril (1) und Asparagindinitril (22)⁸). Teils sind die zugrundeliegenden Additions- und Eliminationsreaktionen bekannt [11] [12]; ergänzende Experimente sind im *Exper. Teil* beschrieben. Würde man die beiden Bausteine Glutamindinitril (15) und Asparagindinitril (22) einfach nur zusammen erhitzen, müsste man ein Gemisch von (E/Z)-19 und 20 erhalten. Wird indessen 15 mit 3-Aminoprop-2-ennitril ((E/Z)-1) in MeCN in Gegenwart von AcOH oder Montmorillonit als Katalysator umgesetzt, so erhält man selektiv (E/Z)-19. Um auch die Entstehung vom alternativen 20 konstitutionell eindeutig abzuleiten, wurde 15 zunächst mit einem Überschuss Glycinnitril (8) kondensiert. Die Umiminierung des daraus isolierten N-(3-Cyanopropyliden)glycinnitril (24) mit einem zweifachen Überschuss Asparagindinitril (22) verläuft problemlos⁹).

Bei der Durchführung der Pyrolysen erwies sich neben der Ofentemperatur die Natur des Füllmaterials im Pyrolyse-Rohr als massgebend. An Quarz-Füllung durchgeführte Experimente resultierten in einem anderen Produktespektrum als solche an Molekularsieb, wobei zudem bei den Molekularsieben Ursprung (Herstellerfirma) und Porengrösse wichtig waren (vgl. auch entsprechende Erfahrungen in [4]). Allgemein waren die Pyrolyse-Ergebnisse zwar in qualitativer Hinsicht reproduzierbar, weniger aber in quantitativer Hinsicht; Teile des Eduktes verkohlten in der Regel im Pyrolyse-Rohr. Das Molekularsieb wirkt vermutlich nur durch Oberflächenkontakt.

Für das Imin 20 erzielten wir die klarsten Ergebnisse in Pyrolysen, die bei 550° an 4-Å-Molekularsieb durchgeführt wurden. Das daraus erhaltene Rohpyrolysat wog ungefähr 50% des eingesetzten Edukt-Gewichtes und enthielt in repräsentativen Ansätzen

⁸) Über eine potentiell präbiotische Bildung von Asparaginsäure aus Cyanoacetylen mit HCN, NH₃ in H₂O vgl. Sanchez et al. [10].

⁹) Eine Variante der Herstellung von 20 aus 22 und 4-Oxobutannitril ist in [4] beschrieben.

^{*)} Products of flash vacuum pyrolysis (FVP; quartz mixed with molecular sieves) of the two isomeric tricarbonitriles (E/Z)-19 and 20, both derived from glutamic and aspartic acid dinitriles. Small amounts of the nitrile form of 1,4-dihydronicotinamide (18) are observed in the FVP product mixtures, but nicotinenitrile (25) and (in experiments starting from 20) 2-methylpyrrole-3-carbonitrile (26) are the major products (see Fig.). Overall yields of product mixtures are generally low and depend strongly on conditions and details of the apparatus; the critical factor is the volatilization of the substrate. Most of the 1,4-dihydronicotinenitrile (18) formed is converted to 25 under the reaction conditions.

gemäss qualitativer GC- (vgl. Fig., oben) und quantitativer ¹H-NMR-Analyse als Hauptprodukte nebst 12 Teilen MeCN je 6 Teile Nicotinsäurenitril (**25**) und 2-Methylpyrrol-3carbonitril (**26**) und ausserdem 2 Teile 1,4-Dihydronicotinsäurenitril (**18**) und kleinere Mengen Pyrrol-3-carbonitril (**27**), Pyridin und Pyridin-2-carbonitril (**28**). Durch eine aufwendige Abfolge mehrerer chromatographischer Reinigungen an Kieselgel, die vor allem wegen der Anwesenheit zahlreicher in Spuren vorhandener Nebenkomponenten mit ähnlichen R_r Werten erschwert wurden, und mittels HPLC (ausführliche Darstellung vgl. [2], S. 59, 177) wurden diese Produkte weitgehend voneinander getrennt und mit Ausnahme von **27** (wegen der geringen Menge nicht isoliert) durch Vergleiche der NMR-, IR-, UV-, MS-, DC- und GC-Daten mit authentischen Referenz-Proben identifiziert¹⁰). Die Konstitution von **27** wurde mittels (GC/MS)-Analyse und Co-Injektion einer

Figur. Gas-Chromatogramme der Rohpyrolysate von (E/Z)-20 (oben) und (E/Z)-19 (unten (vgl. Schema 4)*)

- *) GLC Analyses of the volatile portions of the crude product mixtures obtained (Scheme 4) from FVP of 20 (top) and (E/Z)-19 (bottom).
- ¹⁰) Eine Referenz-Probe von 26 wurde von J. Stäuble im Rahmen ihrer Diplomarbeit nach [13] hergestellt und die Stellung der Substituenten mittels eines NOE-Experiments überprüft. Eine authentische Probe von 18 wurde nach [14] synthetisiert.

authentischen Probe im GC zugeordnet. Dass geringe Mengen von 18 überhaupt im Pyrolysat auftraten, ist eigentlich bemerkenswert, da Kontrollexperimente die vollständige Dehydrierung von 18 zum stabilen Folgeprodukt Nicotinsäurenitril (25) unter den Pyrolyse-Bedingungen nachwiesen. Möglicherweise gelangte zunächst ein Teil des offenkettigen Zwischenproduktes der HCN-Eliminierung aus dem Pyrolyse-Edukt 20 (und auch (E/Z)-19, s. u.) in die Kühlfalle, wo es erst beim Auftauen cyclisierte.

In der Erwartung, dass sich die im Vordergrund des Interesses stehenden Produkte 18 und 25 durch Pyrolyse einheitlicher aus (E/Z)-19 als aus 20 bilden sollten (vgl. hierzu den in Schema 5 wiedergegebenen, vermuteten Reaktionsverlauf), wurde auch (E/Z)-19 der Pyrolyse unterworfen. Allerdings war die praktische Durchführung wegen der verglichen mit 20 geringeren Flüchtigkeit der verhältnismässig polaren Verbindungen (E/Z)-19 zusätzlich erschwert, denn in der routinemässig benutzten Apparatur (s. Exper. Teil und [4]) verkohlte das Edukt, bevor es in die Gas-Phase gelangte. In Abwandlung dieser Technik erhielten wir das in Schema 4 aufgeführte Resultat, indem eine Lösung von (E/Z)-19 in MeCN direkt in das heisse, mit 4-Å-Molekularsieb bepackte Pyrolyse-Rohr eingespritzt wurde. Die als optimal befundene Pyrolyse-Temperatur von 500-600° ist immer noch ein Kompromiss zwischen ungenügendem Umsatz und weitgehender Verkohlung. Das in der Figur (unten) wiedergegebene Gas-Chromatogramm eines dieserart erhaltenen Pyrolysats zeigte als herausragende Komponenten die Peaks des 1,4-Dihydronicotinsäurenitrils (18) und des Nicotinsäurenitrils (25) im Verhältnis 1:7,5 (gemäss FID-Flächenintegral). Das Edukt (E/Z)-19 wird unter diesen GC-Bedingungen nicht nachgewiesen. Das ¹H-NMR-Spektrum des Rohpyrolysats eines analogen Ansatzes enthielt 1 Teil 18 und 5 Teile 25 neben 12 Teilen nicht umgesetztem Edukt (E/Z)-19. Bei einem der Pyrolyse-Versuche wurde das labile, nur schwierig und verlustreich zu reinigende 18 durch Chromatographie an einer eisgekühlten Kieselgelsäule mit entgastem Lösungsmittel und anschliessende Kristallisation aus Hexan/Et₂O isoliert und charakterisiert. Selbst in einer Version, in der das Edukt kristallin in das nunmehr senkrecht installierte Pyrolyse-Rohr eingebracht wurde, war die isolierte Menge an 18 - wenn auch mehr als doppelt so hoch - nur gering.

Schema 5 deutet die bei der Pyrolyse von 19 und 20 beobachtete Produktpalette durch Angabe vermutlich auftretender Zwischenprodukte. Der graphische Rahmen trennt hierin Hypothese und Beobachtung. Überwiegend handelt es sich um eine Abfolge von parallel ablaufenden HCN-Abspaltungen und Ringschluss-Reaktionen, gefolgt von Aromatisierungen durch HCN-Eliminierung oder Dehydrierung. Eine Ausnahme stellt die Bildung eines der Hauptprodukte der Pyrolyse von 20 dar, nämlich des 2-Methylpyrrol-3-carbonitrils (26): an die primäre Eliminierung der endständigen CN-Gruppe aus 20 zu 29 hat sich zunächst eine Tautomerisierung zu 30 anzuschliessen; hierauf kann gemäss der hier wiedergegebenen Version der Ringschluss über ein Ylid (Protonenübertragung von der CH₂-Gruppe auf das N-Atom) verlaufen, worauf HCN-Eliminierung zum Pyrrol erfolgt. Eine alternativ zuerst stattfindende a-HCN-Eliminierung zu einem Carben (2 Möglichkeiten) mit anschliessendem Ringschluss und (in einer der Möglichkeiten) CN-Wanderung zum Pyrrol 26 ist nicht auszuschliessen. Das um eine Me-Gruppe ärmere Pyrrol 27 wird wohl auf ähnlichem Weg gebildet, nur wird zu Beginn statt HCN offenbar MeCN abgespalten. 1,4-Dihydronicotinsäurenitril (18) entsteht durch Tautomerisierung von 31, das andererseits durch HCN-Eliminierung zu dem Nebenprodukt Pyridin führen kann¹¹).

^{*)} Hypothetical reaction paths to products in the FVP of (E/Z)-19 and 20. Within this framework of structural transformations, the nitrile form of 1,4-dihydronicotinamide is at the same oxidation level as the ensemble of the dinitrile forms of glutamic and aspartic acids.

 ^{←&}lt;sup>11</sup>) Gestützt wird diese Interpretation der Reaktionsmechanismen durch die Beobachtung, dass auch die hier nicht explizit beschriebene Pyrolyse des strukturverwandten N-Propenylidenasparagindinitril (3-Azahexa-3,5-dien-1,2-dicarbonitril) zu den gleichen isolierbaren Produkten, ausschliesslich 26 und 27, führt, während die Pyrolyse von N-(1-Cyanoethyliden)glutamindinitril (4-Azahex-4-en-1,3,5-tricarbonitril) nur 26 und 29 und 5-Methylpyrrol-2-carbonitril liefert ([2], S. 62, 68, 188, 199).

Die Bildung der Produkte 26 und 28 aus 20 (Schema 5) beginnt mit der Eliminierung der endständigen CN-Gruppe des Asparagin-Teils von 20 und 2912). Somit entsteht hier aus einem Derivat des Asparagindinitrils ein solches des 2-Aminoprop-2-ennitrils (3). Da ersteres aus 3-Aminoprop-2-ennitril ((E/Z)-1) zugänglich ist (vgl. Schema 4), wird hier grundsätzlich eine Möglichkeit des Übergangs von (E/Z)-1 in 3 und damit eigentlich die Möglichkeit eines Übergangs von der Asparagin-Reihe in die Glutamin-Reihe angedeutet. Zur Realisierung dieses in Schema 6 wiedergegebenen Gedankenganges führten wir zahlreiche Experimente durch, eigentlich ohne überzeugenden Erfolg. Hingegen beobachteten wir bei der im Laufe dieser Experimente durchgeführten Pyrolyse von N-Ethylidenasparagindinitril (33; Schema 7) eine uns interessant scheinende Ringschluss-Reaktion, nämlich die Bildung des Pyridin-Derivates 34. Analog führte die Pyrolyse des Asparagindinitril-Dimeroids 37 zu 4-Aminopyridin-3-carbonitril (36). Die hier ablaufende Reaktion ist offenbar verwandt mit dem von Besida und Brown [15] beschriebenen pyrolytischen Ringschluss von Hexa-2,4-diennitril (Sorbonitril) zu Anilin (750°/10⁻³ mm, ohne Füllmaterial, 4% Umsatz)¹³). Wie Schema 8 erläutert, wird wohl das Aminopyridin-Strukturelement durch elektrocyclischen Ringschluss eines intermediär auftretenden, konjugiert ungesättigten Ketenimins entstehen. Wird bei der HCN-Eliminierung aus 33 nicht 33a, sondern das Tautomer mit endständiger Me-Gruppe gebildet, dann kann

^{*)} The search for an interconnection between (E/Z)-3-aminoprop-2-enenitrile and 2-aminoprop-2-enenitrile in a reaction loop involving pyrolytic HCN elimination from an N-alkylideneaspartic-acid-dinitrile derivative, followed by amminolysis with aspartic-acid dinitrile, was not successful. The pyrolysis step predominantly took the alternate course shown in Scheme 7.

¹²) Vgl. hierzu auch die Bildung von Pyrrol bei der Pyrolyse von 4-[N-(Cyanomethyl)imino]butannitril oder N²-[(E)-Prop-2-enyliden]glycinnitril [4].

¹³) Höhere Anilin-Ausbeute als bei der Pyrolyse des unsubstituierten Sorbonitrils wurden durch pyrolytische Decarboxylierung eines in α-Stellung zur CN-Gruppe carboxylierten Sorbonitril-Derivats erreicht [15]. Sorbonitril ist eines der ungesättigten Dinitrile, die von Sagan et al. in simuliertem Titan-Tholin vermutet werden [16].

dieses durch Wiederanlagerung von HCN (z. B. in der Kühlfalle) in das nach der Pyrolyse von 33 ebenfalls isolierte (E/Z)-35 (*Schema 7*) übergehen. Die ursprünglich gesuchten 2-Aminoprop-2-ennitril-Derivate des Typs 32 wurden von uns nur bei tiefer Pyrolyse-Temperatur und in bescheidenem Umfang beobachtet (zum Teil als HCN-Addukt in Imin-Teil).

Die reaktionsfördernde Rolle des Aldimin-N-Atoms bei Umlagerungen des obigen Typs könnte auch von einem CN-substituierten C-Atom erwartet werden. Ersetzt man in der Struktur des 4-Aminopyridins das N-Atom durch eine $(C-C\equiv N)$ -Gruppierung, gelangt man zur Struktur des 4-Aminobenzonitrils. Dieses ist die Nitril-Form eines Bausteins der Folsäure. Der offenkettige Vorläufer von 4-Aminobenzonitril wäre das Dinitril **38a** (*Schema 8*); in ihm ist das Imin-N-Atom von **33a** durch ein CN-substituiertes C-Atom ersetzt. Zur Umsetzung dieser Überlegung in das Experiment stellten wir das stabilere Tautomer von **38a**, nämlich **38** her. Dieses cyclisierte tatsächlich durch Flash-Vakuum-Pyrolyse (FVP) in guter Ausbeute zu dem einzig beobachteten Produkt 4-Aminobenzonitril (**39**; vgl. *Schema 7* und 8)¹⁴).

*) Pyrolysis of 33 gave the (expected) 32 only in trace amounts. Instead, an interesting cyclization to form 34 took place. An analogous cyclization was then demonstrated to occur with 37. In an extension of these observations, 38 was shown to pyrolyze cleanly to 4-aminobenzonitrile.

¹⁴) Eine photochemische Variante dieser Reaktion wäre im Zusammenhang dieser Arbeit von Interesse gewesen; eine solche wurde aber (leider) nicht untersucht.

*) Hypothetical intermediates *en route* to 4-aminopyridine and 4-aminobenzonitrile. The functionalities indicated in **bold face** in intermediates **33a** and **38a** fulfill analogous functions in facilitating the formation of the corresponding cyclization precursors.

Die Herstellung von 38 haben wir auf die Grundstoffe 2-Aminoprop-2-ennitril (3) und Prop-2-innitril (7) ausgerichtet (vgl. Schema 9). In MeCN gelöst reagieren 3 und 7 bei Raumtemperatur zu einem Gemisch der diastereoisomeren 2-Aminohexa-2,4-diendinitrile (40) im Verhältnis (E,E)/(E,Z)/(Z,E)/(Z,Z) 4:3:2:1 ('H-NMR, Zuordnung mittels NOE-Experimenten, vgl. Exper. Teil), und die Pyrolyse dieses Diastereoisomerengemisches an Quarz-Ringen bei ca. 0,3 Torr und 440° liefert das HCN-Eliminierungsprodukt Glutakonsäuredinitril (41)¹⁵). Der Übergang von 41 zu 38 erfordert grundsätzlich eine Aldolisierung mit Acetaldehyd; auf diesem Weg wurde 38 als Gemisch der (2E,4Z)- und des (2Z,4Z)-Isomeren gewonnen. Da in der Chemie der α -Aminonitrile Alaninnitril das Äquivalent von Acetaldehyd ist, wurde 41 auch mit dem Alaninnitril-Derivat (E/Z)-42 umgesetzt; dabei erwies sich Protonenkatalyse als notwendig. Die Umsetzung in Gegenwart von Piperidinium-acetat in Benzol oder MeCN führte ausschliesslich zum (2E,4Z)-Isomer von 38. Die Zuordnung der beiden Diastereoisomeren von 38 erfolgte auf Grund der Kopplungskonstanten im ¹H-NMR-Spektrum und durch NOE-Experimente.

In der ersten Reaktionsstufe der Herstellung von **38**, d. h. bei der nucleophilen Addition des Enamin-Derivates 2-Aminoprop-2-ennitril (**3**) an Prop-2-innitril, fanden wir überraschend als cyclisches Nebenprodukt das 2,3-dihydropyrrol-2,5-dicarbonitril (**43**). Seine Struktur ergab sich aus dem ¹H-NMR-Spektrum; zusätzlich wurde es durch Oxidation mit DDQ¹⁶) in Pyrrol-2,5-dicarbonitril und durch Pyrolyse bei 400° an 4-Å-Molekularsieb in Pyrrol-2-carbonitril übergeführt. Die Verbindung **43** muss offenbar als das

¹⁵) Bemerkenswerterweise lieferte die gleiche Pyrolyse, aber bei 550° an 5-Å-Molekularsieb, selektiv nur 6-Aminopyridin-2-carbonitril [17].

¹⁶) 2,3-Dichloro-5,6-dicyano-1,4-benzochinon (=4,5-Dichloro-3,6-dioxocyclohexa-1,4-dien-1,2-dicarbonitril).

*) A preparation of 38, the precursor for pyrolytic formation of *p*-aminobenzonitrile. This mode of formation is retrosynthetically designed to start from 2-aminoprop-2-enenitrile, cyanoacetylene, and alaninenitrile. The formation of the minor product 43 from the addition of 3 to 7 corresponds to an unexpected cycloaddition process, which is further elaborated in *Scheme 10*.

Produkt einer [2 + 4]-Cycloaddition¹⁷) von 3 an 7 zu dem durch den CN-Substituenten stabilisierten Zwitterion 44 betrachtet werden (*Schema 10*). Der Mechanismus dieser Cycloaddition gleicht der bekannten [2 + 4]-Cycloaddition von Nitronen an Doppeloder Dreifachbindungen [19] in demselben Sinne, wie auch die in einer unserer früheren Arbeiten beschriebene photochemische Cyclisierung des 2-Aminoprop-2-ennitrils zu Aziridin-2-carbonitril [20] an die Photocyclisierung von Nitronen zu Oxaziridinen erinnert [21] (vgl. *Schema 10*).

Unter den Heterocyclen, die sich aus α -Aminonitrilen durch Pyrolyse ergeben, befindet sich auch das Pyrrol, das in guter Ausbeute bei der Flash-Vakuum-Pyrolyse an Molekularsieb (3 Å) aus dem Kondensationsprodukt 24 aus Glutaminsäuredinitril mit Glycinnitril entsteht [4] (*Schema 11*). Das durch protonenkatalysierte Dimerisierung von Pyrrol zugängliche Pyrrol-Dimere 45 sollte – was entsprechend vom Pyrrol-Trimeren bekannt ist [22] – bei der Pyrolyse Indol (47) ergeben, was sich experimentell bestätigte.

Für die Herstellung von **45** wurde die bekannte Herstellung des Pyrrol-Trimers (20 Gew.-% HCl bei 0° [23]) leicht modifiziert. Durch Erniedrigung der Reaktionstemperatur auf -5° und vorzeitigen Reaktionsabbruch (Reaktionsmischung bereits nach 5 s in überschüssige Ammoniak-Lösung eingetragen) gelingt es, das Dimer **45** neben noch nicht

¹⁷) Cycloadditionsspezifizierung durch die Anzahl der beteiligten Elektronen.

*) It is assumed that the formation of 43, referred to in Scheme 9, results from cycloaddition of 3 with 7 to form the zwitterionic intermediate 44. In this view, the process relates to the photochemical cycloisomerization of 3 (forming aziridine derivative 4) as does the [2 + 4] cycloaddition of nitrones with 7 (to give dihydroisoxazoles) to the photochemical cycloisomerization of nitrones (forming oxaziridines). Note again the parallelism between the functionalities indicated in **bold face**.

umgesetztem Monomer und breits gebildetem Trimer abzufangen und die unstabile Verbindung durch Chromatographie an Kieselgel in geringer Ausbeute zu isolieren. Vorteilhafterweise unterwarf man die nach Extraktion rohe (Dimer/Timer)-Mischung direkt den Bedingungen einer HCN-Addition und isolierte dann mit 20–25% Ausbeute bzgl. eingesetztem Pyrrol die beiden diastereoisomeren HCN-Additionsprodukte *cis/trans-46* (Schema 11). Diese sind in Lösung stabil und säulenchromatographisch voneinander trennbar¹⁸).

Unterwarf man 45 oder dessen stabilere HCN-Additionsprodukte *cis/trans-*46, den Bedingungen einer Flash-Vakuum-Pyrolyse bei 500° an 4-Å- bzw. 5-Å-Molekularsieb oder bei 400° an *Montmorillonit*, so entstanden gemäss GC des Rohpyrolysats als einzige Produkte Indol (47) und dessen Isomer Indolizin (48) im Verhältnis 1:4. Zur Identifizierung wurden die beiden Verbindungen säulenchromatographisch voneinander getrennt. Verwendete man bei der Pyrolyse ein 3-Å-Molekularsieb, so bildete sich ausser 47 nur wenig 48 neben einem Gemisch mehrerer nicht weiter untersuchter Verbindungen.

¹⁸) Einfacher noch liess sich eines der beiden Isomere durch fraktionierte Kristallisation bei *ca*. 7° aus dem lösungsmittelfreien Gemisch anreichern.

*) FVP of the pyrrole dimer 45 or the more stable HCN-addition products 46 gives binary mixtures of indolizine and indole. Previous work has shown that pyrrole is derived from glutamic-acid dinitrile and glycinedinitrile under similar conditions [4].

Für die Interpretation des Reaktionswegs zu 47 und 48 ist von der Einsicht auszugehen, dass in 45 die zum Pyrrol-Ring α -ständige (C–N)-Bindung labil ist. Nach ihrer Spaltung kann das dabei entstehende Zwischenprodukt 49 (ein Azafulven) entweder durch vinyloge Imin-Enamin-Tautomerisierung oder durch externen Angriff eines Nucleophils – in Frage kämen HCN, NH₃ oder eine Oberfläche – in die cyclisierungsfähigen Pyrrol-Systeme 50 oder 51 übergehen.

Indol (47) interessiert im vorliegenden Zusammenhang natürlich als Baustein des Tryptophans. Die naheliegende Möglichkeit, es mit entweder 2-Aminoprop-2-ennitril (3) oder Aziridin-2-carbonitril direkt zum Tryptophannitril zu vereinigen, konnte trotz einiger Bemühungen nicht realisiert werden¹⁹).

In der Anfangsphase unserer Arbeiten über a-Aminonitrile suchten wir u.a. nach einer experimentellen Realisierung des einfachen retrosynthetischen Zusammenhangs, der zwischen 2-Aminoprop-ennitril (3) und dem einfachsten der α -Aminonitrile, dem Glycinnitril (8) besteht, nämlich dem einer Aldol-Kondensation zwischen letzterem und Formaldehydimin, das seinerseits ein HCN-Eliminierungsprodukt von 8 ist (vgl. Schema 1). Als realistisch scheinende Möglichkeit zogen wir eine intramolekulare Variante dieser Kondensation in Betracht, in welcher das Glycinnitril-Derivat 5 (Schema 1) durch intramolekularen Ringschluss des entsprechenden Ylids vorerst zum Aziridin-2-carbonitril (4) cyclisieren und dieses (z.B. pyrolytisch) in 2-Aminoprop-2-ennitril (3) übergehen könnte. Unsere Befunde zum Verhalten des Glycinnitril-Derivats 16 (Schema 12), des N-(Cyanomethyl)glycinitrils (53; d. h. implizite des Glycinitril-Derivats 5) sowie schliesslich des Aziridin-2-carbonitrils (4) bei Pyrolysen über Zeolith-Oberflächen haben uns indessen gezeigt, dass ein solcher (nicht-photochemischer) Zugang zum Ensemble der $C_{3}H_{4}N_{7}$ -Verbindungen ausgehend vom Struktur-Typ des Glycinnitrils wohl kaum besteht, was im Rückblick nicht überrascht. Die Produktbilder der Pyrolysen der drei Glycinitril-Derivate waren untereinander überraschend ähnlich und auf interessante Weise von der Pyrolyse-Temperatur abhängig; das Schema 12 gibt eine Übersicht über die gemachten Beobachtungen.

Die drei Verbindungen 4, 16, 53 führen bei der Pyrolyse zu einer Produkt-Kaskade, die mit dem 2-(N-Methylidenamino)acetonitril (5) beginnt und über dessen Tautomer 6 durch α -Elimination von HCN zu Methyl-isonitril (13) führt, welches schliesslich in Acetonitril umlagert. Je nach Pyrolyse-Temperatur wurden entweder 2-(N-Methylimino)acetonitril (6, als (E/Z)-Gemisch), MeNC oder MeCN als Hauptprodukt beobachtet. Das Ende der Kaskade bildet in allen drei Fällen das bei der höchsten Pyrolyse-Temperatur dominierende Acetonitril. Dessen Entstehung durch thermisch ausgelöste Umlagerung von MeNC ist wohlbekannt [25]. Die Daten der Histogramme des Schemas stammen aus der ¹H-NMR-spektroskopischen Analyse der flüchtigen (mit CDCl₃ bei *ca.* 20°/0,01 Torr abdestillierten) Anteile der Rohprodukte.

Bei der Pyrolyse von 16 an Molekularsieb (3 Å) oberhalb 370° wurde Pyrazin (52) als Nebenprodukt beobachtet. Bei entsprechenden Pyrolysen von 4 und 53 war dies nicht der Fall. Hieraus ist zu schliessen, dass die Pyrazin-Bildung anscheinend von N-Methylidenglycinnitril (5) ausgeht, da dieses als Primärprodukt des thermischen Zerfalls von 16 entstehen²⁰) und dabei transient eine höhere Konzentration erreichen dürfte als in den anderen Pyrolysen. Entscheidendes Zwischenprodukt bei der Pyrazin-Bildung ist wohl das durch α -Eliminierung von HCN aus 5 sich ableitende N-Methylidenaminocarben²¹).

¹⁹) Versucht wurden einerseits der photochemische Zusammenschluss von Indol (47) mit 2-Aminoprop-2-ennitril (3) in MeCN [24] und andererseits thermische Umsetzungen von 47 mit 3 oder Aziridin-2-carbonitril in Gegenwart diverser Katalysatoren wie z. B. *Montmorrilonit*, Base, Pyridinium-tosylat, usw. [2] [17]. Ohne Schwierigkeiten gelang indessen eine solche Reaktion mit dem N-Formyl-Derivat von 3 in Gegenwart von *Montmorrilonit K10* [17].

²⁰) Zur Retrotrimerisierung von 16 zu 5 im Vakuum ab 130° vgl. auch die Arbeit von Dammel und Bock [26].

²¹) Dieses Carben ist valenzisomer zur dem um ca. 30-40 kcal/mol stabileren Azirin [27]. Wir unternahmen seinerzeit (leider) keine Versuche, in Produktgemischen solcher Pyrolysen nach Folgeprodukten von Azirin zu suchen (Addition von HCN an Azirin ergibt Aziridin-2-carbonitril [20].

^{*)} Pyrolyses of the oligomers 16 and 53, derived from glycinenitrile (or from formaldehyde, HCN, and ammonia) give rise to the product cascade 5→6→13→MeCN, the product distribution being dependent on the reaction temperature (see histograms). Pyrolysis of 16 enables the observation (and also the isolation on a preparative scale) of the labile intermediate 5, which tends to tautomerize to (E/Z)-6 with great ease under the reaction conditions. The transformation (E/Z)-6→MeCN amounts to an α-elimination of HCN. Pyrolysis of aziridine-2-carbonitrile at the higher temperature range leads to the same product cascade (in addition to much decomposition, probably as a result of the formation of transient azirine). MeCN is the final product in all of these pyrolyses, as well as those of 2- and 3-aminoprop-2-enenitrile, which are referred to in Scheme 13.

Wie der Vergleich der Histogramme in Schema 12 andeutet, ist das Produktbild bei der Pyrolyse des Aziridin-2-carbonitrils (4) über Molekularsieb komplexer als bei der Pyrolyse der anderen beiden Edukte; zum Teil dürfte hierfür ein Übergang von 4 in Azirin und Folgeprodukte verantwortlich sein. In präparativ analog, aber über Quarz-Ringen statt Molekularsieb durchgeführten Pyrolysen erwies sich 4 als bemerkenswert stabil; bei Pyrolysen oberhalb 600° wurden als Reaktionsprodukte nebst MeCN die Verbindungen 6 und 53 sowie Bernsteinsäuredinitril und das 3-Aminoprop-2-ennitril (1), jedoch kein 2-Aminoprop-2-ennitril (3) nachgewiesen²²); dieses wäre unter solchen Reaktionsbedingungen ohnehin in MeCN und HCN zerfallen.

Sämtliche Vertreter des $C_3H_4N_2$ -Ensembles (Schema 1) besitzen die bemerkenswerte Eigenschaft, unter pyrolytischen Bedingungen in MeCN und HCN zu zerfallen. Für die Isomere 4-6 belegen dies die oben besprochenen Befunde. Für das labile Isomer 2, das sich – wie in [4] erwähnt – in der Gas-Phase langsam durch Tautomerisierung von 3 bildet [28], ist eine solche Zerfallsmöglichkeit zuversichtlich aus dessen Struktur-Formel abzulesen, und für das Isomer 3 ist ein solcher Zerfall in orientierenden Versuchen unter verschiedenen Bedingungen experimentell nachgewiesen worden (Schema 13) [2-4]²³). Dass hingegen das Isomer mit β -ständiger NH₂-Gruppe ((E/Z)-1) bei hoher Pyrolyse-Temperatur diesen Zerfall ebenfalls eingeht, war für uns eher überraschend; insofern aber bemerkenswert, weil er vier wichtige potentielle 'Präbiotika', nämlich Prop-2-innitril, NH₃, MeCN und HCN miteinander verknüpft²⁴).

Da der pyrolytische Zerfall von (E/Z)-1 in MeCN und HCN bei genügend hoher Temperatur eine einheitliche, stöchiometrisch verlaufende Reaktion darstellt, und für diesen Prozess eine klare mechanistische Alternative vorstellbar ist (direkte Abspaltung von HCN zu Ethinylamin oder primäre Tautomerisierung und anschliessende Fragmentierung), haben wir durch Markierungsexperimente eine Entscheidung zwischen den beiden Möglichkeiten herbeigeführt (Schema 13). In der Amino-Gruppe mit ¹⁵N markierte Proben wurden unter sonst gleichen Bedingungen, d. h. im leeren Quarz-Rohr bei *ca.* 1000° und ≤ 0.05 Torr, pyrolysiert und der Verbleib der Markierung in den Produkten mittels IR-, 'H-NMR-, ¹³C-NMR- und ¹⁵N-NMR-Spektroskopie und MS festgestellt. Würde eine einfache β -Eliminierung von HCN aus 1 zu Ethinylamin (11)²⁵) als Zwischenprodukt stattfinden, dann befände sich die ¹⁵N-Markierung ausschliesslich im Acetonitril. Würde die HCN-Eliminierung jedoch erst nach Tautomerisierung eintreten, endete die Markierung ausschliesslich in HCN. In den Pyrolyse-Experimenten ging die ¹⁵N-Markierung der Amino-Gruppe in 1 vollständig in das HCN-Fragment über. Schema 13 stellt zwei mit diesem Befund in Übereinstimmung stehende Reaktionswege zur Diskussion: Entweder wird (E/Z)-1 von der Enamin- zur Aldimin-Form 1a tautomerisieren und

²²) Ein Übergang von Aziridin-2-carbonitril (4) in den Struktur-Typ des 2-Aminoprop-2-ennitrils (3) ist für ein N-acyliertes Derivat von 4 beobachtet worden: N-Formyl-4 gibt beim Umsetzen mit Pyridin-essigsäure N-Formyl-3 ([2], S. 111).

²³) Vgl. auch den die Photocyclisierung von 3 zu 4 begleitenden photolytischen Zerfall von 3 in MeCN und HCN [20].

²⁴) 3-Aminoprop-2-ennitril (hauptsächlich (Z)-Isomer) bildet sich extrem leicht aus Prop-2-innitril und NH₃ (Schema 4). Zu präparativen Zwecken haben wir (E/Z)-1 meist durch Reduktion von Malonsäuredinitril mit LiAlH₄ [29] hergestellt; solche Proben waren allerdings – obwohl '¹H-NMR-rein' – weniger lang haltbar (bei -20°).

²⁵) Bezüglich der MS-Beobachtung von Ethinylamin und dessen IR-Daten in Ar-Matrix vgl. [30] [31].

*) High-temperature FVP (without packing) results in very clean fragmentation of (Z)-3-aminoprop-2-enenitrile (the addition product of ammonia to prop-2-inenitrile, *Scheme 4*) to MeCN and HCN. Some insight into the reaction path of this remarkable fragmentation was revealed by an experiment with ¹⁵N-amino labeled material: since all of the label is recovered as HC¹⁵N, the fragmentation must proceed *via* primary tautomerization to **1a** or **1b**, rather than by direct HCN elimination.

dieses in einer *retro-en*-Reaktion zu HCN und Ketenimin (10) abreagieren, das schnell in MeCN umlagern würde [32], oder das Enamin tautomerisiert *via* eine 1,5-H-Verschiebung in eine Iminomethylketenimin-Form 1b und fragmentiert von diesem Zwischenprodukt aus zu HCN und 11, das auch umgehend in MeCN übergehen würde²⁶). Auf Grund

²⁶) Ketenimin liegt energetisch ca. 35 kcal/mol, Ethinylamin ca. 42 kcal/mol über MeCN [33].

unserer experimentellen Befunde vermögen wir bezüglich dieser verbleibenden mechanistischen Alternative nicht zu entscheiden. In dieser Frage weiterführende Untersuchungen haben *Wentrup* und *Oth* [34] durchgeführt.

Die aus präparativer Sicht prominenteste und chemisch wohl auch interessanteste Verbindung in der Kaskade der Pyrolyse-Produkte im Schema 12 ist das N-(Methylimino)acetonitril ((E/Z)-6). Offenbar durch Tautomerisierung des N-(Methylidenamino)glycinnitrils (5) entstehend, ist es im unteren Bereich der Pyrolyse-Temperaturen das Hauptprodukt, so dass die Pyrolyse des (käuflichen) Glycinnitril-Derivats 16 bei ca. 250° geradezu als präparative Herstellungsmethode von (E/Z)-6 dienen kann²⁷). Interessant ist diese Verbindung deswegen, weil sie ein relativ stabiles Derivat des nur äusserst schwierig fassbaren HCN-Dimers (E/Z)-14 (Schema 1) darstellt und damit als Untersuchungsmodell für eine Abschätzung der chemischen Eigenschaften von (E/Z)-4 dienen kann, darüberhinaus aber auch vor allem deshalb, weil sie im unmittelbaren konstitutionellen Umfeld des Glycinnitrils die wohl kleinstmolekulare Verbindung mit einem im nahen UV-Bereich absorbierenden Chromophor-System darstellt ($\lambda_{max} = 275$ nm, $\log \varepsilon = 86$). Ursprünglich haben Versuche, die wir mit (E/Z)-6 anstellten, auf die Möglichkeit eines photochemischen Ringschlusses zum Aziridin-2-carbonitril (4) via ein durch photochemische (CH₃ \rightarrow N)-H-Verschiebung zu entstehendes Ylid-Tautomer von (E/Z)-6 gezielt. Dies zu beobachten ist uns weder durch Bestrahlungsexperimente in Lösung, noch durch solche in der Gas-Phase gelungen (vgl. [2]). Indessen hat eine Sondierung der photochemischen Eigenschaften der Verbindung (E/Z)-6 die Erwartung bestätigt, dass die Aldimin-Gruppierung von 6 als Folge ihrer Konjugation mit der CN-Gruppe sich photochemisch sehr ähnlich einer (C=O)-Funktion verhält, d. h. ihr $(n \rightarrow \pi^*)$ -Anregungszustand nach H-Abstraktion von einem H-Donor in die Chemie des captodativ stabilisierten [37] [4] C-Radikals des N-Methylglycinnitrils einmünden kann. Ein solches Verhalten ist deshalb von Belang, weil der Vorgang einen generellen photochemischen Zugang zu α-Aminonitrilen ausgehend von H-Donor-Verbindungen, z. B. ungesättigten Kohlenwasserstoffen, gleichkommt²⁸). Schema 14 formuliert die hypothetischen Stationen eines solchen Reaktionswegs, und Schema 15 fasst experimentelle Befunde zusammen, die bei orientierenden Versuchen über eine solche photochemische Bildung von α -Aminonitrilen gemacht wurden.

^{*)} Could N-(methylimino)acetonitrile ((E/Z)-6; a homolog of, and a model for, the HCN dimer (E/Z)-14) serve as a reagent for a photochemical α-amino-nitrile synthesis?

²⁷) Für unsere präparativen Untersuchungen an (E/Z)-6 haben wir dieses durch N-Chlorierung von N-Methylglycinnitril mit t-BuOCl und anschliessende HCl-Abspaltung mit Amberlyst A21 hergestellt [2] (vgl. Schema 16 und Exper. Teil), zur Methode vgl. z. B. [4] [19] [35] [36].

²⁸) Vgl. den in Schema 1 in [8] formulierten retrosynthetischen Zusammenhang. *N*-Methyl- α -aminonitrile gehen mit NH₃ leicht in α -Aminonitrile über [38].

^{*)} UV Irradiation of (E/Z)-6 in toluene (serving as solvent and hydrogen donor), in the presence of benzophenone as triplet sensitizer, produces a product mixture which contains the α -N-methylamino compound 54, but only in minor amounts. The observed palette of products indicates that the reaction path referred to in Scheme 14 seems to operate, but only with low efficiency of the cross-recombination step of the two radicals primarily formed. Compounds 59-61 served the purpose of configurational assignment to the products of the competing radicalrecombination processes leading to 55 and 56. The observations summarized at the bottom of the scheme corroborate the conclusion concerning the inefficency of this photochemical α -amino-nitrile synthesis.

Belichtung von (E/Z)-6 in Toluol als Lösungsmittel mit UV-Licht oberhalb ca. 300 nm in Gegenwart von Benzophenon als Sensibilisator führte zu einem Reaktionsgemisch, aus dem N-Methylphenylalaninnitril (54), sowie die beiden diastereoisomeren Produkte der reduktiven Dimerisierung meso-55 und rac-56 isoliert wurden, nebst Dibenzyl (57) und dem Dimeroid 58 des Sensibilisators. Die konfigurative Zuordnung von 55 und 56 erfolgte an ihren cyclischen Derivaten meso-59, meso-60 und rac-61. Einen analogen Reaktionsverlauf zeigten Belichtungsversuche von (E/Z)-6 in THF als Lösungsmittel ([38], S. 108 ff) oder in MeCN in Gegenwart von 1,4-Dihydronicotinsäurenitril ([2], S. 127 ff) (vgl. Schema 15).

Unter den in diesen Versuchen zur Anwendung gelangten Reaktionsbedingungen verlaufen die Photoprozesse konstitutionell durchwegs uneinheitlich und die interessierenden N-Methyl- α -aminonitril-Produkte bilden sich nur in untergeordnetem Ausmass. Mit ein Grund hierfür dürfte einerseits eine zu hohe Stabilität der N-Methylglycinnitril-Radikale sein, die bewirkt, dass die unmittelbaren Produkt-Radikale des H-Transfers nur ineffektiv rekombinieren. Andererseits führten analoge Belichtungsexperimente in MeCN ohne weiteren H-Donor ebenfalls zu komplexen Produktgemischen²⁹); darunter befindet sich auch MeNC, das Produkt einer photoinduzierten α -Eliminierung von HCN.

Obwohl das N-(Methylimino)acetonitril ((E/Z)-6) aufgrund seiner engen konstitutionellen Beziehung zum Glycinitril - und damit zum Ensemble Formaldehyd, HCN und NH₁ – zu den präbiotisch relevanten Verbindungen zu rechnen ist, und sein chemisches Verhalten damit von diesem Gesichtspunkt aus unmittelbar interessiert, kommt ihm vor allem auch die Rolle der konstitutionell einfachsten Modell-Verbindung für ein zentral wichtiges, indessen extrem labiles und deshalb bislang experimentell kaum untersuchtes 'Präbiotikum' zu, nämlich dem HCN-Dimer (E/Z)-14 (Schema 1). Dieses wird allgemein als ein auf dem Wege von HCN zu Adenin auftretendes Zwischenprodukt betrachtet, kann aber als solches dabei nicht beobachtet werden, weil es - so glaubt man - in diesem Oligomerisierungsprozess viel rascher weiterreagiert als es gebildet wird [36] [40]. Als Modell-System für die experimentelle Dokumentation des unterstellten chemischen Verhaltens von (E/Z)-14 hat erstmals Ferris et al. [36] N-alkylierte Derivate dieser Verbindung verwendet. Er hat zeigen können, dass N-[(tert-Butyl)imino]acetonitril mit HCN in die Produkte Bis[N-(tert-butyl)amino]maleinsäuredinitril und 1,2-Bis[N-(tert-butyl)aminolethan-1,1,2-tricarbonitril bildet, d. h. sich genauso verhält, wie man es dem HCN-Dimer auf dem Wege von HCN zum HCN-Trimer und Adenin unterstellt.

Wir haben im Zuge unserer Arbeiten über α -Aminonitrile einen Weg zur Herstellung und Beobachtung des HCN-Dimer (E/Z)-4 in Lösung ausgearbeitet [2]; mit der Erörterung der dabei gemachten Befunde schliessen wir den vorliegenden Bericht ab. Ungefähr im gleichen Zeitraum haben *Takeo et al.* [41] sowie *Wentrup et al.* [42] die Verbindung (E/Z)-14 durch Gasphasenpyrolyse hergestellt und erstmals spektroskopisch charakterisiert (vgl. auch [43]).

²⁹) Eine detaillierte Beschreibung der Ergebnisse dieser Belichtungsreaktionen findet sich in der Dissertation von Xiang ([2], S. 27ff). Dort sind auch weitere chemische Eigenschaften von (E/Z)-6 beschrieben, so z. B. sein Verhalten in Gegenwart von Et₃N in MeCN, welches zu Produkten führt, die sich vom Tautomeren 5 ableiten ([2], S. 35ff, vgl. auch [36] und [39]).

Durch Übertragung der mehrfach erwähnten Methode der Herstellung von α-Iminonitrilen aus α -Aminonitrilen [4] auf Glycinnitril (8; N-Chlorierung mit t-BuOCl in CH_2Cl_2 bei -40° , gefolgt von HCN-Eliminierung mit Et_3N bei -78° [2]), bildet sich eine Lösung von (E/Z)-14, die bei -78° haltbar ist. Das HCN-Dimer (E/Z)-14 wurde nicht in Substanz isoliert, seine Identität jedoch mittels ¹H- und ¹³C-NMR-Spektroskopie in der Reaktionslösung verifiziert. Im bei -40° aufgenommenen ¹H-NMR-Spektrum eines in CD₂Cl₂ durchgeführten Ansatzes traten nebst den Signalen der Reagenzien Et₃N und t-BuOH vor allem zwei Dublette bei 7,59 ppm (J = 24 Hz) und 7,76 ppm (J = 16,4 Hz) im Integrationsverhältnis 1:4 und ein verbreitertes Dublett gleicher Gesamtintegration bei 12,22 ppm ($J \approx 18$ Hz) auf. Einstrahlung bei 12,2 ppm verwandelte die beiden anderen Dublette in je ein scharfes Singulett. Davon ausgehend, dass die Kopplungskonstante der beiden im (E)-Isomer *cis* vorliegenden Protonen kleiner sein sollte als im (Z)-Isomer, ordnen wir das Signal bei 7,76 ppm dem (NH)-Proton von (E)-14 (Hauptprodukt) zu und vice versa. Das bei -40° aufgenommene ¹³C-NMR-Spektrum eines in CD₃CN durchgeführten Ansatzes zeigte zusätzlich zu den Signalen der Reagenzien zwei Dubletts bei 157,2 und 149,0 ppm im Intensitätsverhältnis 1:3 im typischen Bereich der chemischen Verschiebung des Imin-C-Atoms von α -Iminonitrilen.

Wurde die rohe Lösung von (E/Z)-14 in CD₂Cl₂ auf -20° bis -10° erwärmt, so verfärbte sie sich rasch dunkel. Bei weiterem Aufwärmen auf 0° machte sich ein starker Geruch nach HCN bemerkbar (Zerfall des HCN-Dimers in sein Monomer). Mittels DC beobachteten wir, dass sich bei diesem Zersetzungsprozess nebst wenig des bekannten HCN-Tetramers Diaminomaleinsäuredinitril ((E/Z)-66) zwei gemäss ihren R_r -Werten nicht sehr polare, unbekannte Substanzen bildeten. Durch Säulenchromatographie eines solchen Gemisches (das nach dem langsamen Aufwärmen noch 3 h bei Raumtemperatur gerührt worden war) konnten die beiden Produkte isoliert und identifiziert werden. Es handelt sich um zwei bisher unbekannte HCN-Oligomere, nämlich das Tetramer N-(Cyanomethyl)cyanoformamidin ((E/Z)-63 und das Pentamer 1,2-Diaminoethan-1,1,2tricarbonitril (64) (Schema 16). Letzteres ist offenbar das Produkt einer nucleophilen Addition des (C-deprotonierten) HCN-Trimers (2-Aminomalonsäuredinitril) an die Imino-Gruppe des HCN-Dimers. Wenn man eine Lösung von (E/Z)-14 bei -78° bis 0° mit Aminomalonsäuredinitril [44] umsetzt, bildet sich als Hauptprodukt in der Tat 64. Versetzte man hingegen die Lösung von (E/Z)-4 mit überschüssigem HCN und ca. 0,2 equiv. Et₃N und liess das Reaktionsgemisch 16 h bei -20° stehen, so wurde die Bildung von 63 und 64 unterdrückt und nur das bekannte HCN-Tetramer 66 als Diastereoisomerengemisch isoliert (34,5% (Z) und 2,5% (E)). Die Verbindung 65 markiert das Verhalten von 2-Aminoprop-2-ennitril (3) in Gegenwart des HCN-Dimer.

Zur Frage der Bildung des bislang unbekannten HCN-Tetramers 63 hat man sich vorzustellen, dass zwei Moleküle (E/Z)-14 dimerisieren, und zwar – wie zu erwarten³⁰) – durch nucleophile Addition des Imin-N-Atoms des einen Moleküls an die Imino-Gruppe des anderen Moleküls. Das dadurch sich bildende Addukt unterliegt offenbar einer (vermutlich sehr leicht erfolgenden) Tautomerisierung zum Isomer 63 (vgl. Schema 17); dieses ist kraft der konjugativen Stabilisierung in seiner Amidin-Gruppierung zweifellos stabiler als das Primäraddukt.

³⁰) Solche Dimerisierungen von α -Iminonitrilen sind in unserem Laboratorium von *Rüger* [45] beobachtet und eingehend charakterisiert worden.

*) Use of the same type of method that served the purpose of making N-(methylimino)acetonitrile (E/Z)-6 on a preparative scale made it possible to prepare and characterize at low temperatures solutions of the highly reactive parent compound α -iminoacetonitrile (E/Z)-14. This elusive dimer of HCN is a compound of considerable interest in prebiotic chemistry (see also [41-43]). The scheme summarizes experiments which document some of the chemical properties of the dimer, among them the formation of the new HCN pentamer 64, as well as a compound 63, the interest in which is discussed in connection with Scheme 17.

Die Bildung des HCN-Tetramers (E/Z)-63 aus dem HCN-Dimer weist einen speziell erwähnenswerten Aspekt auf, den Schema 17 aufzeigt. Wie die Formelbilder andeuten, ist dieses Tetramer dem Addukt von Glycinnitril an Dicyan äquivalent; somit stellt die Reaktion (E/Z)-14 \rightarrow (E/Z)-63 im Grunde eine potentielle Disproportionierung von (4 equiv.) HCN in (je 1 equiv.) Dicyan und Glycinnitril dar. Diese drei elementaren (C,H,N)-Verbindungen gehören drei unterschiedlichen Oxidationsniveaus an, nämlich jenen von CO₂³¹), Ameisensäure und Formaldehyd. Zwar dürfte die HCN-Disproportionierung über das HCN-Dimer wohl kaum ein Modell für einen wichtigen präbiotischen Disproportionierungsprozess von HCN darstellen³²), was sie indessen zu exemplifizieren vermag, ist die Exothermie eines solchen.

^{*)} Compound 63 is observed to be formed in solutions of the HCN dimer and assumed to arise by tautomerization of the primary dimerization product of the HCN dimer. It can safely be deduced from the constitution of the two tautomers that the tautomerization to (E/Z)-63 should be an exothermic process. This is of interest, because the reaction implies an intramolecular shift of oxidation level at C-centers, from the level of HCN (or formic acid) to the levels of cyanamide (or CO₂) on the one hand, and of glycinenitrile (or formaldehyde) on the other. Without it being assumed to have necessarily been a natural process itself, this tautomerization touches upon an aspect of specific interest, namely, the interconnection of oxidation levels in the chemistry of HCN.

Um Missverständnissen vorzubeugen, sei abschliessend betont, dass die Realisierung von Reaktionsfolgen, wie sie hier im Zuge der Untersuchung der Chemie von α -Aminonitrilen durchgeführt wurden und in dieser Arbeit in mehreren Schemata formuliert sind, in keiner Weise den Vorschlag implizieren, diese Reaktionsfolgen stellten nun den (oder einen) Weg dar, auf welchem Biomolekül-Bausteine präbiotisch entstanden seien. Abgesehen davon, dass zahlreiche der verwendeten Reaktionsbedingungen ganz offensichtlich als 'unnatürlich' zu bezeichnen sind, käme ein solcher Vorschlag einer Unterschätzung der kaum absehbaren Vielfalt der Reaktionsmöglichkeiten organischer Moleküle gleich. Es sind die reaktionstopologischen Zusammenhänge, die durch die experimentelle Realisierung solcher Reaktionsfolgen offengelegt werden, denen unsere Aufmerksamkeit zu gelten hat. Gemeint sind strukturelle Zusammenhänge zwischen Ausgangsprodukten und Biomolekül-Bausteinen, die gegenüber strukturellen und reaktionellen Unterschieden, die mit latenter Funktionalität und Reaktivität einhergehen können, invariant sind. So z.B. sind es die kurzen konstitutionellen Distanzen zwischen Nitril-Formen der α -Aminosäuren und z.B. Strukturen wie Uroporphyrinogen oder 1,4-Dihydronicotinsäure, welche von Belang sind, oder auch der Umstand, dass sich diese beiden so unterschiedlichen Biomolekül-Strukturtypen im vorliegenden Rahmen aus den Nitril-Formen ein und derselben Aminosäuren herleiten lassen. Die Herleitung des 1,4-Dihydronicotinsäurenitrils aus den Nitril-Formen der Glutamin- und Asparaginsäure betrifft zudem nicht nur diese Aminosäurenitrile, sondern auch Verbindungen, die diesen synthetisch äquivalent sind, so z.B. Acrolein statt Glutaminsäuredinitril oder 3-Oxopropannitril

³¹) Pro memoria: Wöhler sche Synthese von Harnstoff aus Dicyan (1828).

³²) Konkurrenz der Bildung des Trimers gegenüber der Dimerisierung des Dimers unter Bedingungen, da das Dimer gebildet wird.

statt Asparaginsäuredinitril³³). Schliesslich verdeutlicht sich in diesen Reaktionswegen die bemerkenswerte Tatsache, dass die Biomolekül-Strukturtypen nahezu ausschliesslich auf dem gleichen Oxidationsniveau liegen wie das Ensemble ihrer elementaren Edukte, d.h. dass beim Übergang der Edukte in die Produkte weder Oxidations- noch Reduktionsprozesse stattzufinden haben.

Nachwort. – Der vorstehende Text ist vor vier Jahren im Anschluss an die Promotionsarbeit von *Drenkard* [3] abgefasst worden und beschreibt die Ergebnisse von Arbeiten, die zum Teil bis ins Jahr 1981 zurückreichen. Sie gehören zu den im Rahmen des Projekts '*Chemie von α-Aminonitrilen*' durchgeführten Untersuchungen, welche unter strikter Befolgung der dem Projekt zu Beginn gesetzten Rahmenbedingung durchgeführt wurden, wonach die Untersuchungen vorab ausschliesslich die chemischen Eigenschaften von α-Aminonitrilen bei Ausschluss von H₂O betreffen sollen. Die Begründung hierfür war im ersten Teil der Publikationsreihe [4] erläutert worden und stützte sich auf den rein chemischen Gesichtspunkt, wonach das Synthesepotential der α-Aminonitrile im Hinblick auf eine Konstituierung von Biomolekül-Strukturtypen grösser sei als das Potential der Produkte ihrer (partiellen) Hydrolyse.

In der Folge waren es vorab unsere Erfahrungen aus den Untersuchungen über die Herleitung des Struktur-Typs der Pteridine aus α -Aminonitrilen [44d], welche uns die Grenzen des Postulats aufzeigten. Nach diesen Erfahrungen ist eine solche Konstituierung von ausschliesslich α -Aminonitrilen und verwandten HCN-Derivaten ausgehend wenn überhaupt, dann nur sehr schwierig realisierbar [44d], während unter Einbezug von Zucker-Bausteinen eine Konstituierung von Cofaktor-Strukturen vom Typus des Riboflavins und der Folsäure aus potentiell präbiologischen Vorläufern sich als überraschend einfach erweist [46-48]. Spätestens die Arbeiten über die Aldomerisierung des 2-Oxoethyl-phosphats (= Glycolaldehyd-phosphats) zu Zucker-phosphaten [49] haben dann die Zielrichtung unserer Untersuchungen endgültig von den α-Aminonitrilen zu den Zuckern, und damit auch zu H₃O als Reaktionsmedium gelenkt. Dabei blieben wir allerdings noch an der Frage hängen, ob im Aziridin-2-carbonitril, einem Mitglied des Ensembles der potentiell präbiotischen C₃H₄N₂-Verbindungen, eine konstitutionelle Brücke zwischen den Stoffklassen der α-Aminosäuren und der Zucker besteht [8] [9]. Die nachstehende, aus den Erfahrungen mit Aziridin-2-carbonitril hervorgegangene Arbeit über die Chemie des Oxirancarbonitrils [50] zeigt nachdrücklich, dass auch hier die Rahmenbedingung der Einschränkung auf die Chemie sauerstofffreier α-Aminonitrile in wasserfreiem Medium aus rein chemischen Gründen (und nicht nur aus Gründen sogenannter präbiotischer Plausibilität) auszuweiten sind, will man verhindern, dass die Untersuchungen an wichtigen Reaktionsmöglichkeiten vorbeigehen, die im vorliegenden Zusammenhang von Belang sind. Aus heutiger Sicht sind die in der vorliegenden Arbeit nachträglich publizierten Beobachtungen zur Chemie der C3H4N2-Ensembles und diverser α -Aminonitrile als Beitrag zu jener Art von Problemstellung zu werten, wie sie zur Zeit vor allem von Sagan und Khare et al. [51] bearbeitet wird.

Diese Arbeit wurde vom Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung, der Ciba Geigy AG, Basel, sowie der Firmenich SA, Genf, unterstützt. S. D. dankt dem Fonds der chemischen Industrie der BRD für ein Doktorat-Stipendium. Wir danken Dr. Dorothee Felix für ihre Hilfe bei praktischen Problemen der Gas-Chromatographie und Prof. Claude Wintner für seine Mitarbeit bei der Abfassung der 'extended summaries'.

Experimenteller Teil

Allgemeines. Vgl. auch [4]: Lsgm. (Fluka, puriss. p.a.); Hexan und Et₂O dest.; Amberlyst A21 (Fluka), mit MeOH und CH₂Cl₂ gewaschen und ca. 20 h bei 0.5 Torr/RT. getrocknet; Benzophenon (Fluka purum, umkrist. aus EtOH); (tert-Buthyl)-hypochlorit hergestellt nach [52]; (N-(Cyanomethyl)glycinnitril **53**) (Fluka prakt., umkrist. aus EtOH); 3-Aminoprop-2-ennitril (E/Z)-1) wurde, sofern nicht anders vermerkt, durch Reduktion von Malonsäuredinitril mit LiAlH₄ hergestellt [29], Destillation von (E/Z)-1 reicherte das (Z)-Isomer erheblich an; Molekularsieb (Union Carbide, Typ 3 Å, 1/16" Stäbchen, Fluka K₉Na₃[(AlO₂)₁₂(SiO₂)₁₂]·27 H₂O oder Union Carbide, Typ 4 Å, 1/8" Stäbchen, Fluka K₉Na₃[(AlO₂)₁₂(SiO₂)₁₂]·12 H₂O oder Chem. Fabrik Uetikon, 4 Å, 2-3 mm) kurz vor Gebrauch jeweils 2–3 h bei < 0,5 Torr/500° aktiviert; Montmorillonit (Fluka, 220–270 m²/g, 4 h/ < 0,5 Torr/350°).

³³) Vgl. Fussnote 6.

Pyrolyse-Apparatur vgl. [4]³⁴), Rohrdurchmesser 1,5 cm, beheizte Zone ca. 25 cm, Probenzuführung sofern nicht anders erwähnt wie in [4] beschrieben in Schiffchen, die Pyrolyse-Produkte wurden an einem mit H₂O gekühlten Finger kondensiert, von welchem sie in die mit fl. N2 gekühlte Vorlage tropften. Aufarbeitung/Produktisolierung: Eingeengt wurde i. RV. bei RT. bis ca. 40° unter Hausvakuum (20-70 mbar) oder unter Wasserstrahlvakuum. Kieselgel-Chromatographien wurden sofern nicht anders vermerkt als 'flash'-Chromatographie [54] unter Verwendung von Kieselgel 60 (Merck, Korngrösse 0,040-0,063 mm) durchgeführt. DC: DC-Fertigplatten Merck oder Machery & Nagel Kieselgel 60 F254, Schichtdicke 0,25 mm auf Glas, Entwicklungshöhe ca. 6 cm, Tauchreagenzien: Phosphormolybdänsäure (Fluka), 2% in EtOH; Ninhydrin: 2% Ninhydrin in 0,5% AcOH/EtOH, bei beiden Methoden Erhitzen der eingetauchten Kieselgelplatte auf ca. 150°. Schmp: im offenen Röhrchen bestimmt, unkorrigiert. GC: Carlo Erba gas chromatograph mit Hewlett-Packard-Integrator; 'on column'-Injektion, FID-Detektor; Glaskapillarsäulen [55], Säule A (OV 1701 immobilisiert): 19 m, 0.5 µ; Säule B (OV 1701, vinyl-immobilisiert): 20 m, $0.8-0.9 \mu$. HPLC: Säule: 12×150 mm, Techsil C 18, nach der 'slurry'-Methode [56] gepackt; Fluss: 0,8 ml/min; Eluens: MeOH/H2O, Gradientenprogramm: MeOH/H2O 4:6, 0-10 min, bis MeOH 100%, 10-25 min; MeOH 100%, 25-40 min. UV: Perkin-Elmer PE-555 oder PE-402, Lsgm. für UV-Spektroskopie, Angabe in nm (z). IR: Perkin Elmer PE-125, PE-257 und PE-983 Gitterspektrographen, Bandenlagen in cm⁻¹. ¹H-NMR: Varian XL-100 (100 MHz), Bruker WM 300 (300 MHz), Bruker WP 80 (80 MHz), Varian Gemini 200 (200 MHz), δ-Werte in ppm bezogen auf TMS, J in Hz. ¹³C-NMR: Varian XL-100 (25,2 MHz), Bruker WM-300 (75,47 MHz), Varian XL-300 (75,47 MHz), Varian Gemini 200 (50 MHz), δ -Werte in ppm bezogen auf TMS, in Klammern die Multiplizitäten in 'off-resonance'-Spektren. FAB-MS: Kratos AEI MS-50 mit M-scan, FAB-System, Ionisationsenergie 8-10 keV, Glycerin-Matrix; EI-MS: Hitachi RMU-60; Ionisationsenergie 70 eV, VG ZAB-SEQ, Ionisationsenergie 70 eV; nur markante Signale, in Klammern Intensität in % des Basispeaks.

1. Exper. zu Schema 4. – 2.1. 3-Aminoprop-2-ennitril ((E/Z)-1) aus Prop-2-innitril (7): Propiolsäureamid [44d] [57]. Zu ca. 200–300 ml fl. NH₃ tropfte man 18,5 g (0,19 mol) Propiolsäure-ethylester (*Fluka, purum*) unter Rühren so zu, dass –55° nicht überschritten wurden und liess 22 h ohne Rühren im Aceton/Trockeneis-Bad stehen. Nach Abblasen des NH₃ mit N₂ aus der klaren Lsg. wurde das verbliebene, dünnflüssige Öl in 200 ml Et₂O aufgenommen, getrocknet (Na₂SO₄) und über Aktivkohle entfärbt. Man engte ein, löste die noch leicht gefärbte Flüssigkeit in ca. 150 ml siedendem CH₂Cl₂ und liess zur Kristallisation langsam auf –15° abkühlen. Die resultierenden, farblosen Nadeln wurden über Nacht bei 0,5 Torr/RT. getrocknet: 6,4 g (49%). Schmp. 55,5–56,5°. Aus der Mutterlauge: weitere 4,4 g (34%) Propiolsäureamid. Schmp. 55–56° ¹H-NMR (CDCl₃, 200 MHz): 2,87 (s, CH); 5,7–6,4 (2 br. s, NH₂). Die folgenden anal. Daten stammen aus einem analog durchgeführten Ansatz: Schmp. 58,5–59°. $R_{\rm f}$ (CH₂Cl₂/AcOEt 9:1, UV, I₂) 0,2. ¹³C-NMR (CD₃CN, 25 MHz): 153,4 (s, C=O); 76,6 (s, C(2)); 73,9 (d, C(3)). MS: 69 (71, *M*⁺), 53 (100), 44 (21), 42 (12), 41 (47).

Prop-2-innitril (7) [44d] [51]: Propiolsäureamid (5,5 g, 79,6 mmol) wurde mit 40 g Quarzsand und 18 g (127 mmol, 1,6 equiv.) P_4O_{10} gut gemischt und im 250 ml Kolben auf 140° erhitzt. Dabei destillierte 7 unter vermindertem Druck (30–70 Torr) sukzessive über eine kurze Brücke (NS 29) in eine mit fl. N₂ gekühlte Vorlage. Nach gut 1 h schien die Reaktion beendet, das Gemisch wurde gegen eine ebensolche Mischung ausgetauscht und weiteres 7 hergestellt. Anschliessend sublimierte man das gesamte Produkt noch einmal um: 7,8 g (97%) farblose Flüssigkeit, die gefroren bei -15° gelagert wurde. ¹H-NMR (CDCl₃, 200 MHz): "53 (s). Folgende NMR-Daten von 7 stammen aus einem analogen Ansatz: ¹H-NMR (CDCl₃, 80 MHz): 2,38 (s). ¹H-NMR (CDcl₃, 25 MHz): 57,24 (s, C(2)); 73,78 (d, C(3)); 104,57 (s, CN).

(E/Z)-1 *aus* 7 [11]. In 200 ml Et₂O wurden 2 ml (1,63 g, 32 mmol) 7 24 h erst bei -15° , dann bei 0° von Zeit zu Zeit mit NH₃-Gas durchströmt und ansonsten unter NH₃-Atmosphäre stehen gelassen. Man trieb das NH₃ aus, trocknete (Na₂SO₄) und engte ein: 2,14 g farblosen Öls. Kugelrohrdestillation bei 0,02 Torr/65° in eine mit Wasser gekühlte Vorlage: 1,63 g (75%) ¹H-NMR-reines 1 im Isomerenverhältnis $(Z)/(E) \ge 97$:3. Schmp. 7–7,5° (Wert einer in einem analogen Ansatz hergestellten, zweifach destillierten Probe, im abgeschmolzenen Röhrchen, gemäss ¹H-NMR reines (Z)-3-Aminoprop-2-ennitril). R_f 0,54 (CH₂Cl₂/Et₂O 1:1, UV, I₂, Ninhydrin); nach Photoisomerisierung (254 nm) in THF fand man (E)/(Z) ca. 1:1): (Z)-Isomer: R_f 0,32, (E)-Isomer: R_f (Pentan/Et₂O 1:3) 0,21. UV (MeOH): 254 (12500). IR (CHCl₃): 3540m, 3420m, 3010w, 2200m, 1645s, 1597m, 1305m. ¹H-NMR (CDCl₃, 200 MHz): 3,95 (d, J = 8.4, CHCN); 4,9 (br., NH₂); 6,78 (dt, J = 8.3, 10,7, *CH*NH₂). ¹³C-NMR (CDCl₃, 50 MHz): 66,6 (CCN); 118,6 (CN); 149,0 (CNH₂). Nach der Photoisomerisierung zusätzlich auftretende, dem (E)-Isomer zuzuordnende Banden im IR: 1335m, 1265m, 970m. Im ¹H-NMR: 4,5 (br., NH₂); 4,26 (d, J = 13.8, CHCN); 7,00 (dt, J = 13.8, 10,7, *CH*NH₂). Im ¹³C-NMR : 63.8 (CCN); 150,1 (CNH₂). Zur Herstellung von (E/Z)-11 aus Malonsäuredinitril vgl. [29].

³⁴) Eine Übersicht über Durchführung und Anwendung von Flash-Vakuum-Pyrolysen gibt Wiersum [53].

1.2. Asparaginsäuredinitril (22) aus Fumarsäuredinitril ((E/Z)-23). In 50 ml Dioxan wurden 2,34 g (300 mmol) (E/Z)-23 mit 12 ml einer 25% NH₄OH-Lsg. versetzt und 3,5 Tage bei RT. gerührt. Das sich über braun nach schwarz verfärbende Gemisch wurde darauf i. RV. eingeengt, das verbleibende schwarze Öl in wenig AcOMe aufgenommen und an einer Aloxsäule (neutral, Aktivität III, 20 × 3 cm) mit CH₂Cl/AcOMe 1:1 chromatographiert: nach dem Entfernen des Lsgm. 1,76 g (62%) DC-einheitliches 22 als schwach gelbes Öl. Dieses wurde für die weitere Verwendung in CH₂Cl₂ gelöst bei -20° aufbewahrt. Die ¹H- und ¹³C-NMR-Daten sowie der R_{Γ} Wert stimmten mit den im folgenden Experiment gegebenen Daten für 22 überein.

1.3. Verbindung (22) aus (E/Z)-1. In 5 mł MeOH wurden 240 mg (3,5 mmol) (E/Z)-1 (s. Allgemeines) bei RT. mit einer Lsg. von 381 mg (7,1 mmol) NH₄Cl und 344 mg (5,3 mmol) KCN in 5 ml H₂O versetzt. Nach 48 h Rühren bei RT. wurde das braune Gemisch i. RV. zur Trockne eingeengt und der Rückstand 4mal mit je *ca*. 20 ml MeCN extrahiert. Vereinigen der MeCN-Lsg., Einengen i. RV. und anschliessende Chromatographie des Rückstandes an Kieselgel (3×16 cm, AcOEt/CH₂Cl₂/Et₂O 8:5:5) ergab 165 mg (51%) DC-einheitliches 22 als leicht gelbliches Öl. DC (CH₂Cl₂/Et₂O 1:1, Ninhydrin): R_{f} 0,075. ¹H-NMR (CD₃CN, 100 MHz): 2,1 (br. *s*, NH₂); 2,80 (*d*, *J* = 6, CH₂); 4,07 (*m*, CH); Fremdsignale: 3,79 (*d*, *J* = 8, 0,14 H, H–C(2) von (*Z*)-1); 6,77 (*dt*, *J* = 8, 11, 0,14 H, H–C(3) von (*Z*)-1). ¹³C-NMR (CD₃CN, 25,2 MHz): 25,4 (*t*, CH₂); 41,2 (*d*, CH); 117,9, 121,3 (2*s*, CN); Fremdsignale: 61,8 (*d*, CH); 119,0 (CN); 152,3 (*d*, CH, alle von (*Z*)-1). MS: 68 (72, [*M* – HCN]⁺), 67 (48), 55 (100, [NH₂CHCN]⁺), 41 (75), 40 (31), 28 (47), 27 (62).

1.4. (E/Z)-1 aus 22. In einem Kugelrohr wurden 202 mg (2,1 mmol) 22 bei 120°/14 Torr langsam destilliert. Dabei kondensierte ein gelbliches Öl, während sich eine erhebliche Menge Edukt zu einer dunkelbraunen teerartigen Substanz zersetzte und im Kolben zurückblieb. Man destillierte das gelbe Öl nochmals bei 95°/0,1 Torr und erhielt 76 mg farblose Flüssigkeit, die sich gemäss ¹H-NMR aus 80% (E/Z)-1 und 20% Edukt 22 zusammensetzte. Anschliessende Chromatographie des Rohprodukts an einer mit Eiswasser gekühlten Kieselgelsäule (16 × 1 cm, CH₂Cl₂/Et₂O 1:1) ergab nach dem Einengen der produkthaltigen Fraktionen (R_f 0,47 (UV, Ninhydrin, CH₂Cl₂/Et₂O 1:1)) 46 mg (31,8%) (E/Z)-1 ((E)/(Z) 9:11 gemäss ¹H-NMR) als sehr schwach gelbliches Öl, dessen ¹H-NMR-Spektrum (CDCl₃, 80 MHz) mit dem der durch Addition von NH₃ an 7 erhaltenen und photochemisch isomerisierten Referenz (s. 0.) übereinstimmte.

1.5.1. Pyrolyse von 22 an Quarz. Im mit 13 g Quarzringen gefüllten Pyrolyse-Rohr wurden 55 mg (0,58 mmol) 22 bei 640°/0,1 Torr pyrolysiert (Apparatur s. Allgemeines und [4]). Das in der Kühlfalle kondensierte Pyrolysat wurde unter N₂-Atmosphäre auf RT. aufgewärmt, in 0,8 ml CDCl₃ mit 15,2 mg (91 µmol) Cl₂CHCHCl₂ als internem Standard gelöst und sofort durch ¹H-NMR sowie GC analysiert. ¹H-NMR (CDCl₃, 80 MHz): 5,95 (s, def. als 2,0 H, Cl₂CHCHCl₂); 1,98 (s, 3,7 H, MeCN); 2,75 (s, 0,8 H, CH₂ von Bernsteinsäuredinitril); 2,85 (d, J = 6,8,1,6 H, CH₂ von 22); 4,05 (CH von 22, überlagert von anderen Signalen); 3,90 (d, J = 8,2,7 H, CHCN von (Z)-1); 4,20 (d, J = 14, 1, 2 H, CHCN von (E)-1); 4,0–5,5 (br. s, NH₂, (E/Z)-1); 6,5–7,2 (m, 3,9 H, CHNH₂, (E/Z)-1). Ausbeute gemäss ¹H-NMR: 362 µmol (61 %) (E/Z)-1, 18 µmol (6%) Bernsteinsäuredinitril, 113 µmol (19,5%) MeCN, 71 µmol (12%) nicht umgesetztes Edukt 22. GC (Säule B, 80° 5 min, 5°/min, bis 200°, 10 min): t_R 9,35 (35,9% des Flächenintegrals, Cl₂CHCHCl₂), 16,07 (br., 25,2%, (E/Z)-1), 24,99 (25,5%, 22), 19,00 (10,4%, Bernsteinsäuredinitril).

1.5.2. Pyrolyse von **22** an Molekularsieb. Im mit 16 g Quarz-Ringen und 4 g Molekularsieb (4 Å, Uetikon) gefüllten Pyrolyse-Rohr wurden 58,5 mg (0,61 mmol) **22** bei 400° Ofen-Temp. und 0,1 Torr pyrolysiert. Die Kühlfalle wurde unter N₂ auf RT. aufgewärmt, das Kondensat in 0,8 ml CDCl₃ mit 14,1 mg (0,084 mmol) Cl₂CHCHCl₂ als internem Standard aufgenommen und unmittelbar mittels ¹H- und ¹³C-NMR analysiert. ¹H-NMR (CDCl₃, 80 MHz): 5,95 (s, def. als 2,0 H, Cl₂CHCHCl₂); 1,98 (s, 11,2 H, MeCN); 3,66 (s, 0.6 H, Dioxan, Verunreinigung aus dem Edukt); 3,88, 4,20 (2d, J = 8, 15, 2,2 H, CHCN von (E/Z)-1, (E)/(Z) ca. 1:3); 6,53–7,15 (m, 2,2 H, CHNH₂ von (E/Z)-1). Ausbeute: 0,18 mmol (30%) (E/Z)-1, 0,31 mmol (50%) MeCN. ¹³C-NMR (CDCl₃, 75,5 MHz): 74,2 (d, Cl₂CHCHCl₂); 1,9 (q); 116,5 (s, MeCN); 64,0, 66,6 (2d, CHCN); 118,2 (s, CN); 149,7, 150,9 (2d, CHNH₂ von (E/Z)-1); 67,1 (Dioxan).

1.6.1. N-(2-Cyanovinyl) glutaminsäuredinitril ((E/Z)-19). Zu einer Lsg. von 350 mg (3,21 mmol) 2-Aminopentandinitril (15) [4] und 230 mg (3,38 mmol) (E/Z)-1 in 12 ml abs. MeCN wurde eine Lsg. von 290 mg (4,83 mmol) AcOH in 1 ml abs. MeCN gegeben. Nachdem man die Mischung unter Ar während 20 h bei RT. gerührt hatte, filtrierte man von ausgefallenem Ammonium-acetat ab, wusch mit *ca*. 2 ml MeCN nach, engte i. RV. ein und chromatographierte an Kieselgel (16 × 3 cm, AcOEt/Et₂O/Hexan 5:3.3). Zunächst eluierte nicht reagiertes (E/Z)-1 (DC), gefolgt von einer Mischfraktion und schliesslich DC-reinen (E/Z)-19-Fraktionen. Diese wurden eingeengt: 278 mg. Kristallisation aus AcOEt lieferte 226 mg gelbes Produkt (E/Z)-19 von Schmp. 99–100°. Die mit Edukt verunreinigte Fraktion wurde eingeengt und in wenig AcOEt gelöst. Während 20 h Stehen bei -4° schieden sich 44 mg schwach gelbliches (E/Z)-19 aus. Schmp.: 103–104°. Die beiden Mutterlaugen wurden vereinigt, eingeengt und erneut an Kieselgel $(15 \times 2 \text{ cm}, \text{CH}_2\text{Cl}_2/\text{Et}_2\text{O} 1:1)$ chromatographiert. Vereinigen der produkthaltigen Fraktionen (DC), Einengen und anschliessende Kristallisation aus AcOEt ergab weitere 36 mg DC-reines (E/Z)-19 vom Schmp. 103–104°, gemäss ¹H-NMR-Spektrum fast nur (*E*)-Isomer. Gesamtauswaage: 306 mg (59,6%). UV (EtOH): 250 (12000). IR (KBr): 3260s (br.), 3175*m*, 3082*m*, 3045s, 2995*w*, 2985*w*, 2955*w*, 2945*w*, 2900*w*, 2875*w*, 2790*w*, 2745*w*, 2250*m*, 2215*s*, 2162*m*, 1628*s*, 1543*s*, 1495*w* (sh), 1442*m*, 1422*m*, 1362*m*, 1337*s*, 1312*s*, 1303*s*, 1246*s*, 1220*w*, 1200*w*, 1092*m*, 1058*w*, 1023*w*, 1008*w*, 969*s*, 945*w*, 927*w*, 851*w*, 766*w*, 748*m*, 677*w*, 640*m* (br.), 597*w*, 571*w*, 501*w*. ¹H-NMR (CD₃CN, 300 MHz): 2,17–2,27 (*m*, 2 H–C(6)); 2,55 (*dd*, *J* = 6.9, 7,6, 2 H–C(7)); 4,11 (*d*, *J* = 8,7, 0,02 H, H–C(2) von (*Z*)-19); 4,25 (*q*, *J* = 7,5, 1 H, H–C(5)); 4,32 (*d*, *J* = 14,2, 1 H, H–C(2)); 4,41 (*q*, *J* = 7,2 0,02 H, H–C(3) von (*Z*)-19); 5,6–6,1 (br., NH); 6,72 (*dd*, *J* = 8,7, 12,6, 0,02 H, H–C(3) von (*Z*)-19); 7,03 (*dd*, *J* = 14,3, 8,1, H–C(3)). ¹³C-NMR ((D₆)DMS0, 25,2 (MHz): 13,8 (*t*, C(7)); 27,8 (C(6), (*E*)); 28,6 (C(6), (*Z*)); 1350,*q* (*d*, C(3), (*E*)); 151,3 (*d*, C(3), (*Z*)). Die Probe für das ¹³C-NMR-Spektrum stammt aus einem analog durchgeführten Ansatz. Sie wurde aus AcOEt kristallisiert und 20 h i. HV. getrocknet. MS: 2111 (11), 160 (7, *M*⁺), 158 (16), *etc.*, 55 (100), *etc.* Anal. ber. für C₈H₈N₄: C 59,99, H 5,03, N 34,98; gef.: C 60,03, H 4,97, N 35,01.

1.6.2. Pyrolyse von (E/Z)-19³⁵). Viermal je 100 mg (total 2,5 mmol) (E/Z)-19 (unbestimmtes Isomerengemisch) wurden in je 0,5 ml MeCN gelöst mit einer gasdichten Spritze (mit Ventil zwischen Nadel und Zylinder) in 5 Portionen von je ca. 100 µl in das mit 20 g Quarz-Ringen und 5 g Molekularsieb (4 Å; Union Carbide) bepackte Pyrolyse-Rohr (\emptyset 2,0 cm) eingespritzt und bei 550°/0,2 Torr im N₂-Strom pyrolysiert (starke Verkohlung des Eduktes am Füllmaterial des Pyrolyse-Rohres). Nach dem Einspritzen von jeweils 100 mg (E/Z)-19 wurden 100 µl MeCN nachgespritzt. Das Pyrolysat wurde jeweils unter N₂ auf RT. erwärmt, mit ca. 10 ml CH₂Cl₂ (durch mehrmaliges Einfrieren und Auftauen i. HV. entgast) in einen Kolben transferiert und sofort in fl. N₂ eingefroren. Die schliesslich vereinigten CH₂Cl₂-Lsg. wurden bei $< 5^{\circ}$ i. HV. eingengt. Der Rückstand wurde sofort in der minimalen Menge CH₂Cl₂ gelöst und durch eine mit Eiswasser gekühlte Kieselgelsäule (17 × 2 cm, CH₂Cl₂/Et₂O/Hexan 4:2:7, alle Lsgm. i. HV. entgast) chromatographiert. Einengen der Fraktionen 9–14 ergab 6,5 mg 1,4-Dihy-dropyridin-3-carbonitril (18), das gemäss GC noch mit anderen, unbekannten Substanzen verunreinigt war. Umkristallisation aus Et₂O/Hexan lieferte 2,7 mg laut GC zu 92% reines 18 (1,2% der Theorie).

Zur Bestimmung der Zusammensetzung des Rohproduktes wurden in einem anderen Versuch 18 mg (E/Z)-19 in 0,2 mł CD₃CN gelöst und bei 600°/0,2 Torr N₂-Strom wie oben pyrolysiert. Nach anschliessendem zweimaligem Nachspritzen von je 0,1 ml CD₃CN wurde das Pyrolysat mit weiteren 0,5 ml CD₃CN aus der Vorlage gespült und unmittelbar durch ¹H-NMR analysiert. ¹H-NMR (CD₃CN, 300 MHz): u. a. 7,51 (*m*, H–C(5)); 8,09 (*m*, H–C(4)); 8,80 (*dd*, H–C(6)); 8,89 (*d*, H–C(2)) (Signale von *Pyridin-3-carbonitrii* (**25**)); 3,04 (*m*, 0,4 H, CH₂); 4,50 (*m*, H–C(5), überlagert mit unbekannten Signalen) (Signale von **18**); 2,17–2,27 (*m*, H–C(6), überlagert mit anderen Signalen); 2,55 (*dd*, 5 H, H–C(7)); 4,26 (*m*, 2,5 H, H–C(5)); 4,34 (*d*, 2,5 H, H–C(2)); 7,05 (*d*, 2,5 H, H–C(3)) Signale von (*E/Z*)-19. Gemäss ¹H-NMR betrug das Verhältnis der drei Substanzen **18**/25/19 1:5:12. GC (Säule A, 80°, 0 min, 5°/min bis 200°, 10 min): *t*_R 9,12 min (59,4% des Flächenintegrals, **25**), 23,39 min (8,0%, **18**), vgl. *Figur* im allg. Teil (unten).

Bei einem später unter sonst gleichen Bedingungen durchgeführten Ansatz wurden 800 mg (E/Z)-19, gelöst in 4 ml MeCN in Portionen von 0,1 ml eingespritzt und über 6 jeweils frisch bepackte Säulen wie oben pyrolysiert. Das Pyrolysat wurde vereinigt, eingeengt und durch eine mit Eiswasser gekühlte Kieselgelsäule $(15 \times 3 \text{ cm}, CH_2Cl_2/Et_2O/Hexan 4:2:7)$ in *ca.* 20-ml-Fraktionen chromatographiert. Die *Fr. 17-26* enthielten 11,4 mg verunreinigtes **25** (im GC 74% des Flächenintegrals). Eine zweite Chromatographie mit gleichen Bedingungen lieferte 8,6 mg (1,7%) **25**, dessen Identität mittels ¹H-NMR (300 MHz) und GC verifiziert wurde.

1.7.1. N-(3-Cyanopropyliden) asparaginsäuredinitril ((E/Z)-20). Zu 0,3 ml einer ca. 20% Lsg. von 4-[(Cyanomethyl)imino]butannitril (24; 0,5 mmol; durch Umsetzung von Glycinnitril mit 4-Oxobutannitril erhalten, vgl. [4]) in abs. THF wurden 0,47 ml einer 20% Lsg. von 22 in abs. THF (0,1 mmol) gegeben. Diese Mischung wurde bei RT. eingeengt und 1 h bei 0,1 Torr getrocknet. Bei der anschliessenden Destillation im vorgeheizten Kugelrohr bei 142°/0,005 Torr ging zuerst überschüssiges 22 dann (E/Z)-20 über. Die Fraktionen wurden gewechselt sobald die Destillationsgeschwindigkeit bei gleichbleibender Ofen-Temp. sichtbar langsamer wurde: 67,3 mg (84,8%) (E/Z)-20, dessen ¹H-NMR mit dem einer aus 22 und 4-Oxobutannitril hergestellten Referenzprobe [4] übereinstimmte.

1.7.2. Pyrolyse von (E/Z)-20. Im mit 13 g Quarz-Ringen und 3,5 g Molekularsieb (4 Å; Uetikon) bepackten Rohr wurden 260 µl (ca. 300 mg, 1,87 mmol) (E/Z)-20 (hergestellt aus 22 und 4-Oxobutannitril [4]) bei 550° Ofen-Temp. und 0,1 Torr durch Einspritzen von jeweils 10 µl mit einer gasdichten Spritze pyrolysiert. Jeweils nach

³⁵) Diese Experimente wurden von W. Bender durchgeführt.

dem Einspritzen von insgesamt 60 μ l (*E/Z*)-**20** wurde das Pyrolyse-Rohr gegen ein neu bepacktes Rohr ausgetauscht, denn das Molekularsieb war schwarz-braun geworden. Hierzu wärmte man die Kühlfalle bei Normaldruck unter N₂ auf RT. auf, spülte das Pyrolysat mit CH₂Cl₂ aus und setzte ein frisch bepacktes Rohr in den Ofen ein. Die CH₂Cl₂-Lsg. wurde vereinigt und durch Watte filtriert. GC (Säule A, 5°/min von 80° bis 200°): t_R 8,83 (24,5% Flächenintegral, **25**), 11,26 (6,0%, **28**), 22,20 (2,5%, *Pyrrol-3-carbonitril* (**27**)), 22,69 (34,9%, **26**), 23,32 (3,6%, **18**), vgl. *Figur* im allg. Teil (oben); Zuordnung durch Ko-Injektion mit authentischem Material gesichert. Nach Einengen der Lsg. verblieben *ca.* 150 mg, braunes, öliges Material, welches an einer mit Eiswasser gekühlten Kieselgelsäule (2 × 20 cm, CH₂Cl₂/Et₂O/Hexan 4:2:7) in Fraktionen à *ca.* 12 ml chromatographiert wurde. Nach Abtrennung unbekannter, unpolarer Substanzen wurden folgende Komponenten eluiert: *Fr.11: R*_f 0,25 (im Laufmittel, Phosphormolybdänsäure), gemäss DC praktisch reines **26**.

Fr. 12 und 13. Gemäss DC enthielten diese Fraktionen 2-Methylpyrrol-3-carbonitril (26), Pyridin-2-carbonitril (28) (R_f 0,32, UV), sowie wenig unbekannte Substanzen. Man engte ein, trug den Rückstand auf 2 Kieselgelplatten $(20 \times 20 \text{ cm})$ auf und entwickelte 2mal mit CH₂Cl₂/AcOEt/Hexan 1:1:4, wonach man unter der UV-Lampe neben den Zonen von 26 und 28 wenig einer unpolareren, unbekannten Substanz beobachtete. Extraktion der Produkt-Zonen mit CH₂Cl₂/Et₂O/MeOH 5:5:1 lieferte nach Einengen 4,0 mg farbloses Öl, nach der Destillation bei RT. i. HV. in einen mit fl. N₂ gekühlten Kolben 2,7 mg (1,3%) farblose Flüssigkeit (28) und aus der zweiten Produktzone nach Vereinigung mit Fr. 11 (s.o.) 34 mg (17%) gelblich amorphes 26. Die anal. Daten von 28 (UV, IR und ¹H-NMR (300 MHz)) stimmten bis auf mehrere sehr schwache Fremdsignale (< 5%) mit denen einer Referenzprobe (Fluka) überein. Zur Analyse von 26 wurde eine Probe eines analog durchgeführten Ansatzes verwendet, die einmal bei 85°/0,05 Torr sublimiert worden war. Die UV-, IR-, ¹H-NMR- und MS-Daten stimmen mit denen einer Referenzprobe, welche von J. Stäuble nach [13] hergestellt wurde, überein. Schmp. 131°. UV (MeOH); 216 (6600), 237 (5900). IR (KBr): 3260s (br.), 3143m, 3139s, 3030m, 2980w, 2942w, 2920w, 2881w, 2759w, 2718w, 2665w, 2555w, 2405w, 2320w, 2220s, 2170w, 1755w, 1599m, 1575s, 1482m (sh), 1460s, 1435m (sh), 1410m, 1375s, 1310w, 1258m, 1220w, 1098s, 1065w, 1040w, 1019w, 973w, 900s, 863m, 756s, 738s, 690w, 658s, 608m, 590w, 539m, 510s. ¹H-NMR ((D₆)DMSO, 300 MHz): 2.37 (s, Me): 6.35 (t, J = 2.7, H–C(4)); 6.78 (t, J = 2.7, H–C(5)); 11.4–11.6 (br. s, NH; positiver NOE auf das Signal bei 6,78). ¹³C-NMR ((D₆)DMSO, 25,2 MHz): 10,4 (q, Me); 88 (s, C(3)); 108,9 (d, C(4)); 116,4 (s, CN); 117,0 (d, C(5)); 135,9 (s, C(2)). MS: 106 (57, M⁺), 105 (100), etc. Anal. ber. für C₆H₆N₂: C 67,91, H 5,70, N 26,40, gef. C 67,86, H 5,56, N 26,45.

Fr. 14–18. Gemäss DC und GC bestanden diese Fraktionen aus **26** (R_f 0,24, Phosphormolybdänsäure), **18** (R_f 0,22. Phosphormolybdänsäure) und anderen nicht identifizierten Substanzen. Der Anteil von **18** in der Mischung betrug gemäss Vergleich der GC-Flächenintegrale 16,5%. Durch erneute Chromatographie an einer mit Eiswasser gekühlten Kieselgelsäule (15×2 cm, CH₂Cl₂/Et₂O/Hexan 4:2:7) erhielt man eine mit **18** angereicherte Fraktion (gemäss GC-Flächenintegral 37%). Nach HPLC (t_R 30,5) und Einengen bei 0° blieben 5 mg einer schwach gelblichen, amorphen Masse. UV (MeOH): 329. IR (KBr): 3330s (br.), 3120m, 2990w, 2922w, 2860w, 2835w, 2198s, 1835w, 1678s, 1620s, 1502s, 1395m, 1315m, 1314m, 1252m, 1170s, 1010m, 985w, 964w, 922w, 740s, 620w (br.), 538w, 489m (alle **18** zuzuordnen); 3265 (br.), 2220, 1575, 1462, 1098, 900, 758, 510 (alle **26** zuzuordnen). ¹H-NMR (CDCl₃, 300 MHz): 2,42 (s, 0,7 H, Me); 6,55 (t, J = 2,7, 0,2 H, H-C(4)) (Signale von **26**); 3,10 (ddd, $J = 0,7, 1,6, 3,3, CH_2$); 4,60 (m, H-C(5)); 5,0–5,4 (br. s, NH); 5,83 (m, H-C(6)) (Signale von **18**); 6,59 (d, J = 5,9, 1,2 H, H-C(2) von **18**, H-C(5) von **26**). MS: 106 (38, M^+), 105 (100), *etc*. Verhältnis **18/26** gemäss ¹H-NMR knapp 5:1. Die in den Spektren enthaltenen UV-, IR- und ¹H-NMR-Signale von **18** stimmen mit den Daten einer reinen, nach [58] hergestellten Probe von **18** überein.

Fr. 24–30. Einengen i. RV. ergab 14 mg (7%) DC-reines **25** (R_f 0,20, UV). Die anal. Daten (Schmp., UV, IR, ¹H-NMR und MS (104 (100, M^+)) einer bei 40°/0,01 Torr sublimierten Probe aus einem früheren, analogen Ansatz stimmten mit den Daten authentischen Materials (*Fluka*) überein.

Zur Bestimmung der Rohprodukt-Zusammensetzung wurden in einem analogen Pyrolyse-Exper. 69 mg (0,43 mmol) (E/Z)-20 in drei Portionen bei 550°/0,1 Torr N₂-Strom pyrolysiert²). Das in der Kühlfalle kondensierte Pyrolysat wurde in *ca*. 1,5 ml CDCl₃ mit 20,8 mg (0,124 mmol) Cl₂H₂CCH₂Cl₂ als internem Standard aufgenommen und unmittelbar durch ¹H-NMR (CDCl₃, 300 MHz) untersucht. Demnach enthielt das Pyrolysat u. a. 10 µmol 18 (2% bzgl. Edukt), 30 µmol 25 (7%), 5 µmol 28 (1%), 27 µmol 26 (6,5%), 3 µmol 27 (0,7%), 8 µmol Pyridin (2%) und 61 µmol MeCN (14%). In einem parallelen Versuch wurde eine nach [58] hergestellte Probe von 18 unter den gleichen Bedingungen pyrolysiert. Nach DC und ¹H-NMR war das Pyrolysat praktisch reines 25.

2. Exper. zu Schema 7. – 2.1.1. N-*Ethylidenasparaginsäuredinitril* (33). Herstellung nach der Vorschrift von *Hess* [18b]. In 30 ml abs. CH_2Cl_2 wurden 3 g (31,6 mmol) 22 und 7 g Molekularsieb (3 Å) bei 0° mit einer Lsg. von 2,8 g (63,6 mmol) frisch destilliertem Acetaldehyd in 3 ml abs. CH_2Cl_2 versetzt. Nach 1,5 h Rühren bei RT., Filtration durch 2 cm *Celite* und Einengen des Filtrats, lieferte die Destillation des Rückstandes im Kugelrohr bei

80-85°/0,03 Torr 3,5 g (94%) gemäss ¹H-NMR reines **33** als farbloses Öl. IR (CHCl₃): 3025*m*, 2995*m*, 2920*w*, 2890*w*, 2255*w*, 1675*s*, 1432*s*, 1416*m*, 1393*m*, 1362*m*, 1141*w*, 1062*w*, 1035*w*, 992*w*, 969*w*, 924*w*, 888*w*, 864*w*, 840*w*, 660*w*, 642*w*. ¹H-NMR (CDCl₃, 300 MHz): 2,14 (*dd*, J = 4,85, 1,3, Me); 2,98 (*q*, J = 6,4, CH₂CN); 4,65 (*tq*, J = 6,2, 1,4, CHCN); 9,00 (*dq*, J = 4,9, 1,6, MeCH=N). ¹³C-NMR (CDCl₃, 75,5 MHz): 22,25 (*q*); 23,88 (*t*); 54,08 (*d*); 115,75 (*s*); 116,09 (*s*); 168,07 (*d*). MS: 121 (2,5, *M*⁺), 81 (100), *etc*.

2.1.2. Pyrolyse von 33. Auf zwei Schiffchen verteilt wurden 206 mg (1,7 mmol) 33 bei 500° Ofen-Temp. und 0,1 Torr im mit 14 g Quarz-Ringen und 4 g Molekularsieb (4 Å; Union Carbide) bepackten Rohr nacheinander pyrolysiert. Beim Wechseln des Schiffchens wurde das Pyrolysat unter N2 auf RT. erwärmt und in ca. 1 ml CH2Cl2 aufgenommen. Vereinigen der CH2Cl2-Lsg., Abfiltrieren von wenig dunkelbraunem Niederschlag und Einengen i. RV. ergab 127 mg Kondensat. Chromatographie an einer Kieselgelsäule (16 × 2 cm) mit 400 ml CH₂Cl₂/Et₂O/ Hexan 1:1:1, gefolgt von 240 ml CH₂Cl₂/Et₂O 1:1, lieferte 34 mg (16,5%) 2-Methyl-3-azahex-4-endinitril ((E/Z)-35) und wenig nicht isolierte, polarere Komponenten. Die weitere Elution mit 340 ml CH₂Cl₂/Et₂O/MeOH 10:10:1 (NH₃-ges.) als Laufmittel lieferte 42 mg (26,1%) DC-einheitliches 4-Aminopyridin (34). (E/Z)-35 wurde im Kugelrohr bei 120°/0,02 Torr destilliert: DC (CH₂Cl₂/Et₂O 1:1, Ninhydrin): R_f 0,38, 0,61. UV (MeOH): 250 (19400). IR (CHCl₃): 3440m, 3310m (br.), 3078w, 3030m (sh), 3010m, 3000w (sh), 2940w, 2210s, 1645s (sh), 1635s, 1605m, 1596m, 1525m (sh), 1496m, 1450m, 1385m, 1332m (sh), 1320s (sh), 1310s, 1295s (sh), 1265m, 1172m, 1157w, 1131*m*, 1092*w*, 1038*w*, 958*m*. ¹H-NMR (CDCl₃, 300 MHz): 1,64 (d, J = 7, 1, Me, (Z)); 1,65 (d, J = 7, 1, 1, 5 H, Me, (E); 4,10 (d, J = 14,3, 0,5 H, =CHCN, (E)); 4,11 (d, J = 8,6, 1 H, =CHCN, (Z)); 4,23-4,31 (m, 1,5 H, 2); 4,10 (d, J = 14,3, 0,5 H, =CHCN, (Z)); 4,23-4,31 (m, 1,5 H, 2); 4,11 (d, J = 14,3, 0,5 H, 2); 4,23-4,31 (m, 1,5 H, 2); 4,11 (d, J = 14,3, 0,5 H, 2); 4,23-4,31 (m, 1,5 H, 2); 4,11 (d, J = 14,3, 0,5 H, 2); 4,23-4,31 (m, 1,5 H, 2); 4,11 (d, J = 14,3, 0,5 H, 2); 4,23-4,31 (m, 1,5 H, 2); 4,11 (d, J = 14,3, 0,5 H, 2); 4,23-4,31 (m, 1,5 H, 2); 4,11 (d, J = 14,3, 0,5 H, 2); 4,23-4,31 (m, 1,5 H, 2); 4,11 (d, J = 14,3, 0,5 H, 2); 4,23-4,31 (m, 1,5 H, 2); 4,11 (d, J = 14,3, 0,5 H, 2); 4,23-4,31 (m, 1,5 H, 2); 4,11 (d, J = 14,3, 0,5 H, 2); 4,11 (d, J = 14NCCHNH); 4,86 (br. s, 0,5 H, NH); 5,36 (br. s, 1 H, NH); 6,65 (dd, J = 8,6, 12,8, 1 H, NHCH=, (Z)); 6,96 (ddd, J = 14,5,7,7,0,4,0,5 H, NHCH=, (E)); Fremdsignal bei 2,75 ppm (s, 0,06 H, Bernsteinsäuredinitril) und Signale von weiteren, unbekannten Verunreinigungen in ebenso geringer Menge. ¹³C-NMR (CDCl₃, 75,5 MHz): 18,7, 20,1 (2q, 2 Me, (Z/E)); 40, 3, 43, 6 (2d, 2 MeCHCN, (Z/E)); 65, 8, 67, 0 (2d, 2 = CHCN, (Z/E)); 118, 0, 119, 1, 120, 4 (3s, 4); (2d, 2) = CHCN, (Z/E)); (CN); 149,2 (d, NHCH=, (E/Z)); Fremdsignale bei 23,1,45,0,64,0,119,150,5,151,5. MS: 121 (61, M^+), 106 (40), 94 (35), 86 (75), 84 (88), 81 (25), 79 (100), etc. Daten von 34. Zur Analyse gelangte eine Probe von 34 aus einer analogen Pyrolyse von 33 bei 430°/0,1 Torr, welche zweimal bei 110°/0,01 Torr sublimiert wurde. Schmp. 158°. DC (CH₂Cl₂/Et₂O/CH₃OH 10:10:1, ges. mit NH₃, Ninhydrin): R_f 0,38. ¹H-NMR (CD₃CN, 300 MHz): 4,4–5,2 (br., NH₂); 6,51, 8,05 (AA'XX', $J_{AX} = 6,3,4$ arom. H). Die ¹H-NMR-, UV-, IR-, und MS-Daten waren mit denen einer Referenzprobe (Fluka) identisch.

2.2.1. N-(2-Cyanovinyl) asparaginsäuredinitril ((E/Z)-37). Zu einer Lsg. von 540 mg (5,68 mmol) 22 und 405 mg (5,96 mmol) (E/Z)-1 in 10 ml abs. MeCN gab man 470 mg (7,83 mmol) AcOH und rührte unter Ar 20 h bei RT. Von ausgefallenem NH₄OAc wurde abfiltriert, der Rückstand gut mit MeCN gewaschen und das Filtrat i. RV. eingeengt. Chromatographie des rotbraunen Rückstands an Kieselgel (18 × 3 cm, CH₂Cl₂/Et₂O/AcOEt 2:2:1) ergab 815 mg gelbes, zählflüssiges Öl. Dieses wurde in wenig AcOEt gelöst und mit ca. 1 ml CH₂Cl₂ versetzt 2 Tage bei -4° stehengelassen: 365 mg feine, gelbe Kristalle vom Schmp. 82,5-85°. Die rot-orangefarbene Mutterlauge wurde mit AcOEt durch Alox (5×2 cm) filtriert. Einengen des Filtrates und Umkristallisation wie vorher lieferte weitere 163 mg vom Schmp. 86,5–88°, Gesamtausbeute: 528 mg (63,5%) (E/Z)-37. Die anal. Daten entstammen einer Probe, die nochmals aus AcOEt/Et₂O umkristallisert und 20 h i. HV. getrocknet worden war. Schmp. 87,5-90°. DC (CH₂Cl₂/Et₂O/AcOEt 2:2:1, Ninhydrin): R_f 0,42, 0,24. UV (MeOH): 248 (18000). IR (KBr): 3258s (br.), 3090m, 3046s, 2980m, 2942w, 2260w, 2225s, 2208s, 1995m, 1630s, 1548s, 1488w, 1438m, 1332m (sh), 1322m, 1310s, 1289m, 1267m, 1242m, 1220w, 1200w, 1163w, 1090w, 1065w, 1048w, 1040w, 1027w, 1010w, 981m, 970m, $3 \text{ CH}_2\text{CN}$, (E)); 4,17 (d, J = 8,7, 1 H, = CHCN, (Z)); 4,38 (d, J = 14,2, 3 = CHCN, (E)); 4,58 (q, J = 6,7, 1 H, = 10,23); 4,58 (d, J = 14,2, 3 = 14,23); 4,58 (d, J = 14,23); 4, 3 CH(CN)NH, (E)); 4,74 (q, J = 7,1, CH(CN)NH, (Z)); 6,00 (br., 4 NH); 6,75 (dd, J = 8,6, 12,5, NHCH=, (Z)); 7,04 (*dd*, J = 14,3,8,2,3 NHCH = (E)). ¹³C-NMR ((D₆)DMSO, 75,5 MHz): 21,3 (t, CH₂, (E)); 22,3 (t, CH₂, (Z)); 41,8 (d, CH(CN)NH, (E)); 44,8 (d, CH(CN)NH, (Z)); 63,7 (d, =CHCN, (Z)); 65,8 (d, =CHCN, (E)); 116,3, $116,8,117,5,118,2,120,4(5s,6CN);150,5(d,NHCH=,(E));150,9(d,NHCH=,(Z)).MS:146(20, M^+),119(13),$ 106 (47), 92 (9), 79 (100), etc. Anal. ber. für $C_7H_6N_4$: C 57,53, H 4,14, N 38,33; gef.: C 57,42, H 4,28, N 38,52.

2.2.2. Pyrolyse von (E/Z)-37. In zwei Portionen wurden 173 mg (1,18 mmol) (E/Z)-37 ((E)/(Z) ca. 3:1) bei 500°/0,1 Torr an 13 g Quarz-Ringen und 3,5 g Molekularsieb (4 Å; Uetikon) gefüllten Rohr pyrolyisert. Zum Wechseln des Schiffchens begaste man mit N₂ und spülte das schwach braune Pyrolysat mit MeCN aus der Kühlfalle. In den Schiffchen blieben zusammen 15 mg verkohlter Rückstand. Die MeCN-Lsg. wurden vereinigt, durch Filtration durch Watte von wenig dunkelbraunem Niederschlag gereinigt und i. RV. eingeengt. Die dadurch erhaltene, schwach braune, pulvrige Substanz war gemäss ¹H-NMR nahezu reines 4-Aminopyridin-3-carbonitril (36; spektrale Daten s. u.). Man wusch mit wenig CH₂Cl₂ und trocknete i. HV. Anschliessende Sublimation bei 100°/0,01 Torr lieferte 40 mg (31% bzgl. verdampftem Material) DC-einheitliches 36. Zur Analyse wurde die Probe aus Aceton umkristallisiert. Die Daten stimmen mit denen von [59] überein. Schmp. 167–168°. DC (AcOEt,

Ninhydrin): R_{f} 0,33. UV (MeOH): 249 (11400), 300 (3570). IR (Nujol): 3390s, 3330m, 3050s (br., sh), 2218s, 1674s, 1610s, 1552s, 1515m, 1430m, 1310m, 1282s, 1190s, 1075w, 1020m, 871w, 840w, 830m, 749w. ¹H-NMR (CD₃CN, 300 MHz): 5,58 (br. s, NH₂), 6,68 (d, J = 6,0, H-C(5)); 8,18 (d, J = 6,0, H-C(6)); 8,39 (s, H-C(2)). MS: 120 (8), 119 (100, M^+), 92 (37), 66 (10), 65 (13), 64 (9), 52 (11), 41 (13), 28 (10). Anal. ber. für C₆H₅N₃: C 60,50, H 4,23, N 35,27; gef.: C 60,30, H 4,25, N 35.17.

2.3. Pyrolyse von Penta-1,3-dicarbonitril ((1E,3Z)-38) zu 4-Aminobenzonitril (39)³⁶). Insgesamt 112,5 mg (0,952 mmol) (1E,3Z)-38 (zur Herstellung vgl. Exper. zu Schema 9), welches durch Säulenchromatographie mit CH₂Cl₂/Hexan 1:1 an Kieselgel und anschliessende Kristallisation aus CH₂Cl₂/Hexan gereinigt worden war, wurden in 3 Portionen bei 550°/0,2 Torr N₂ in einem mit 12,0 g Molekularsieb (Union Carbide, 5 Å, 1/16" Stäbchen, während 3,5 h bei ca. 350°/HV. aktiviert) bepackten Rohr pyrolysiert. Bei allen 3 Pyrolysen wurde die Molekularsieb-Füllung nicht erneuert. Vor und zwischen der Pyrolysen wurde eine Konditionierungsphase von 45 min unter den Pyrolyse-Bedingungen eingeschaltet. Das Schiffchen mit dem Edukt befand sich währenddessen im unbeheizten Teil des Pyrolyse-Rohres. Gemäss Rückwägung der Schiffchen waren insgesamt 6,1 mg des eingesetzten Edukts nicht verdampft worden. Die zunächst getrennt mit 15–20 ml CH₂Cl₂ sorgfältig aus der Kühlfalle und dem Rohrende herausgespülten Pyrolysate wurden vereinigt eingeengt und der noch schwach gefärbte, kristalline Rückstand 2mal im Kugelrohr bei 115–120°/0,07–0,08 Torr destilliert: 66,2 mg (62% bzgl. verdampftem Edukt) 39, dessen IR-, ¹H-NMR-, ¹³C-NMR, MS- und UV-Daten mit denn einer authentischen Probe (*Fluka*) identisch waren. Schmp. 84–86°, DC (CH₂Cl₂, UV und IR): R_f 0,35.

3. Exper. zu Schema 9. - 3.1. I-Aminobuta-1,3-dien-1,4-dicarbonitril (40) und 2,3-Dihydropyrrol-2,5-dicarbonitril (43). Eine Lsg. von 2,3 g (34 mmol) 3 [4] in 100 ml MeCN wurde bei RT. mit 2,0 g (39 mmol) 7 versetzt (rotbraune Verfärbung) und 6 h bei RT. belassen. Da die DC-Kontrolle nur wenig Umsatz zeigte, wurden weitere 2,0 g (39 mmol) 7 zugesetzt und das Gemisch 25 h bei RT. gerührt. DC (CH₂Cl₂/AcOEt 10:1, UV, I₂): neben etwas Startfleck zwei Produkte bei $R_f 0.35$ und 0.5. Das Gemisch wurde i. RV. eingeengt und an Kieselgel (5 \times 20 cm, CH2Cl2 bis zur vollständigen Elution von 43, dann CH2Cl2/AcOEt 9:1) chromatographiert. Die 43-haltigen Fraktionen (inklusive Mischfraktionen) wurden eingeengt, der teilweise kristalline Rückstand (40) in wenig CH₂Cl₂ digeriert, abgesaugt und mit wenig kaltem CH₂Cl₂ gewaschen. Dieser Vorgang wurde mit der Mutterlauge noch einmal wiederholt. Die Kristallisate wurden mit den 40-haltigen Fraktionen vereinigt und die Mutterlauge erneut an Kieselgel chromatographiert (3×50 cm, CH₂Cl₂/AcOEt 20:1). Dabei anfallendes 40 wurde wieder mit den entsprechenden Fraktionen der vorherigen Chromatographie vereinigt. Die 43-haltigen Fraktionen wurden vereinigt eingeengt: 0,561 g (13,7%) hellgelbes Öl. DC (CH₂Cl₂/AcOEt 10:1, UV, I₂): R_f 0,50. ¹H-NMR (300 MHz, CDCl₃): 3,01 (dddd, J = 1,2 (Kopplung zu NH, verschwindet bei D₂O-Austausch), $J_2 = 6,7, J_3 = 17,6,$ austauschbar, NH); 4,55 (ddd, $J_1 = 3,1$ (NH), $J_2 = 6,7$, $J_3 = 10,4,1$ H, H–C(5)); 5,76 (dd, $J_2 = 3, J_2 = 3, 1$ H, H-C(3)). Bei Einstrahlung bei 5,76 ist ein NOE-Effekt auf die Signale bei 3,01 und 3,09 beobachtbar. Fremdsignale bei: 2,4, 2,6, 4,8, 5,0 (je m, je ca. 0,05 H); 5,30 (s, 0,05 H); 5,35 (d, $J \approx 10, 0,05$ H); 5,57 (d, J = 18, 0,05 H); 6,5 (*dd*, $J_1 \approx 10, J_2 = 18, 0.03$ H). ¹³C-NMR (25 MHz, CDCl₃): 36,11 (*t*, CH₂); 47,39 (*d*, CHCN); 118,29 (*d*, olefin. CH); 119,62, 120,39 (2 br.) (s, olefin. CCN, 2 CN); schwache Fremdsignale bei 28, 40, 63, 112, 117, 127. MS: 119 (77, M⁺), 118 (66), 93 (32), 92 (100), 91 (79), etc. Gemäss NMR war 43 schwach mit unbekannten Produkten verunreinigt. Eine weitere Säulenchromatographie an Kieselgel brachte keine Verbesserung, da sich 43 auf Kieselgel langsam zersetzt. Beim Versuch, 43 im Kugelrohr i. HV. zu destillieren, zersetzte sich die Substanz ebenfalls.

Sämtliche **40**-haltigen Fraktionen und Kristallisate wurden vereinigt eingeengt und der kristalline Rückstand aus Hexan/CH₂Cl₂ 10:1 digeriert und i. HV. bei RT. getrocknet, was 1,83 g (45%) hellgelbe Kristalle lieferte. **40** lag gemäss ¹H-NMR als Gemisch seiner vier Diastereoisomeren im Verhältnis 41:30:18:11 vor. Durch mehrmalige, fraktionierte Kristallisation und nachfolgende Säulenchromatographie konnten sie mit Ausnahme von (Z,Z)-**40** analysenrein erhalten werden. DC (CH₂Cl₂/AcOEt 10:1, UV, I₂): R_1 0,35.

Daten von (E,E)-**40** nach Umkristallisation aus CH_2Cl_2 und Trocknen bei RT. i. HV.: Schmp. 129–130°. IR (KBr): 3440s, 3320s, 3210s, 3050m, 3000m, 2240m, 2200s, 1620s (br.), 1595s (br.), 1390m, 1330s, 1295m, 1225w, 1180m, 950s, 835s, 780m, 650m, 635m, 580w, 390m, 320m. ¹H-NMR (300 MHz, CD₃CN): 5,10 (br. s, NH₂); 5,31 (dd, J = 15,5, 0,7, H-C(4)); 6,02 (dd, J = 11,7, 0,7, H-C(2)); 7,14 (dd, J = 11,7, 15,5, H-C(3)). Einstrahlen bei 5,10 führt zu einem NOE-Effekt bei 6,02. ¹³C-NMR (75 MHz, CD₃CN): 94,3 (d, C(4)); 111,7 (s, CN); 114,6 (d,

³⁶) Diese Pyrolyse wie auch die Synthese des Eduktes wurden von A. Staubli im Rahmen ihrer Diplomarbeit [60] durchgeführt.

C(2)); 120,0 (s, CN); 126,2 (s, C(1)); 147,0 (d, C(3)). MS: 119 (40, M^+), 92 (100), etc. Anal. ber. für C₆H₅N₃: C 60,50, H 4,23, N 35,27; gef.: C 60,56, H 4,08, N 35,42.

Daten von (1E,3Z)-40 nach Umkristallisation aus $CH_2Cl_2/Hexan und Trocknung bei RT. i. HV. : Schmp. 155° (Zers.). IR (KBr): 3420s, 3320s, 3220s, 3070m, 2240s, 2210s, 1640s, 1595s, 1560m, 1475w, 1420w, 1380s, 1270s, 1230s, 1155w, 960m, 930w, 850s, 730s, 690w, 630w, 620m, 555m, 420m (br.), 340w. ¹H-NMR (300 MHz, CD₃CN): 5,20 (br. s, NH₂); 5,08 (dd, <math>J = 0.9$, 10,6, H–C(4)); 6,32 (dd, J = 12.0, 0,9, H–C(2)); 7,03 (dd, J = 12.0, 10,6, H–C(3)). Einstrahlung bei 7,03 bewirkte einen NOE-Effekt bei 5,08, Einstrahlung bei 6,32 ergab Verstärkung des Signales bei 5,20. ¹³C-NMR (75 MHz, CD₃CN): 92,4 (d, C(4)); 110,4 (d, C(2)); 118,24 (s, CN); 126.9 (s, C(1)); 146,0 (d, C(3)); ein CN von CD₃CN verdeckt. MS: 119 (39, M^+), 92 (100), etc. Anal. ber. für C₆H₅N₃: C 60,50, H 4,23, N 35,27; gef.: C 60,60, H 4,10, N 35,46.

Daten von (1Z,3E)-40 nach Umkristallisation aus $CH_2Cl_2/Hexan und Trocknen bei RT. i. HV.: Schmp. 160° (Zers.). IR (Kbr): 3400s, 3335s, 3230s, 3060m, 3040m, 2230s, 2210s, 1645s, 1625m, 1595s, 1410s, 1215m, 1180m, 1090m, 960s, 830s, 640w, 620w, 580w, 520w, 450m, 360w. ¹H-NMR (300 MHz, CD₃CN): 5,09 (br. s, NH₂); 5,38 (dd, <math>J = 0.8, 15, 7, H-C(4)$); 5,61 (dd, J = 12, 0, 0.8, H-C(2)); 7,29 (dd, J = 12, 0, 15, 7, H-C(3)). Beim Einstrahlen bei 5,09 wurde ein NOE-Effekt bei 7,29 beobachtet. ¹³C-NMR (75 MHz, CD₃CN): 96,5 (d, C(4)); 109,2 (d, C(2)); 117,5 (s, CN); 119,8 (s, CN); 123,3 (s, C(1)); 143,3 (d, C(3)). MS: 119 (38, M^+), 92 (100), etc. Anal. ber. für C₆H₅N₃: C 60,50, H 4,23, N 35,27; gef.: C 60,81, H 4,08, N 35,24.

Daten von (Z,Z)-40: Dieses Diastereoisomer konnte nicht isomerenrein erhalten werden und wurde im Gemisch mit (E,E)-40 analysiert. ¹H-NMR (300 MHz, CD₃CN): ~ 5,0 (br. s, NH₂, überlagert von NH₂ von (E,E)-40); 5,20 (dd, J = 1.0, 10.8, H-C(4)); 5,76 (dd, J = 12.2, 1.0, H-C(2)); 7,10 (dd, J = 12.2, 10.8, H-C(3)).

3.2. Pent-2-endinitril ((E/Z)-41 aus 40). Verteilt auf drei Schiffchen wurden 76,6 mg 40 (Isomerengemisch) bei 440° Ofen-Temp. und 0,3 Torr in einem mit 15 g Quarz-Ringen gefüllten Rohr pyrolysiert. Beim Wechseln der Schiffchen wurde das Pyrolyse-System mit N₂ begast und die Kühlfalle auf RT. aufgewärmt. In den drei Schiffchen blieben insgesamt 6,6 mg verkohlter Rückstand. Die Pyrolysate wurden einzeln mit CH₂Cl₂ ausgespült, vereinigt bei RT. eingeengt und an Kieselgel chromatographiert (1,5 × 25 cm, 0,5 bar CH₂Cl₂) und dadurch von geringen Mengen Edukt und sehr geringen Mengen 6-Amino-2-carbonitril (DC) befreit. Die produkthaltigen Fraktionen (DC) wurden bei RT. eingeengt und bei 13 mbar/130–135° Luftbadtemp. im Kugelrohr destilliert: 19,2 mg (32% bzgl. eingesetztem 40, 35% bzgl. verdampftem 40) farbloses Öl, das gemäss DC und ¹H-NMR mit einer nach [61] synthetisierten Vergleichsprobe von (E/Z)-41 identisch war. DC (CH₂Cl₂/AcOEt 10:1): R_f 0,65 (I₂). IR (CHCl₃): 3680w (br.), 3060w, 2930w, 2910w, 2260m, 2230s, 1640m, 1600w (br.), 1410s, 1290w, 1260m, 1020w (br.), 965s, 925m, 885w. ¹H-NMR (CDCl₃, 300 MHz): Diastereoisomerengemisch (E)/(Z) 3 :1; (E)-Isomer: 3,36 (dd, J = 5,1, 2, 1, 2 H, H–C(4)); 5,82 (dt, J = 16,3, 2,1, 1 H, H–C(2)); 6,64 (dt, J = 10,8, 7,1, 1 H, H–C(3)). MS: 92 (54, M^+), 66 (42), 65 (100), etc.

3.3. Dicarbonitril 38 aus (E/Z)-41 und N-Ethylidenalaninitril ((E/Z)-42). Eine gut gerührte Suspension von 8,0 g (ca. 8 mol-equiv.) Molekularsieb 10Å-HY und 120 ml Benzol wurde bei RT. mit 0,1 ml (1 mmol) Piperidin versetzt und 10 min gerührt. Darauf wurden nacheinander 1,0 g (10,9 mmol) (E/Z)-41 und 2,0 g (20,8 mmol) (E/Z)-42 [4] [17] zugegeben und 7 h bei RT. gerührt. Im DC konnte neben den Edukten im wesentlichen nur (1E,3Z)-38 nachgewiesen werden. Nach ca. 3 h kam die Reaktion zum Stillstand, obwohl beide Edukte noch vorlagen. Das Gemisch wurde durch Celite filtriert, mit Benzol gewaschen und die vereinigten Filtrate bei RT. eingeengt. Es folgte Chromatographie an Kieselgel ($2,5 \times 20$ cm, CH₂Cl₂/Hexan 10:1) und Umkristallisation des nach Einengen der produkthaltigen Fraktionen kristallinen Rückstandes: 135 mg (10%) farblose Kristalle, deren Schmp. und ¹H-NMR mit denjenigen zweier Referenzproben übereinstimmten, welche durch Umsetzung von (E/Z)-41 mit (E/Z)-42 und AcOH/Piperidin bei RT. in Benzol (54% Ausb.) bzw. durch Umsetzung von (E/Z)-41 mit Acetaldehyd und AcOH/Piperidin/4-Å-Molekularsieb in Benzol bei 0° (25% (1E,3Z)-38 und 9% (1Z,3Z)-38) erhalten worden waren. Die folgenden anal. Daten von 38 sind aus unterschiedlichen Ansätzen zusammengestellt. (1E,3Z)-38: DC (CH₂Cl₂/Hexan 1:1): R_f (UV, I₂) 0,65. DC (CH₂Cl₂): R_f 0,55. Schmp. 88-90°. UV (CH₂Cl₂): 249 (25000). IR (KBr): 3440w (br.), 3050s, 2980w, 2960w, 2940w, 2920w, 2880w, 2860w, 2220s, 1895w, 1800w, 1690w, 1625s, 1440s, 1425m, 1380m, 1350m, 1315w, 1300w, 1270m, 1225w, 1100w, 1035w, 1020m, 975s, 950m, 925w, 865w, 820s, 770w, 670w, 620w, 530w, 480w, 430w, 390w. ¹H-NMR (CDCl₃, 300 MHz; alle Signale waren durch nicht ausgelöste Fernkopplungen (ca. 0,7 Hz) verbreitert): 2,22 (d, J = 7,8, Me); 5,75 (d, J = 16,2, H–C(1)); 6,81 (g, J = 7.8, H–C(4)); 6.96 (d, J = 16.2, H–C(2)); Einstrahlung bei 6.81 bewirkte einen positiven NOE bei 6.96 und bei 2,22. ¹³C-NMR (CDCl₃, 75,5 MHz): 18,2 (q, Me); 100,2, (d, C(1)); 112,9, 114,8, 116,6 (je s, C(3), 2 CN); 145,1 (d, C(4)); 153,2 (d, C(2)). MS: 118 (35, M⁺), 91 (100), etc. Anal. ber. für C₇H₆N₂: C 71,17, H 5,12, N 23,71; gef.: 71,05, H 5,15, N 23,69.

(1Z,3Z)-38: DC (CH₂Cl₂/Hexan 1:1): R_f (UV, I₂) 0,55. Schmp. 86–88°. UV (CH₂Cl₂): 252 (19700). IR (CDCl₃): 3440w (br.), 3060m, 3040m, 2960m, 2220s, 1970w, 1900w, 1750w, 1620s, 1540w, 1430w, 1400m, 1380m, 1350w, 1250m, 1090w, 990w, 935w, 860m, 770s, 710w, 640m, 585w, 510w, 430w. ¹H-NMR (CDCl₃, 300 MHz; alle Signale verbreitert durch schlecht aufgelöste *dd* mit $J \approx 0,8$): 2,23 (*d*, J = 7,2, Me); 5,45 (*d*, J = 11,8, H–C(1)); 6,61 (*d*, J = 11,8, H–C(2)); 7,02 (*q*, J = 7,2, H–C(4)); Einstrahlen bei 6,61 führte zu einem NOE-Effekt bei 7,02 und bei 5,45, Einstrahlen bei 7,02 verstärkte die Signale bei 6,61 und 2,23, Einstrahlen bei 2,23 bewirkte Verstärkung bei 7,02. ¹³C-NMR (CDCl₃, 75,5 MHz): 18,0 (*q*, Me); 98,2 (*d*, C(1)); 113,4 (br.); 114,3 (2s, C(3), 2 CN); 141,7 (*d*, C(4)); 155,2 (*d*, C(2)). MS: 188 (29, M^+), 91 (100), *etc.* Anal. ber. für C₇H₆N₂: C 71,17, H 5,12, N 23,71; gef.: C 71,07, H 4,85, N 23,65.

4. Exper. zur Schema 11. – 4.1. 2,3-Dihydro-2-(pyrrol-2-yl)pyrrol (**45**) und 5-(Pyrrol-2-yl)pyrrolidin-2-carbonitril (cis/trans-**46**). In 40 ml einer gut gerührten, auf -5° gekühlten, 20%, wässr. HCl-Lsg. wurden 10,0 g (0,15 mol) Pyrrol in einer Portion eingespritzt, 5 s gerührt und anschliessend auf eine gut gerührte Mischung von 300 ml 25%, wässr. NH₃-Lsg. und 300 ml AcOEt gegossen. Die Phasen wurden getrennt, die wässr. Phase noch 2mal mit je 70 ml AcOEt extrahiert und die gesammelten org. Phasen getrocknet (Na₂SO₄), filtriert und bei \leq 30° eingeengt: 12,6 g gelbes Öl (Pyrrol, Dimer **45**, Trimer und Lsgm.) Zur Abtrennung des nicht umgesetzten Pyrrols wurde mit AcOEt über 6 × 8 cm Kieselgel (0,063–0,2 mm, Merck) filtriert; R_{Γ} Werte: Pyrrol 0,9, **45** 0,3, Trimer 0,2. Das Konzentrat der **45** und Trimer enthaltenden Fraktionen, 4,4 g gelbes Öl, wurde in 70 ml H₂O 2 h bei RT. kräftig gerührt. Die Phasen wurden getrennt, die wässr. Phase mit CH₂Cl₂ extrahiert, die vereinigten org. Phasen durch Watte filtriert und bei RT. eingeengt: 5,4 g gelbes Öl (Lsgm., cis/trans-**46** und Pyrrol-Trimer (DC (Et₂O/Hexan 6:1))). Zur Abtrennung des Trimers wurde mit Et₂O über 6 × 8 cm Kieselgel (wie oben) filtriert; cis/trans-**46**: R_{f} 0,15, Trimer: R_{f} 0,65. Die Produktfraktionen (**46**) wurden i. RV. bei RT. eingeengt und i. HV. von restlichem Lsgm. befreit. Zurück blieben 2,75 g (0,017 mol, 22,9% d. Th.) hellgelbes Öl.

Vom Diastereoisomerengemisch wurden 1,4 g durch Säulenchromatographie mit Et₂O/Hexan 6.1 an Kieselgel (0,063-0,2 mm) teilweise aufgetrennt. Nach dem Einengen der gemäss DC einheitlichen Fraktionen blieben 0,75 g Isomerengemisch, 0,46 g hochlaufendes Isomer (R_f 0,38) 46b + 6% 46a (¹H-NMR) und 0,18 g tieflaufendes Isomer ($R_f 0,30$) **46a** + ca. 10% **46b** (¹H-NMR). Das hochlaufende Isomer **46b** wurde aus Hexan/Benzol digeriert. Schmp. 74-76°. UV (MeCN): 216 (8600). IR (KBr): 3300s, 3240s (br.), 3140w, 3120w, 3100w, 3000w, 2980w, 2960w, 2940w, 2850m, 2230m, 1575w, 1475w, 1465m, 1455w, 1450m, 1410s, 1345m, 1330m, 1310m, 1290m, 1275m, 1170m, 1130m, 1105m, 1090m, 1080m, 1030m, 995w, 975w, 945m, 920m, 990m, 880m, 870w, 820w, 795m, 750s, 730 (sh). ¹H-NMR (CDCl₃, 300 MHz): 1,78–1,90 (m, 1 H), 2,05–2,40 (m, 2 CH₂, 2 NH); 4,12–4,20 (m, 1 H), 4,44–4,55 (m, 1 H, 2 CH); 6,00–6,08 (m, 1 H, arom. H–C(3)); 6,12–6,18 (m, 1 H, arom. H–C(4)); 6,68–6,74 (m, H–C(5')); 8,2-8,8 (br., NH); weiterhin schwache, 46a. (¹H-NMR s. u.) zuzuordnende Fremdsignale (6%). ¹³C-NMR (CDCl₃, 75,5 MHz): 30,22 (t); 31,27 (t); 47,12 (d); 54,96 (d); 104,71 (d); 108,10 (d); 117,36 (d); 121,76 (s); 132,22 (s). MS: 161 (17, M^+), 134 (100), 133 (43), etc. Anal. ber. für C₉H₁₁N₃: C 67,06, H 6,88, N 26,07; gef.: C 67,20, H 6,88, N 25,84. Tiefer laufendes Isomer 46a: ¹H-NMR (CDCl₃, 300 MHz): 1,95–2,50 (m, 2 CH₂, NH); 4,04–4,12 (m, 1 H); 4,36-4,44 (*m*, 1 H, 2 CH); 6,00-6,08 (*m*, H-C(3')); 6,12-6,18 (*m*, H-C(4')); 6,70-6,76 (*m*, H-C(2')); 8,3-8,9 (br., NH). ¹³C-NMR (CDCl₃, 75,5 MHz): 31,02 (t); 32,79 (t); 46,75 (d); 55,90 (d); 104,56 (d), 108,15 (d), 117,04 (d); 122,03(s); 132,78(s).

Nach einem analogen Ansatz ausgehend von 2,0 g Pyrrol wurde 45 mit AcOEt säulenchromatographisch (\emptyset 2 cm, 80 g Kieselgel 0,063–0,2 mm, Normaldruck) isoliert: 0,35 g (2,61 mmol, 8,7% d. Th.) hellgelbes Öl, das gemäss ¹H-NMR noch *ca*. 5% AcOEt enthielt. ¹H-NMR (CDCl₃, 80 MHz): 1,9–2,9 (*m*, 2 CH₂); 5,05–5,2 (*m*, CH); 5,9–6,0 (*m*, H–C(3)); 6,0–6,18 (*m*, H–C(4)); 6,55–6,75 (*m*, H–C(5)); 7,55–7,70 (*m*, =CH); 8,5–9,5 (br., NH). 45 war im Tiefkühlschrank einige Wochen haltbar; bei RT. und beim Versuch einer Kugelrohr-Destillation trat Zersetzung ein.

4.2. Pyrrolyse von 46b. In 5 Portionen wurden 198 mg, (1,228 mmol) 46b bei jeweils frischer Rohrfüllung an 20 g Quarz-Ringen und 6 g 4-Å-Molekularsieb (Union Carbide, 1/16" Stäbchen) im N₂-Strom bei 500°/0,2 Torr pyrolysiert. Die Pyrolysate wurden einzeln in ca. 15 ml CH₂Cl₂ aufgenommen und die Zusammensetzung gemäss GC (Kapillarsäule OV 1701, 0,2 kg/cm² H₂, 10 min 100°, dann 5°/min bis 200°, Flammenionisationsdetektor) durch Vergleich der Flächenintegrale bestimmt (46a, b und 45 geben mit diesem Programm nur einen Peak): 1) 37% Indol (47), 61% Indolizin (48), kein Ausgangsmaterial 46a, b oder 45; 2) 14% 47, 80% 48, 5% Ausgangsmaterial; 3) 21% 47, 72% 48, 5,5% Ausgangsmaterial; 4) 20% 47, 74% 48, 5% Ausgangsmaterial; 5) 19% 47, 78% 48, 0,8% Ausgangsmaterial; es wurden keine Produkte neben 47 und 48 beobachtet.

Die Pyrolysat-Lsg. wurden vereinigt, vorsichtig auf *ca.* 300 mg eingeengt, um Sublimation von **48** zu vermeiden, und mit $CH_2Cl_2/Hexan 1:1$ unter Normaldruck an 26 g Kieselgel (0,063–0,2 mm, 15 mm Säulendurchmesser)

chromatographiert. Die vereinigten, gemäss GC zu über 98% reinen Fraktionen von 47 (R_f 0,45 im Laufmittel) und 48 (R_f 0,85) wurden eingeengt und die kristallinen Rückstände durch HV.-Sublimation weiter gereinigt: 24,9 mg (0,212 mmol, 17,3% d.Th.) 47, dessen Schmp., IR, ¹H-NMR und MS mit dem käuflichen Indols (*Fluka*) übereinstimmten; 56,4 mg (0,48 mmol, 39,2% d.Th.) 48, dessen Schmp. IR, ¹H-NMR und MS mit den Daten einer gemäss [62] hergestellten Indolizin identisch sind.

In gleicher Weise wurden 143,5 mg **45** pyrolysiert, gemäss GC-Flächenintegral **47/48** im Verhältnis 79,6:19,4 und keine weiteren Produkte ergebend. Daraus wurden wie oben 15,2 mg (14,57%) **47** und 38,3 mg (36,71%) **48** isoliert, deren Schmp., ¹H-NMR- und IR-Spektren mit denen der authentischen Proben übereinstimmten. *Daten von* **48**: Schmp. (Sublimation) 74,5°, IR (CHCl₃): 3110w, 3070w, 3010m, 1770w, 1735w, 1645w, 1630w, 1520w, 1480w, 1460m, 1450w, 1400w, 1360m, 1320s, 1310s, 1280m, 1245m, 1155w, 1075s, 1030m, 1000w, 880m, 820w, 690m. ¹H-NMR (CDCl₃, 300 MHz): 6,3–6,5 (m, 2 H); 6,6 (m, 1 H); 6,8 (m (in der Referenz als br. s), 1 H); 7,2–7,4 (m, 2 H); 7,8–7,9 (m, 1 H). MS: 118 (10), 117 (100, M^+), 116 (10), 90 (38), 89 (25), 63 (11), 58 (14), 51 (5), 39 (7).

5. Exper. zu Schema 12^{37}). – 5.1. Pyrolyse von Aziridin-2-carbonitril (4). Bei 370°/0,1 Torr wurden 49,3 mg (0,73 mmol) 4[8] an 16,5 g Quarz-Ringen und 4,5 g Molekularsieb (3 Å; Union Carbide) pyrolysiert. Man erwärmte das Pyrolysat unter N₂ auf RT., nahm es in ca. 0,8 ml CDCl₃ auf und destillierte i. HV. bei RT. in einen mit fl. N₂ gekühlten Kolben über. ¹H-NMR-Spektrum (CDCl₃, 80 MHz) des farblosen Destillats nach Zugabe von 10 µl (155 µmol) CH₂Cl₂ als internem Standard: 5,28 (s, def. als 2,0 H, CH₂Cl₂); 1,98 (s, 0,8 H, MeCN); 3,16 (t, J = 2,1, 1,3 H, MeNC (13)); 3,58, 3,68 (2d, J = 2, 1,5 H, Me); 7,38 (m, 0,5 H, CH=N) (Signale von (E/Z)-6). Ausbeute: 77 µmol 2-(Methylimino) acetonitril ((E/Z)-6; 10,5% bzgl. 4), 41 µmol MeCN (6%) und 69 µmol methyl isocyanide (13; 9,5%)³⁸. Der Destillationsrückstand enthielt gemäss DC und quant. GC (Säule A, 85°, 5 min, 5°/min, bis 200°, 10 min, Benzophenon als interner Standard, Lsgm. CH₂Cl₂) 8,2 mg 4 (17% bzgl. eingesetztem 4; t_R 8,40) und 1,6 mg 53 (3 Gew.-%; t_R 28,56).

Nach einer Pyrolyse von 136 mg (2,0 mmol) **4** bei 630°/0,1 Torr an 16 g Quarz-Ringen *ohne* Molekularsieb wurde entstandenes (E/Z)-**6** im Vakuum vom Kühlfinger abgezogen, der schwerflüchtige, ölige Pyrolysatanteil in 10 ml CH₂Cl₂ aufgenommen, die Lsg. getrocknet (Na₂SO₄), eingeengt und an Kieselgel (15 × 1 cm , CH₂Cl₂/Et₂O/ Hexan 2:2:1) chromatographiert. Gemäss GC (wie zuvor, (E/Z)-1 wird nicht detektiert) und ¹H-NMR(CDCl₃, 80 MHz)-Analyse der Fraktionen waren 6,5 mg (4,8%) (E/Z)-1, knapp 3 mg (3%) Bernsteinsäuredinitril und *ca*. 1,5 mg (2%) **53** enthalten.

5.2. Pyrolyse von 53. Bei 370°/0,1 Torr wurden 57 mg (0,6 mmol) 53 an 16,5 g Quarz-Ringen und 4,5 g Molekularsieb (3 Å; Union Carbide) pyrolysiert. Das Pyrolysat wurde unter N₂ auf RT. aufgewärmt, in ca. 0,6 ml CDCl₃ aufgenommen und bei RT. i. HV. über eine kurze Brücke in einen mit fl. N₂ gekühlten Kolben überdestiliert. Zum farblosen Destillat gab man 10 µl (0,155 mmol) CH₂Cl₂ als internen Standard für die quant. NMR-Analyse. ¹H-NMR (CDCl₃, 80 MHz): 5,28 (s, def. als 2,00 H, CH₂Cl₂); 1,98 (s, 1,14 H, MeCN); 3,16 (t, J = 2,1,6,57 H, 13); 3,8 (br. s, ca. 2,9 H, HCN); 3,58, 3,68 (2d, J = 2, zusammen ca. 1,4 H, Me von (E/Z)-6); 7,38 (m,0,49 H, olefin H von (E/Z)-6). Ausb. gemäss ¹H-NMR: 0,06 mmol MeCN (10% bzgl. 53), 0,34 mmol 13 (57%), 0,45 mmol HCN (75%), 0,075 mmol (E/Z)-6 (12,5%). Der braune, ölige Destillationsrückstand enthielt gemäss DC und quant. GC (Säule A, 85°, 5 min, 5°/min bis 200°, Benzophenonstandard (t_R 24,4), t_R (53) 18,9) ausser 9 µmol (1,5%) Edukt 53 keine weiteren Komponenten.

5.3. Pyrolyse von Perhydro-1,3,5-triazin-1,3,5-tricarbonitril (16). Bei 370° Ofen-Temp./0,1 Torr wurden 62 mg (0,3 mmol) 16 (Fluka, umkrist. aus AcOEt) an 16,5 g Quarz-Ringen und 4,5 g Molekularsieb (3 Å; Union Carbide) pyrolysiert. Die kalte Zone des Rohres vor dem Ofen wurde mit einem Fön stark geheizt, um eventuell auf die Wand des Rohres zurückkondensierendes 16 wieder zu verdampfen. Das Pyrolysat wurde unter N₂ auf RT. aufgewärmt, in ca. 0,8 ml CDCl₃ aufgenommen und anschliessend in einen mit fl. N₂ gekühlten Kolben überdestilliert. ¹H-NMR (CDCl₃, 80 MHz) des Destillats: 1,98 (s, 3,0 H, MeCN); 3,16 (t, J = 2, 13, 3 H, 13); 3,58, 3,68 (2d, J = 2, zusammen 2,9 H, Me von (E/Z)-6); 7,41 (m, 0,7 H, olefin. H von (E/Z)-6); 8,58 (s, ca. 0,4 H, arom. H von 52). Somit entstanden die Produkte im Verhältnis (E/Z)-6/MeCN/13/Pyrazin (52) 0,7:1:4,4:0,1. Der Rückstand der Destillation enthielt gemäss quant. GC in CH₂Cl₂ mit Benzophenon als internem Standard ca. 1 mg 53. Die beiden Produkte (E/Z)-6 und 52 wurden in einem analog durchgeführten Ansatz²) durch Ko-Injektion mit authentischem Material (Pyrazin (52) von Fluka, t_R 6,9, (E/Z)-6 aus Reduktion von N-Methylglycinnitril (s. u.), t_R 7,1) mittels GC (Säule *B*, 35° 10 min, 5°/min, bis 200°) identifiziert. Folgende IR- und ¹³C-NMR-Spektren wurden nach sonst analogen Pyrolysen bei 375° und 400°. Ofen-Temp. aufgenommen: IR (CHCl₃): 3000, 2959, 2172, 1505, 934 (13); 2295, 2260, 1371, 1022 (MeCN); 1631, 1619, 968, 911 ((E/Z)-6); ¹³C-NMR (CDCl₃, 75,5 MHz): 2,5,

³⁷) Für weitere experimentelle Details zu diesen Pyrolysen vgl. [2].

³⁸) Eine Vergleichsprobe von 13 wurde nach [63] synthetisiert.

110,5 (Me, CN von MeCN); 27,4, 154,7 (Me, NC von 13); 47,1, 49,9 (Me); 109,2 (CN, (Z)); 133,5, 137,9 (CH=N) Signale von (*E*/*Z*)-6, das Signal der CN-Gruppe von (*E*)-6 war nicht zu erkennen; 145 (arom. CH von 52).

Aus einem Pyrolyse-Exper. mit 64 mg (0,94 mmol) 16 erhielt man unter sonst analogen Bedingungen, aber bei nur 220° Ofen-Temp. folgendes ¹H-NMR-Spektrum (CDCl₃, 80 MHz) nach Zugabe von 10 μ l (155 μ mol) CH₂Cl₂: 5,28 (*s*, def. als 2,0 H, CH₂Cl₂); 3,16 (*t*, *J* = 2,1, 0,4 H, 13); 3,58, 3,68 (2*d*, *J* = 2, 9,7 H, Me von (*E*/*Z*)-6), 7,38 (*m*, 3,2 H, olefin. H von (*E*/*Z*)-6); 4,52 (*t*, *J* = 2,1, 2,4 H, CH₂ von 5), 7,50, 7,74 (*dt*, *J* = 15, 2,1, 2,4 H, olefin. H von 5). Ausbeute: 21 μ mol 13 (2% bzgl. 16), 503 μ mol (*E*/*Z*)-6 (53,5%), 186 μ mol 5 (20%). ¹³C-NMR (CDCl₃, 75,5 MHz) eines Experiments bei 230° Ofen-Temp.: 27,4 (Me von 13), kein Signal der NC-Gruppe von 13 zu erkennen; 47,1, 50,2 (Me); 109,4, 114,8 (CN); 133,6, 138,0 (CH=N) (Signale von (*E*/*Z*)-6); 4,73 (CH₂CN); 115,0 (CN); 158,0 (CH₂=N von 5). Die Rückstände mehrerer Ansätze wurden vereinigt in MeCN aufgenommen und nach dem Einengen an Kieselgel (13 × 2 cm, CH₂Cl₂/*E*t₂O 1:1) chromatographiert. Nach Einengen der Produktfraktionen lieferte Kristallisation aus AcOEt feine Nadeln, deren ¹H-NMR-, IR- und MS-Daten mit denjenigen der authenti-schen Probe von 53 übereinstimmten.

Daten von 2-(Methylidenamino)acetonitril (5; vgl. auch [26])³⁹). An 24 g Quarz-Ringen wurden 94,4 mg (0,462 mmol) 16 bei $350^{\circ}/0,2$ Torr im schwachen N₂-Strom pyrolysiert. Das Pyrolysat wurde mit CDCl₃ vom Kühlfinger heruntergespült, auf 1,5 ml verdünnt und mit CH₂Cl₂ als internem Standard versetzt (am Kühlfinger zurück blieb farbloses, in CHCl₃ und MeCN unlösliches Material): Ausbeute gemäss ¹H-NMR: 33 % 5. ¹H-NMR (CDCl₃, 300 MHz): 4,52 (t, J = 2,2, CH₂CN); 7,50, 7,74 (je dt, je 1 H, J = 15,0, 2,3, CH₂=N). ¹³C-NMR (CDCl₃, 75,5 MHz): 47,0 (t, CH_2 CN); 114,4 (s, CN); 157,4 (t, CH_2 =N). MS: 136 (8), 69 (24), 68 (29, M^+), 67 (97), 57 (53), etc., 41 (100), etc.

6. Exper. zu Schema 13. – Für die Exper. mit 2-Methylidenglycinnitril (3) und (E/Z)-1 wurde eine Pyrolyse-Apparatur verwendet, wie sie z. B. in [65] beschrieben ist, d. h. das Edukt wurde in einem Kölbchen am Ende des Pyrolyse-Rohres vorgelegt und allein durch den Unterdruck in die heisse Zone des leeren Quarz-Rohres hineingezogen. Der drehbare Kühlfinger wurde mit fl. N₂ gekühlt. Nach der Pyrolyse aufzukondensierendes Lsgm. wurde auf der vom Ofen abgewandten Seite des Kühlfingers mehrfach entgast in einem Kölbchen an der Vakuumlinie vorgelegt.

6.1. Pyrolyse von (Z)-1. Ca. 100–300 mg reines (Z)-1 (¹H-NMR), welches durch Addition von NH₃ an 7 in Et₂O hergestellt worden war, wurde bei 1000–1100°/0.01–0.001 Torr pyrolysiert. Wegen der Ofenstrahlung erwärmte sich das Edukt-Kölbchen allmählich auf ca. 30°. Nach 20 min war alles (Z)-1 verdampft. Man drehte den Kühlfinger um 180° und kondensierte nun bei zur Pumpe hin geschlossener Vakuumlinie 3–4 ml CDCl₃ über die Pyrolyse-Produkte. Nach Abblasen des N₂ aus dem Kühlfinger wurde dieser mit kaltem Wasser aufgetaut, so dass die Pyrolysat-Lsg. in den nun mit fl. N₂ gekühlten Auffangkolben unterhalb des Kühlfingers umkondensierte. Dann wurde mit Ar belüftet. ¹H-NMR des Gemischs (CDCl₃, 200 MHz, die Integrationswerte sind auf das HCN-Integral mit 1,0 H bezogen): 0,02, 0,07 (je s, wenig, vermutlich Schliffett); 1,3, 1,5–1,8, 2,35 (je m, zusammen 0,5 H); 2,76 (s, 0,1 H); 3,6 (m, 0,1 H), alle nicht idenifiziert; 2,00 (s, 3,2 H, MeCN); 3,75 (br. s, 1,0 H, HCN); 3,93 (br. dd, in analogen Experimenten nur ein d, J = 8, 4, 0, 5 H, (Z)-1); 4,24 (dd, in analogen Experimenten nur ein d, J = 13, 4, 0, 3 H, (E)-1); 4,2–5,2 (br. 2s, ca. 2 H, NH₂ von (E/Z)-1); 5,66 (dd, J = 18, 11, Spuren, vermutlich CH₂ von Propennitril); 6,75 (dt, J = 10, 5, 8, 5 H, (Z)-1); 6,98 (dt, J = 14, 10, 5, 0, 3 H (E)-1); 7,27 (s, CHCl₃ aus Lsgm.). Zusammensetzung: 1 Teil MeCN, 1 Teil HCN, 0,5 Teile (Z)-1, 0,3 Teile (E)-1.

6.2. Pyrolyse von (Z)-3- $({}^{15}N)$ Aminoprop-2-ennitril ((Z)- $({}^{15}N)$ -1). (Z)- $({}^{15}N)$ -1 wurde durch Addition von ${}^{15}NH_3$ (Aldrich, 98%) an 7 in Et₂O hergestellt. IR (CHCl₃): 3510m, 3405m, 3105w, 3010w, 2200s, 1640s (br.), 1595s, 1295m, 1135w (br.), 1065w. ${}^{11}H$ -NMR (CDCl₃, 200 MHz): 3,92 (ddt, J = 8,3, 4,7, 0,8, =CHCN); 4,88 (ddd, J = 91, 10,8, 0,8 2,8 H, ${}^{15}NH_2$); 6,76 (ddt, J = 3,0, 8,3, 10,8, =CH ${}^{15}NH_2$); kein t mit J = 7,5 bei 1,22 ppm (vgl. ${}^{11}H$ -NMR des Pyrolysates) im Ausgangsmaterial. ${}^{13}C$ -NMR (CDCl₃, 50 MHz, ${}^{11}H$ -breitbandentkoppelt): 63,4 (CCN); 117,5 (CN); 148.9 (d, J = 14, C ${}^{15}NH_2$). MS: 69 (80, M^+), 68 (51), 42 (25), 41 (100), 40 (29), 29 (47).

In der Pyrolyse-Apparatur wurden 0,15 g (Z)- (^{15}N) -1 vorgelegt und wie für unmarkiertes (Z)-1 beschrieben bei 975–1000° Ofen-Temp. und 0,02 Torr innerhalb von 10 min pyrolysiert. Dazu musste das Edukt mit dem Fön erwärmt werden, weil es sich aus ungeklärten Gründen schnell gelb verfärbte und kaum überdestillierte. Es gingen schätzungsweise 30 mg durch Polymerisation verloren. Anschliessend an die Pyrolyse dampfte man *ca.* 0,7 ml CDCl₃ auf den Kühlfinger und kondensierte bzw. tropfte die Mischung in den Auffangkolben über. Am Kühlfinger zurück blieben schätzungsweise 30–60 mg gelbes Öl.

³⁹) Nach eingehenden Optimierungsversuchen von Steiger [64] durchgeführtes Experiment.

¹H-NMR (CDCl₃, 200 MHz) des Pyrolsats: 0,02 (*m*); 0,12 (*s*); 1,22 (*t*, *J* = 7,5, vermutlich Propannitril); 4,23 (*m*, zusammen 0,09 H, nicht identifiziert); 1,96 (*s*, 3,0 H); 2,73 (*s*, 0,08 H); 3,4 (br. *s*, 1,0 H, HCN); 3,83 (*dd*, *J* = 8,1, 4,2, 0,5 H, (*Z*)-(¹⁵N)-1); 4,15 (*dd*, *J* = 2,4, 13,2, 0,1 H, (*E*)-(¹⁵N)-1); 4,81 (*dd*, *J* = 90, 10,8, 0,2 H, NH₂ von (*E*)-(¹⁵N)-1); 5,00 (*dd*, *J* = 90, 10,8, 1,0 H, NH₂ von (*Z*)-(¹⁵N)-1); 5,63 (*dd*, *J* = 11, 17,5), 6,05 (*d*, *J* = 11) und 6,20 (*d*, *J* = 17,5, Spuren, CH₂CHCN); 6,73 (*ddt*, *J* = 5,4, 8,3, 10,8, 0,5 H, (*Z*)-(¹⁵N)-1); 6,94 (*m*, (*E*)-(²⁵N)-1); 7,26 (*s*, CHCl₃ im Lsgm.). 1³C-NMR (CDCl₃, 75,5 MHz, ¹H-breitbandentkoppelt): 1,8 (*s*, MeCN); 14,6 (nicht identifiziert); 63,0 (*Z*)-(¹⁵N)-1); 65,4 (*d*, *J* = 2,5, (*E*)-(¹⁵N)-1); 77,3 (*t*, CDCl₃); 109,4 (*d*, *J* = 17, HCN); 116,8 (*s*, MeCN); 118,6 ((*Z*)-(¹⁵N)-1); 120,6 (137,8 (beide geringe Intensität); 150,3 (*d*, *J* = 14,6, (*Z*)-(¹⁵N)-1); 151,6 (*d*, *J* = 14,8, (*E*)-(¹⁵N)-1). ¹⁵N-NMR (CDCl₃, 30 MHz, bezogen auf δ (MeNO₂) = 0 ppm): -123,0 (Intensität 240, HCN); -135,3 (Intensität 6, MeCN); -303,7 (Intensität 59) und -305,4 (Intensität 8, NH₂ von 1). ¹⁵N-NMR wurde nach mehreren Tagen Aufbewahrung der Lsg. in Trockeneis aufgenommen. Das Isomerenverhältnis (*E*)/(*Z*) von 1 betrug gemäss ¹H-NMR zu diesem Zeitpunkt noch 1:5. Nach Aufnahme der NMR-Spektrem engte man die Lsg. in CDCl₃ mehrmals mit CHCl₃ ein und nahm von dem schwerflüchtigen Rückstand ein IR-Spektrum des reinen, nur in der Amino-Gruppe mit ¹⁵N markierten (*Z*)-Isomeren von 1 (s. o.).

In einem zweiten Versuch pyrolysierte man *ca.* 0,15 g (Z)-(15 N)-1 bei 950–1000° und 0.001 Torr innerhalb von 17 min. Die Produkte wurden pur in ein Spitzkölbchen umkondensiert. Weder im Eduktkolben noch am Kühlfinger blieben nennenswerte Rückstände, 10 µl der aufgetauten, klaren, gelblichen Produkt-Mischung wurden für die IR-Spektroskopie mit 50–60 µl CHCl₃ verdünnt. IR (CHCl₃): 3660*m*, 3480 vs, 3380 vs, 3100–3260 vs (u. a. HC¹⁵N u. (*E/Z*)-(15 N)-1); 3005*s* (MeCN); 2940*m*, 2340*w* (evtl. CO₂ oder (*E*)-(15 N)-1); 2290*m*, 2255*s* (MeCN); 2230*w* (tritt in anderen Ansätzen auch nach der Pyrolyse von unmarkiertem 1 auf; 2200 vs ((*E/Z*-(15 N)-1); 2140*w*, 2090*w* (HCN); 2060*s* (HC¹⁵N); 1930*w* (br.); 1640*vs*, 1595*vs* ((*E/Z*)-(15 N)-1); 1485 (br., 1440*m* (br.), 1400*m*, 1370*s* (MeCN); 1410*m*, 1295*vs* ((*E/Z*)-(15 N)-1); 1135*m*, 1070*m*, 1035*m*, 970*m*, 937*m*, 918*m*. Für die Aufnahme des MS destillierte man die leichtflüchtigen Anteile (HCN und MeCN) in ein zum Messgerät passendes Kölbchen über. MS: 42 (4), 41 (73, MeCN), 40 (40), 39 (17), 38 (13), 28 (100, [HCN + 1]), 27 (25), 26 (6), 25 (4,5), 18 (8), 17 (5), 14 (7), 13 (4), 12 (6), 3 (2). Zum Vergleich wurden unter gleichen Messbedingungen die MS natürlichen HCNs und natürlichen MeCNs vermessen: MS von HCN: 28 (3), 27 (100), 26 (22), 14 (1), 13 (1), 12 (2). MS von MeCN: 42 (3), 41 (100, MeCN), 40 (55), 39 (22), 38 (16), 32 (1), 28 (6), 27 (3), 26 (5), 25 (4), 24 (2), 20 (0,4), 18 (1), 15 (2), 14 (8), 13 (2), 12 (3).

7. Exper. zu Schema 15. – 7.1. Photoreaktion von (E/Z)-6 mit Toluol. Eine Lsg. von 225 mg (3,3 mmol) frisch hergestelltem (E/Z)-6 (Herstellung vgl. Exper. zu Schema 16) und 46 mg (0,26 mmol) Benzophenon in 12 ml Toluol wurde nach dem Entgasen (durch mehrmaliges Einfrieren i. HV. und Auftauen des geschlossenen Gefässes) in einer abgeschmolzenen Ampulle während 50 h bei 300 nm mit einer Hg-Mitteldrucklampe (250-W) bei RT. bestrahlt. Dann wurde von wenig braunem Niederschlag abfiltriert, i. RV. eineengt und über Kieselgel (18 × 2 cm) mit 500 ml CH₂Cl₂/Et₂O/Hexan 5:5:3, gefolgt von 200 ml CH₂Cl₂/Et₂O/Hexan 5:5:2, chromatographiert. Die Fraktionen gleichen, einheitlichen R_{Γ} Wertes wurden vereinigt und folgendermassen aufgearbeitet: R_{f} 0,83 (CH₂Cl₂/Et₂O/Hexan 5:5:3): Nach Abziehen des Lsgm. i. RV. wurden zum gelblichen Rückstand *ca.* 0,3 ml Et₂O und mit Hexan und trocknete 3 h i. HV.: 8,5 mg. Schmp. 180°. MS: 183 (100, $M^+/2$), 149 (26), 105 (67), 77 (35). ¹H-NMR und IR stimmen mit denjenigen von 1,1,2,2-Tetraphenylethan-1,2-diol (58) überein. Die Mutterlauge wurde nach dem Einengen an Kieselgel chromatographiert (15 × 1,5 cm, CH₂Cl₂/Hexan 1:1), 37 mg Öl ergebend. Destillation im Kugelrohrofen lieferte 33 mg Feststoff, Schmp. 52°. ¹H-NMR, IR und UV stimmen mit Referenzspektren von 1,1,2,2-Tetraphenylethan (57) überein.

 $R_{\rm f}$ 0,34: Einengen und 5 h Trocken des Rückstandes i. HV. bei RT. ergab 52 mg (9.8% bzgl. (*E*/*Z*)-6) DC-einheitliches 2-(*Methylamino*)-3-phenylpropannitril (54) als gelbliches Öl, welches nach weiteren 10 h Trocknen i. HV. ohne weitere Reinigung analysiert wurde: IR (CHCl₃): 3345w, 3330w, 3090w, 3060w, 3030s (sh), 3010s, 2985s, 2995s, 2930m (sh), 2900w, 2860m, 2810m, 2225w, 1950w, 1875w (br.), 1810w, 1680w (br.), 1640w, 1602m, 1582w, 1495s, 1475s, 1454s, 1435m (sh), 1385w, 1330w, 1310w, 1150w, 1115s, 1080m, 1075m, 1030m, 980w, 920w. ¹H-NMR (CDCl₃, 300 MHz): 1,48 (br., NH); 2,54 (s, Me); 3,03 (*A* von *ABM*, *dd*, *J* = 5,8, 13,5), 3,08 (*B* von *ABM*, *dd*, *J* = 7,0, 13,5, CH₂); 3,71 (*dd*, *J* = 5,8, 7,0, CH); 7,26-7,36 (m, 5 arom. H). ¹³C-NMR (CDCl₃, 75,5 MHz): 34,1 (q, Me); 39,2 (t, CH₂); 53,6 (d, CH); 119,4 (s, CN); 127,5, 128,7, 129,4 (3d, arom. C); 135,1 (s, arom. C). MS: 160 (7, *M*⁺), 133 (6, [*M* - HCN]⁺), 92 (25), 91 (41), 69 (100, [CNCHNHMe]⁺), 42 (36).

R_f 0,28 (Phosphormolybdänsäure): Einengen und anschliessende Kristallisation aus AcOEt lieferte 15 mg meso-2,3-bis(methylamino)butandinitril) (55). Schmp. 125°. IR (KBr): 3330m, 3270s, 3000m, 2960s, 2890m, 2875m, 2855m, 2805m, 2235m, 1498m, 1478m, 1445s, 1430s, 1302w, 1158m, 1140m, 1130m, 1105s, 975m, 900s, 830s,

810s, 778m. ¹H-NMR (CD₃CN, 300 MHz): 1,99 (br., 2 NH); 2,47 (d, J = 5,9, 2 Me); 3,90 (m, 2 CH). ¹³C-NMR (CD₃CN, 75,5 MHz): 34,0 (Me); 55,2 (CH); 118,4 (CN, verdeckt vom Lsgm.). MS: 111 (2, $[M - \text{HCN}]^+$), 70 (50), 69 (100, CH₃ - NH - CH - CN), 42 (34), 28 (20).

Mischfraktionen mit R_f 0,28 und 0,21: Nach Vereinigung mit der Mutterlauge der Kristallisation von 55 wurde i. RV. eingeengt und der Rückstand über Kieselgel (15 × 2 cm, CH₂Cl₂/Et₂O 1:4) chromatographiert. Die Fraktionen mit höherem R_{Γ} Wert wurden vereinigt eingeengt. Anschliessende Kristallisation aus AcOEt lieferte weitere 11 mg 55 zusammen 11,5% bzgl. Edukt E/Z-6).

 $R_{\rm f}$ 0,21: Die DC-reinen Fraktionen der ersten Kieselgel-Chromatographie wurden mit den DC-reinen Fraktionen der zweiten Kieselgel-Chromatographie vereinigt und eingeengt. Kristallisation aus Et₂O/AcOEt ergab 6 mg *rac*-**56**. Aus der Mutterlauge kristallisierten während 6 Tagen bei -20° weitere 8 mg *rac*-**56** (zusammen 6,2% bzgl. (*E/Z*)-**6**). Schmp. 48°. IR (KBr): 3400m (sh), 3310s, 3255s, 3000m, 2980m, 2950s, 2920m, 2895m, 2875m, 2866m, 2800m, 2230w, 1492s, 1470m, 1448m, 1425w, 1325w, 1315w, 1298w, 1290w, 1280w, 1205w, 1188w, 1170w, 1132s, 1108s, 1098s, 1060w, 1042w, 1000w, 975w, 952w, 898s, 848m, 820m, 800s, 758m, 570w, 452w. Fremdsignale bei 2890w und 1635m. ¹H-NMR (CD₃CN, 300 MHz): 1,93 (br., 2 NH); 2,47 (*d*, *J* = 5,9, 2 Me); 3,88 (*m*, 2 CH). MS: 111 (5), 70 (50), 69 (100), 42 (25), 28 (20). Aus einem Ansatz, bei dem (*E/Z*)-6 in Gegenwart von **18** bei > 300 nm belichtet wurde, erhielt man bei sonst gleichem ¹H-NMR, IR und MS noch folgende ¹³C-NMR-Spektren (75,5 MHz) von *meso*-55 und *rac*-56 in CD₃CN: 34,1 (2 Me von *meso*-55); 34,7 (*q*, 2 Me von *rac*-56); 55,4 (*d*, 2 CH) von *meso*-55 in (D₆)DMSO: 32,8 (*q*, 2 Me); 53,6 (*d*, 2 CH); 118,0 (*s*, 2 CN).

7.2. meso-1,3-Dimethyl-2-phenylimidazolidin-4,5-dicarbonitril (59 und 60). Zu einer Lsg. von 15 mg (0,11 mmol) meso-55 (Schmp. 126°) und 16 mg (0,15 mmol) Benzaldehyd (Fluka, purris. p. a.) in 2 ml abs. MeCN wurde l g Molekularsieb (4 Å, Union Carbide) gegeben und unter Ar 4 Tage bei RT. gerührt. Man filtrierte das Molekularsieb durch eine 2 cm dicke Celite-Schicht ab, engte das Filtrat ein und chromatographierte den Rückstand an einer mit Eiswasser gekühlten Kieselgelsäule (15×2 cm, CH₂Cl₂/Et₂O/Hexan 1:1:2). Es wurden zuerst unreagierter Benzaldehyd, dann 4 mg eines nicht charakterisierten Produktes und schliesslich 18 mg (73%) bzgl. 55) 59 und 60 eluiert. Diese kristallisierte man als Gemisch aus Et₂O und trocknete 20 h i. HV. Schmp. 132°. DC (CH₂Cl₂/Et₂O/Hexan 1:1:2, Phosphormolybdänsäure): R_f 0,29. IR (KBr): 3075w, 3035w, 2990w, 2960m, 2920w, 2880w, 2860w, 2800m, 2720w, 2710w, 2225w, 1462s, 1450s, 1428w, 1382m, 1332m, 1320s, 1308m, 1290m, 1235s, 1222s, 1205m, 1185w, 1150s, 1128w, 1075w, 1068w, 1015s, 940m, 928m, 842m, 800m, 768s, 755s, 700s, 642w, 521w, 500w. ¹H-NMR (CDCl₃, 300 MHz): 2,32 (s, Me von 59) und 2,33 (s, Me von 60, zusammen 12 H); 3,79 (s, 1,14 H, H-C(2) von 59); 3,92 (s, 2,28 H, H-C(4,5) von 60); 4,27 (s, 0,86 H, H-C(2) von 59); 4,51 (s, 1,72 H, H-C(4,5) von 59); 7,3-7,5 (m, 10 arom. H). ¹³C-NMR (CD₂Cl₂, 25,2 MHz): 35,6 (q, Me von 59); 37,3 (q, Me von **60**); 56,9 (*d*, C(4,5) von **60**); 57,2 (*d*, C(4,5) von **59**); 85,8 (*d*, C(2) von **59**); 90,1 (*d*, C(2) von **60**); 114,6, 116,2 (2s, CN); 128,9, 129,3, 130,0 (3d, arom. C), 136,8 (s, arom. C). MS: 226 (5, M^+), 225 (29), 158 (42, $[M - MeN = CHCN]^+$, 157 (64), 150 (10), 149 (100), etc.

7.3. rac-1,3-Dimethyl-2-phenylimidazolidin-4,5-dicarbonitril (rac-61). Zu einer Lsg. von 20 mg (0,15 mmol) rac-56 (Schmp. 50°) und 35 mg (0,33 mmol) Benzaldehyd (Fluka, purris. p. a) in 3 ml abs. MeCN wurde 1 g Molekularsieb (4 Å, Union Carbide) gegeben und unter Ar 3 Tage bei RT. gerührt. Anschliessend erhitzte man die Mischung 5 h am Rückfluss, kühlte dann auf RT. ab, filtrierte durch 2 cm Celite und engte das Filtrat ein. Chromatographie des Rückstandes an einer mit Eiswasser gekühlten Kieselgelsäule (19 × 2 cm) mit CH₂Cl₂/Et₂O/ Hexan 1:1:2 ergab nacheinander Benzaldehyd, Mischfraktionen von Benzaldehyd und rac-61 und DC-reines rac-61. Durch erneute Chromatographie der Mischfraktionen an einer mit Eiswasser gekühlten Kieselgelsäule (15 × 1,5 cm) mit CH₂Cl₂/Et₂O/Hexan 1:1:3 trennte man weiteres DC-reines rac-61 ab. Vereinigen sämtlicher produkthaltiger Fraktionen beider Chromatographien und Einengen lieferte 33 mg farbloses Öl, das aus Et₂O/Hexan kristallisiert wurde: 26 mg (77,6%) farbloses rac-61. Schmp. 80,5°. DC: R_f 0,38 (CH₂Cl₂/Et₂O/Hexan 1:1:2, Phosphormolybdänsäure), R_f 0,16 (CH₂Cl₂/Et₂O/Hexan 1:1:3, Phosphormolybdänsäure). IR (KBr): 3060w, 3038w, 3022w, 2990w, 2960m, 2950m, 2918w, 2855m, 2795m, 2770w, 2690w, 2675w, 2650w, 2240w, 2212vw, 1486w, 1455s, 1423m, 1378m, 1355m, 1320s, 1308m, 1290s, 1243s, 1220s, 1158s, 1125w, 1075w, 1040m, 1030s, 1020s, 990m, 962w, 931m, 920m, 908m, 865s, 836m, 762s, 715m, 693s. ¹H-NMR (CD₂Cl₂, 300 MHz): 2,30 (s, Me); 2,41 (s, Me); 4,04 (s, H-C(4 oder 5)); 4,10 (d, J = 1,3, H-C(4 oder 5)); 4,45 (dd, J = 1,2,0,7, H-C(2)); 7,4-7,5 (m, 5 arom. H). ¹³C-NMR (CD₂Cl₂, 25,2 MHz): 34,9 (q, Me); 38,1 (q, Me); 57,7 (d, C(4 oder 5)); 58,4 (d, C(4 oder 5)); 87,8 (d, C(2)); 114,5 (s, CN); 117,9 (s, CN); 128,9, 129,3, 129,9 (3d, 3d, arom. C); 137,0 (s, arom. C). MS: 226 (5, M⁺), 225 (28), 158 $(33, [M - CNCH = NMe]^+)$, 157 (59), 149 $(100, [M - Ph]^+)$, etc. Anal. ber. für C₁₃H₁₄N₄: C 69,00, H 6,24, N 24,76; gef.: C 68,81, H 6,21, N 24,82.

8. Exper. zu Schema 16. – 8.1. 2-(Methylimino) acetonitril ((E/Z)-6). Eine Lsg. von 3.82 g (54.6 mmol) 2-(Methylamino) acetonitril (62; R_f 0, 10 in CH₂Cl₂/Et₂O 1:1, Ninhydrin) in 20 ml abs. CH₂Cl₂ wurde bei -15° und unter Lichtausschluss mit 6,7 ml (59,0 mmol) t-BuOCl in 6 ml abs. CH₂Cl₂ versetzt und 1,5 h in der Kälte gerührt. Nun verdünnte man mit 80 ml abs. CH₂Cl₂ und gab bei -10° 30 g Amberlyst A21 zu. Nach 3 h Rühren filtrierte man, wusch den Ionentauscher gründlich mit CH₂Cl₂ nach und engte das Filtrat bei ca. 15° auf 6 ml ein. Die braune Lsg. wurde an einer mit Eiswasser gekühlten Alox-Säule (8 × 2 cm, Alox neutral, Aktivität III) mit CH₂Cl₂ filtriert. Das Filtrat wurde durch Watte filtriert und bei ca. 15° i. RV. wieder eingeengt. Sofort anschliessende Destillation i. HV. bei RT. lieferte 1,6 g (44%) (E/Z)-6 als farblose Flüssigkeit, welche sofort mit abs. CH₂Cl₂ zur ca. 15% Lsg. verdünnt und bei -20° aufbewahrt wurde. Die anal. Daten von (E/Z)-6 stammen aus einem analogen Ansatz: DC: Rf (CH₂Cl₂/Et₂O 1:1, Zers., Ninhydrin) 0,66. UV: 275 (86). IR (CHCl₃): 3000m, 2970m, 2918w, 2890w, 2841w, 2220w, 1685w, 1630s, 1616m, 1452m, 1430w, 1340w, 1140w, 1012w, 990w, 967s, 910m. ¹H-NMR (CDCl₃, 300 MHz): 1,28 (s, 0,14 H); 1,9–3,0 (mehrere nicht identifizierte, schwache Signale, zusammen 0,3 H); 3,61 (d, J = 1,8, Me von (E)-6); 3,72 (d, J = 2,5, 0,18 H, Me von (Z)-6); 7,42 (q, J = 1,8,1 olefin. H von (E)-6, ein positiver NOE auf das Signal bei 3,61 ist beobachtbar); 7,45 (m, teilweise verdeckt, olefin. H von (Z)-6. ¹³C-NMR (CDCl₃, 75,5 MHz): 46,3 (Me von (Z)-6); 49,3 (q, Me von (E)-6); 114,7 (s, CN); 133,1 (C(2) von (Z)-6); 138,0 (d, C(2) von (E)-6); Fremdsignale bei 31,1 (s); 114,7 (s); 168,4. MS: 68 (62, M^+), 67 (100), 42 (45), 41 (64, $[M - HCN^+)$, 40 (38), 39 (22), 28 (18), 15 (20).

8.2. 2-Iminoacetonitril ((E/Z)-14), N-(Cyanomethyl)cyanoformamidin ((E/Z)-63) und 1,2-Diaminoethan-1,1,2-tricarbonitril (64). In 0,8 ml frisch durch basisch Alox filtriertem CD₂Cl₂ wurden 15 mg (0,27 mmol) 2-Aminoacetonitril (8), welches in der Kälte mit NaOCH₃ in MeOH aus dem Hydrochlorid freigesetzt worden war [66], gelöst, auf -40° gekühlt und unter Ar und Lichtausschluss mit einer Lsg. von 31 mg (0,28 mmol) t-BuOCl in 60 µl CD₂Cl₂ versetzt. Nach 30 min Rühren bei -40° kühlte man auf -78°, tropfte eine Lsg. von 30 mg (0,20 mmol) Et₃N in 60 µl CD₂Cl₂ ein und liess 30 min rühren. 0,3 ml der schwach gelblichen Lsg. wurden durch Filterpapier in ein ebenfalls auf -78° gekühltes NMR-Röhrchen, in dem sich bereits 0,3 ml CD₂Cl₂ befanden, filtriert. Unmittelbar darauf wurde ¹H-NMR (300 MHz) bei -41° aufgenommen: 7,59 (d, J = 24, 0,2 H CH=N von (Z)-14); 7,76 (d, J = 16, 0,8 H, CH=N von (E)-14); 12,22 (br. dJ ≈ 18, 1 H, NH von (E/Z)-14); Fremdsignale: 1,10 (s, 0,3 H); 1,16 (s, 17 H, t-BuOH); 1,26 (t, J ≈ 8, 13 H) und 3,00 (q, J ≈ 8, 9 H, Et₃N); 3,54 (s, 0,4 H); 5,33 (CHDCl₂ aus Lsgm.); 7,7 (br. s, ca. 2 H). ¹³C-NMR (CD₃CN, 75,5 MHz) eines analogen Ansatzes⁴⁰) in CD₃CN mit basischem Anionentauscher (Amberlyst A21) statt Et₃N: 31,5 (q, Me), 69,0 (s, Me₃C von t-BuOH); 49,9 (m); 61,3 (d); 149,0 157,2 (2d, CH=N von (E/Z)-14).

Auf analoge Weise wurde 672 mg (12 mmol) 8 in 20 ml abs. CH₂Cl₂ bei -40° mit einer Lsg. von 1,4 g (12,8 mmol) t-BuOCl in 5 ml abs. CH₂Cl₂ versetzt. Man rührte 30 min, kühlte auf -78°, tropfte eine Lsg. von 1,3 g Et₃N in 5 ml abs. CH₂Cl₂ zu und rührte weitere 30 min. Danach erwärmte man die Lsg. während ca. 1,5 h auf -10° , rührte bei dieser Temp. 2 h und wärmte auf RT. auf. Nach 3 h Rühren bei RT. engte man i. RV. ein und extrahierte den dunkelbraunen Rückstand 4mal mit je 30 ml AcOMe. Vereinigen der AcOMe-Lsgn., Einengen und Chromatographic des braunen Rückstands an Kieselgel (16×2 cm, AcOEt/Hexan 5:4) ergab als erstes 32 mg (4,5%) 64 (DC, nach Umkristallisation aus AcOEt/Et₂O Schmp. 112°, Zers. ab 120°), gefolgt von 113 mg (17,4%) (E/Z)-63 (DC). Die anal. Daten von (E/Z)-63 stammen aus analogen Ansätzen. Für die Mikroanalyse wurde die Probe einmal bei 85°/0,02 Torr sublimiert. Schmp. 100°. DC (AcOEt/Hexan 5:4, Ninhydrin): Rf 0,32. UV (MeCN): 227 (6050). IR (KBr): 3360s (br.), 3135s (br.), 2802w, 2261m, 1667s, 1621s, 1409m, 1368m, 1351m, 1236w, 1160w, 1008m, 938m, 860w, 718w, 620w, 561m (br.), 539m, 486w, 385m. ¹H-NMR (CD₃CN, 300 MHz): 4,00 (s, 1,2 H, CH₂ (E oder Z)); 4.25 (br. s, 0.8 H, CH₂ (Z oder E); 6.05 (br. s, NH₂). ¹H-NMR (CD₃CN, 300 MHz, -40°): 3.95 (s, 2.0 H, CH₂); 6,30 (br. s, 2,0 H, NH₂ von (Z)-63); 4,30 (s, 0,5 H, CH₂); 6,10 (br. s, NH₂ von (E)-63); 4,10 (d, J = 6,5,0,2H, CH₂); 6,67 (br. s, 0,1 H, NH); 8,72 (br. s, 0,1 H, NH (Zwischenprodukt der Tautomerisierung mit freier Aldimin-Gruppe?)). Die Zuordnung der (E)- und der (Z)-Form beruht auf der Erfahrung, dass die zur CN-Gruppe cis-ständigen Protonen stärker entschirmt werden (vgl. auch die Zuordnung der Signale von (E/Z)-6). ¹³C-NMR (CD₃OD, 25,2 MHz); 36,6 (t, CH₂); 114,1, 118,0, 118,2 (3s, 2 CN, (E/Z)); 139,7 (s, CN). MS: 109 (9), 108 (94, M⁺), 107 (26), etc., 55 (100), etc. Anal. ber. für C₄H₄N₄: C 44,44, H 3,73, N 51,85; gef.: C 44,10, H 3,73, N 51,46. Die anal. Daten von 64 stammen aus der Probe eines analogen Ansatzes: IR (KBr): 3360s, 3302s, 3200m, 2955m, 2268w (sh), 2250w, 1615m, 1600m, 1370w, 1335w, 1200w, 1138m (sh), 1121s, 1065w, 1048w, 989m, 920s (br.), 860s (br.), 717m, 660w, 575m, 502m, 450w, 342m (br.). ¹H-NMR ((D_6)DMSO, 300 MHz): 3,22 (d, J = 9,3, CHNH₂); 3,84 (s, CNH₂); 4,60 (t, 9,3, CHNH₂). ¹³C-NMR ((D₆)DMSO, 25,2 MHz): 51,3 (d, CH); 54,2 (s, C); 114,7, 115,6, 177,6 (3s, 3 CN). MS: 108 (3, M⁺), 81 (11), 80 (8), 56 (7), 55 (100), 54 (25), 53 (30), 28 (47), 27 (23). Anal. ber. für C₅H₅N₅: C 44,44, H 3,73, N 51,83; gef.: C 44,24, H 3,65 N 51,67.

⁴⁰) Experiment von Trinks [44d] durchgeführt.

8.3. Tricarbonitril **64** aus (E/Z)-**14** und Aminomalonodinitril. Zu 336 mg (6 mmol) **8** in 8 ml abs. CH₂Cl₂ wurden wie oben bei -40° 723 µl (687 mg, 6,3 mmol) *t*-BuOCl in 2 ml CH₂Cl₂ eingetropft und 30 min gerührt. Man kühlte die Lsg. auf -78°, gab eine Lsg. von 640 mg (6,3 mmol) Et₃N in 2 ml CH₂Cl₂ dazu und liess noch 20 min rühren. Zu dieser Mischung wurde eine frisch hergestellte Lsg. von 567 mg (7 mmol) Aminomalonodinitril (vgl. [44]) in MeCN zugegeben, innerhalb 2 h auf 0° aufgewärmt und 2 h bei 0° gerührt. Man liess über Nacht bei -20° stehen, rührte am nächsten Tag noch 3 h bei 0° und goss die schwach braune Mischung auf 250 ml AcOEt. Von ausgefallenem AcONH₄ wurde abfiltriert, man wusch mit AcOEt nach und engte das Filtrat ein. Anschliessende Chromatographie des braunen Rückstands an einer mit Eiswasser gekühlten Kieselgelsäule (20 × 2 cm, Et₂O/He xan 4:1) ergab 210 mg (26%) DC-reines **64** als schwach braune amorphe Masse. Zur Charakterisierung wurde das Rohprodukt aus AcOEt/Et₂O umkristallisiert: 124 mg gelbliches Pulver vom Schmp. 112°. MS: 108 (3, *M*⁺), 81 (8), 55 (100), 54 (19), 53 (25), 28 (46), 27 (50). Anal. ber, für C₄H₄N₄: C 44,44, H 3,73, N 51,83; gef.: C 44,45, H 3,83, N 51,59. Die IR-, ¹H- und ¹³C-NMR-Daten sind identisch mit denjenigen des aus (*E/Z)*-14 direkt gewonnenen **64**.

8.4. 2,3-Diaminomaleinsäuredinitril ((Z)-66) und (E)-66 aus (E/Z)-14. In 8 ml abs. CH₂Cl₂ wurden 340 mg (6 mmol) 8 bei -40° wie oben mit einer Lsg. von 710 µl (676 mg, 6,2 mmol) t-BuOCl in 2 ml abs. CH₂Cl₂ versetzt und 30 min gerührt. Danach kühlte man auf -78°, gab eine Lsg. von 640 mg (6,3 mmol) Et₃N in 2 ml abs. CH₂Cl₂ zu und rührte 20 min bei dieser Temp. Zur so hergestellten Lsg. von (E/Z)-14 wurden 101 mg (1 mmol) Et₃N, gefolgt von 3,5 ml ca. 5 Gew.-% HCN in MeCN zugetropft. Man liess die Lsg. während 1 h auf -20° aufwärmen, dann 16 h bei dieser Temp. stehen und goss schliesslich in 200 ml AcOEt. Von ausgefallenem AcONH₄ wurde abfiltriert, das Filtrat i. RV. eingeengt und der braune Rückstand an einer mit Eiswasser gekühlten Kieselgelsäule (20 × 2 cm) mit 600 ml CH₂Cl₂/Et₂O/Hexan 5:3:2, gefolgt von 160 ml CH₂Cl₂/Et₂O 1:1 chromatographiert. Es wurden zuerst eine Mischfraktion von (E)-66 und (Z)-66 und dann 190 mg DC-reines (Z)-66 eluiert; nach Kristallisation aus siedendem i-PrOH 105 mg gelbe Nadeln, Schmp. 182° (Zers.). Die Mutterlauge wurde mit den Mischfraktionen vereinigt und i. RV. eingeengt. Erneute Chromatographie an einer mit Eiswasser gekühlten Kieselgelsäule $(20 \times 2 \text{ cm}, \text{CH}_2\text{Cl}_2/\text{Et}_2\text{O}/\text{Hexan 5:5:3})$ ergab als erstes 16 mg DC-einheitliches (E)-66, gefolgt von 130 mg ebenfalls DC-reinem (Z)-66. Kristallisation von (Z)-66 aus heissem i-PrOH lieferte 71 mg gelbe Nadeln vom Schmp. 182°, aus der Mutterlauge wurden weitere 47 mg kristallines (Z)-66 gewonnen. Gesamtausbeute von (Z)-66: 223 mg (34,5%), von (E)-66: 16 mg (2,5%). Daten von (Z)-66: Schmp. 182°. DC (CH₂Cl₂/Et₂O 1:1, Ninhydrin, UV): Rf 0,40. UV (MeOH): 299 (12200). IR (KBr): 3440s, 3370s, 3345s, 3310s, 3205s, 2218s, 1645m, 1619s, 1365s, 1320m, 1248m, 735w (br.), 622w, 520w, 465w. MS: 109 (5), 108 (66, M⁺), 81 (83), 55 (13), 54 (100), 53 (46), 28 (70), 27 (10). Anal. ber. für C₄H₄N₄: C 44,44, H 3,73, N 51,83; gef.: C 44,38, H 3,67, N 51,46.

Die UV- und IR-Spektren sowie Schmp. und R_{f} -Werte von (Z)-66 stimmten mit denen der Referenzprobe (*Fluka*) überein.

Daten von (E)-66. Zur Analyse wurde das Produkt aus siedendem i-PrOH umkristallisiert: 9,5 mg schwach braune Nadeln; Schmp. sowie IR-Daten stimmen mit denen in [67] überein. Schmp. 165°. DC (CH_2Cl_2/Et_2O 1:1, Ninhydrin, UV): R_f 0,67. UV (MeOH): 311 (8900). IR (Nujol): 3396s, 3350s, 3296s, 3192s, 2240w, 2198s, 1641s, 1621s, 1376 (wahrscheinlich nur teilweise Nujol), 1231s, 948m, 880m (br.). MS: 109 (5), 108 (67, M^+), 81 (74), 55 (12), 54 (100), 53 (43), 28 (76), 27 (10). Anal. ber. für $C_4H_4N_4$: C 44,44, H 3,73, N 51,83; gef.: C 44,23, H 3,69, N 51,61.

In einem Kontroll-Experiment liess man eine Lsg. von HCN (ca. 40 mg, 1,5 mmol) in 10 ml mit Et₃NHCl gesättigtem CH₂Cl₂ unter Zusatz von einem Tropfen Et₃N während 24 h bei -20° stehen, wonach kein (E/Z)-66 beobachtet wurde.

8.5. $2 \cdot [(N - (Aminomethyliden)amino]prop-2-ennitril (65). Zu 160 mg (2.85 mmol) 8 in 5 ml abs. CH₂Cl₂ wurden wie oben bei <math>-40^{\circ}$ 345 µl (3,16 mmol) *t*-BuOCl in 3 ml CH₂Cl₂ getropft und 30 min gerührt. Man kühlte die Lsg. auf -78° , verdünnte mit 5 ml abs. CH₂Cl₂ und tropfte eine Lsg. von 320 mg (3,16 mmol) Et₃N in 2 ml CH₂Cl₂ dazu und liess noch 20 min rühren. Nun gab man eine Lsg. von 130 mg (1,9 mmol) 3 in 2 ml abs. CH₂Cl₂ zu, liess 30 min bei -78° rühren, erwärmte während 2 h auf 0° und liess weitere 2 h rühren. Zur Aufarbeitung engte man das Gemisch ein, extrahierte den dunkclbraunen Rückstand 4mal mit je *ca.* 20 ml AcOMe und chromatographierte die vereinigten und eingeengten AcOMe-Lsg. an einer mit Eiswasser gekühlten Kieselgelsäule (CH₂Cl₂/AcOMe 1:1) 58 mg schwach braunes, kristallines Rohprodukt 65. Umkristallisation aus siedendem AcOMe lieferte daraus 24 mg gelbliches 65 vom Schmp. 119° (Zers.). Aus der Mutterlauge wurden weitere 21 mg DC-reines 65 kristallisiert. Gesamtausbeute: 45 mg (25% bzgl. 3). DC (CH₂Cl₂/AcOMe 1:1, Ninhydrin, UV): R_{f} 0,27. UV (MeCN): 255 (9300). IR (KBr): 3430s, 13360m, 3282m, 3100s (br.), 2990m, 2918m, 2221m, 1700s, 1665m (sh), 1605s, 1580m (sh), 1520w, 1397w, 1360s, 1339s, 1270s, 1248w (sh), 1008m, 960m, 874s, 775w, 560m (br.), 511m, 460w. ¹H-NMR (CD₃CN, 300 MHz); 5,16, 5,30 (2s, 2 H, CH₂); 5,81 (br. s, 1 H, NH₂); 6,25 (br. d, J ≈ 11, 1 H, NH₃); 7,78 (dd, CD₃CN, 300 MHz, -40°): 5,18, 5,30 (2s, 2 H, CH₂); 5,81 (br. s, 1 H, NH₂); 6,25 (br. d, J ≈ 11, 1 H, NH₃); 7,78 (dd, CD₃CN, 300 MHz, -40°): 5,18, 5,30 (2s, 2 H, CH₂); 5,81 (br. s, 1 H, NH₂); 6,25 (br. d, J ≈ 11, 1 H, NH₃); 7,78 (dd, NHz); 7,

J = 13,5, 4,0, CH=N). ¹³C-NMR ((D₆)DMSO, 25,2 MHz): 112,7 (*t*, CH₂); 116,2 (*s*, CN); 129,6 (*s*, C(2)); 154,8 (*d*, CH=N). MS: 96 (7), 95 (100, M^+), 94 (17), *etc.* Anal. ber. für C₄H₃N₃: C 50,51, H 5,30, N 44,19; gef.: C 50,62, H 5,46, N 43,77. Die IR-, ¹H-NMR-, und MS-Daten stammen aus einem analogen Ansatz.

LITERATURVERZEICHNIS

- [1] S. Pitsch, S. Wendeborn, B. Jaun, A. Eschenmoser, Helv. Chim. Acta 1993, 76, 2161.
- [2] Yi-Bin Xiang, 'Beiträge zur Chemie der α-Aminonitrile', Diss. Nr. 7993, ETH Zürich, 1986.
- [3] S. Drenkard, 'Zur Chemie von 2-Aminopropennitril und Aziridin-2-carbonitril', Diss. Nr. 9362, ETH Zürich, 1991.
- [4] G. Ksander, G. Bold, R. Lattmann, C. Lehmann, T. Früh, Yi-Bin Xiang, K. Inomata, H.-P. Buser, J. Schreiber, E. Zass, A. Eschenmoser, *Helv. Chim. Acta* 1987, 70, 1115.
- [5] M.J. Dowler, W.D. Fuller, L.E. Orgel, R.A. Sanchez, Science 1970, 169, 1320.
- [6] N. Friedmann, S. L. Miller, R. A. Sanchez, Science 1971, 171, 1026.
- [7] S.L. Miller, Science 1953, 117, 528; S.L. Miller, J. Am. Chem. Soc. 1955, 77, 2351; A.L. Weber, S.L. Miller, J. Mol. Evol. 1981, 17, 273.
- [8] E. Wagner, Yi-Bin Xiang, K. Baumann, J. Gück, A. Eschenmoser, Helv. Chim. Acta 1990, 73, 1391.
- [9] J. E. Van Trump, S. L. Miller, Science 1972, 178, 859; G. A. Kurhajec, R. J. Windgassen, G. W. Hearne, Shell Int. Res. Maatschappij N. V., Fr. 1 360 750, 15.5.1964; vgl. (CA: 1965, 62, P 1742c); G. Bold, 'Zur Chemie des 2-Aminopropennitrils', Diss. Nr. 7702, ETH Zürich, 1984, S. 143.
- [10] R.A. Sanchez, J.P. Ferris, L.E. Orgel, Science 1966, 154, 784.
- [11] J. H. Hong, H. J. Pownall, R. S. Becker, Photochem. Photobiol. 1976, 24, 217.
- [12] K. Morita, N. Hashimoto, K. Matsumura, Takeda Chemical Industry Ltd., Ger. Offen. 2506029, (Cl. C07C), 21.8.1975, Jap. Appl. 7419669, 18.2.1974; vgl. (CA: 1975, 83, 194012n).
- [13] W. H. Strain, Liebigs Ann. Chem. 1932, 499, 40.
- [14] Y. Kikugawa, M. Kuramoto, I. Saito, S.I. Yamada, Chem. Pharm. Bull. 1973, 21, 1914.
- [15] J. Besida, R.F.C. Brown, Austr. J. Chem. 1982, 35, 1385.
- [16] W. R. Thompson, T. J. Henry, J. M. Schwartz, B. N. Khare, C. Sagan, Icarus 1991, 90, 57.
- [17] K. Baumann, Forschungsbericht, Inst. für Org. Chem. ETH, 1986.
- [18] a) P. Kurtz, H. Disselnkötter, Liebigs Ann. Chem. 1972, 764, 69; b) P. Hess, 'Versuche zum Aufbau von Lipiden aus α-Aminonitrilen', Diss. Nr. 8218, ETH Zürich, 1986, S. 128.
- [19] J. Sims, K. N. Houk, J. Am. Chem. Soc. 1973, 95, 5798; R. Huisgen, H. Seidl, I. Brüning, Chem. Ber. 1969, 102, 1102.
- [20] S. Drenkard, J. Ferris, A. Eschenmoser, Helv. Chim. Acta 1990, 73, 1373.
- M.J. Kamlet, L.A. Kaplan, J. Org. Chem. 1957, 22, 576; F. Kröhnke, Liebigs Ann. Chem. 1957, 604, 203;
 R. Bonnett, V.M. Clark, A.R. Todd, J. Chem. Soc. 1959, 2102; G.G. Spence, E.C. Taylor, O. Buchardt, Chem. Rev. 1970, 70, 231; L.M. Tolbert, Acc. Chem. Res. 1986, 19, 268.
- [22] M. Dennstedt, F. Voigtländer, Ber. Dtsch. Chem. Ges. 1894, 27, 476.
- [23] H.A. Potts, G.F. Smith, J. Chem. Soc. 1957, 4018.
- [24] D. Hickey, Forschungsbericht, Inst. für Org. Chem. ETH, 1982/83.
- [25] M. Meier, B. Müller, Ch. Rüchardt, J. Org. Chem. 1987, 52, 648; M. Meier, Ch. Rüchardt, Tetrahedron Lett. 1983, 24, 4671; F. W. Schneider, B.S. Rabinovitch, J. Am. Chem. Soc. 1962, 84, 4215.
- [26] R. Dammel, H. Bock, Z. Naturforsch., B 1987, 42, 810.
- [27] M.T. Nguyen, T.-K. Ha, J. Chem. Soc., Perkin. Trans. 2 1984, 1401; B. Bigot, A. Sevin, A. Devaquet, J. Am. Chem. Soc. 1978, 100, 6924.
- [28] P. Groner, R. Gunde, T.-K. Ha, A. Bauder, Chem. Phys. Lett. 1987, 139, 479.
- [29] H. U. Sieveking, W. Lüttke, Angew. Chem. 1969, 81, 432.
- [30] B. van Baar, W. Koch, C. Lebrilla, J. K. Terlouw, Th. Weiske, H. Schwarz, Angew. Chem. 1986, 98, 834.
- [31] C. Wentrup, H. Briehl, P. Lorencak, U. J. Vogelbacher, H.-W. Winter, A. Maquestiau, R. Flammang, J. Am. Chem. Soc. 1988, 110, 1337.
- [32] M. Rodler, R. D. Brown, P. D. Godfrey, L. M. Tack, Chem. Phys. Lett. 1984, 110, 447.
- [33] T.-K. Ha, M. T. Nguyen, J. Mol. Struct. Theochem. 1982, 4, 355.
- [34] C. Wentrup, J. Oth, unveröffentlicht; Privatmitteilung Prof. Wentrup.
- [35] J. H. Boyer, J. Kooi, J. Am. Chem. Soc. 1976, 98, 1099.
- [36] J. P. Ferris, D. B. Donner und W. Lotz, J. Am. Chem. Soc. 1972, 94, 6968.

- [37] H.G. Viehe, R. Merényi, L. Stella, Z. Janousek, Angew. Chem. 1979, 91, 982; *ibid. Int. Ed.* 1979, 18, 917;
 S. Mignani, M. Beaujean, Z. Janousek, R. Merényi, H.G. Viehe, *Tetrahedron Suppl. No.* 1 1981, 37, 111.
- [38] H. P. Buser, 'Zur Chemie der α -Aminonitrile: γ, δ -Dehydroleucin-nitril', Diss. Nr. 7867, ETH Zürich, 1985.
- [39] J.H. Boyer, J. Dunn, J. Kooi, J. Chem. Soc., Perkin Trans. 1 1975, 1743.
- [40] J. P. Ferris, W. J. Hagan, Tetrahedron 1984, 40, 1093; C. N. Matthews, R. E. Moser, Proc. Nat. Acad. Sci. U. S. A. 1966, 56, 1087; Nature (London) 1967, 215, 1230.
- [41] H. Takeo, M. Sugie, C. Matsumura, Y. Hamada, M. Tsuboi, Chem. Phys. Lett. 1986, 123, 229.
- [42] C. Wentrup, P. Lorencăk, A. Maquestiau, R. Flammang, Chem. Phys. Lett. 1987, 137, 241; P. Lorencăk, G. Raabe, J. Radziszewski, C. Wentrup, J. Chem. Soc., Chem. Commun. 1986, 916.
- [43] J. H. Clemmons, P. G. Jasien, C. E. Dykstra, Mol. Phys. 1983, 48, 631.
- [44] a). J. P. Ferris, L. E. Orgel, J. Am. Chem. Soc. 1966, 88, 3829; b) E. C. Taylor, J. H. Sun, Synthesis 1980, 801;
 c) P. Freeman, *ibid.* 1981, 925; d) U. Trinks, 'Zur Chemie der Aminopyrimidine', Diss. Nr. 8368, ETH Zürich, 1987.
- [45] W. Rüger, A. Eschenmoser, unveröffentlichte Arbeiten.
- [46] C. Strupp, 'Untersuchungen über die nicht-enzymatische Simulation des Biosyntheseweges zu Riboflavin', Diss. Nr. 9832, ETH-Zürich, 1992.
- [47] P.J. Dunn, Postdokotrats-Arbeitsbericht ETH-Zürich, 1988.
- [48] a) K. E. Koch, 'Über strukturelle Zusammenhänge zwischen Blausäure und natürlichen Purinen und Pteridinen', Diss. Nr. 9968, ETH-Zürich, 1992; b) L. Peng, Diplomarbeit, ETH-Zürich, 1989.
- [49] D. Müller, S. Pitsch, A. Kittaka, E. Wagner, C. Wintner, A. Eschenmoser, Helv. Chim. Acta 1990, 73, 1410.
- [50] S. Pitsch, E. Pombo-Villar, A. Eschenmoser, Helv. Chim. Acta 1994, 77, 2251.
- [51] C. Sagan, W. R. Thompson, B. N. Khare, 'Titan: A Laboratory for Prebiological Organic Chemistry', Acc. Chem. Res. 1992, 25, 286.
- [52] M.J. Mintz, C. Walling, Org. Synth., Coll. Vol. 1973, 5, 184.
- [53] U.E. Wiersum, Aldrichim. Acta 1984, 17, 31.
- [54] W.C. Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923.
- [55] K. Grob, G. Grob, J. High Resolut. Chromatogr. Chromatogr. Commun. 1982, 5, 13; K. Grob, 'Making and Manipulating Capillary Columns for Gas Chromatography, Hüthig, Heidelberg, 1986.
- [56] E. Walter, J. Schreiber, E. Zass, A. Eschenmoser, Helv. Chim. Acta 1979, 62, 899.
- [57] C. Moureu, J. Ch. Bongrand, Ann. Chim. 1920, 14, 5, 47; F.A. Miller, D.H. Lemmon, Spectrochim. Acta, Part A 1967, 23, 1415; A.v. Planta, 'Beiträge zur Chemie der α-Aminonitrile', Diss. Nr. 9266, ETH-Zürich, 1990.
- [58] Y. Kikugawa, M. Kuramoto, I. Saito, S.-I. Yamada, Chem. Pharm. Bull. 1973, 21, 1914.
- [59] D. Taub, C.H. Kuo, N.L. Wendler, J. Chem. Soc. (C) 1967, 1558.
- [60] A. Staubli, Diplomarbeit, ETH-Zürich, 1985.
- [61] P. Kurtz, H. Schwarz, H. Disselnkötter, Liebigs Ann. Chem. 1960, 631, 21.
- [62] M. Scholtz, Ber. Dtsch. Chem. Ges. 1912, 45, 734; V. Boekelheide, W. Feely, J. Org. Chem. 1957, 22, 589;
 O. Diels, K. Alder, Liebigs Ann. Chem. 1932, 498, 16, A. E. Tschitschibabin, Ber. Dtsch. Chem. Ges. 1927, 60, 1607, 1616.
- [63] R.E. Schuster, J.E. Scott, J. Casanova, Jr., Org. Synth. 1966, 46, 75; J. Casanova, Jr. R.F. Schuster, N.D. Werner, J. Chem. Soc. 1963, 4280.
- [64] A. Steiger, 'Oligomerisation von Dipeptidnitrilen', Diss. Nr. 8367, ETH Zürich, 1987.
- [65] J.-C. Guillemin, J.-M. Denis, Angew. Chem. Suppl. 1982, 1515; J.-C. Guillemin, J.-M. Denis, M.-C. Lasne, J.-L. Ripoll, Tetrahedron 1988, 44, 4447.
- [66] A.H. Cook, I. Heilbron, A.L. Levy, J. Chem. Soc. 1948, 201.
- [67] Y. Yamada, N. Nagashima, Y. Iwashita, A. Nakamura, I. Kumashiro, Tetrahedron Lett. 1968, 43, 4529.

2250