2008 Vol. 10, No. 21 4903-4906

Palladium-Catalyzed Carbonylation—Decarboxylation of Diethyl(2-iodoaryl)malonates with Imidoyl Chlorides: An Efficient Route to Substituted Isoquinolin-1(2*H*)-ones

Zhaoyan Zheng and Howard Alper*

Centre for Catalysis Research and Innovation, Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada

howard.alper@uottawa.ca

Received August 26, 2008

ABSTRACT

A wide variety of substituted isoquinolin-1(2*H*)-ones were synthesized in reasonable to good yields by the palladium-catalyzed cyclization of diethyl(2-iodoaryl)malonates with imidoyl chlorides and carbon monoxide in tetrahydrofuran. A palladium-catalyzed carbonylation—decarboxylation process may be involved in the one-step synthesis of the isoquinolin-1(2*H*)-ones.

Isoquinolin-1(2*H*)-one derivatives are an important class of heterocyclic compounds with substantial biological activities¹ that can be found in naturally occurring products and synthetic pharmaceuticals such as thalifoline,² dorianine,³ narciclasine,⁴ pancratistain,⁵ and lycoricidine.⁵ In addition, isoquinolin-1(2*H*)-ones are versatile building blocks for the total synthesis of natural alkaloids.⁶ There are a number of approaches to the synthesis of isoquinolin-1(2*H*)-ones reported in the literature including the rearrangement of 2-(2-benzofuranyl)-benzonitriles,⁷ base-promoted condensation reaction of 2-(bromomethyl)-benzonitrile,⁸ transformation of isocoumarins or 3-hydroxyphthalides,⁹ double metalation of arylbenzamides,¹⁰

the cyclization of 2-chlorobenzonitriles with β -ketoesters, ¹¹ intramolecular Diels—Alder reactions, ¹² Wittig reaction, ¹³ as well as photochemical reactions, ¹⁴ etc. Recently, several examples of transition metal-catalyzed routes to isoquinolin-1(2*H*)-ones have appeared in the literature. ^{3,15}

Although some of the methods are effective for the synthesis of isoquinolones, these usually afford the 2- or

^{(1) (}a) Jayaraman, M.; Fox, B. M.; Hollingshead, M.; Kohlhagen, G.; Pommier, Y.; Cushman, M. *J. Med. Chem.* **2000**, *43*, 3688. (b) Zhang, H.; Zembower, D.; Chen, Z. *Bioorg. Med. Chem. Lett.* **1997**, *7*, 2687. (c) Bernan, V. S.; Montenegro, D. A.; Korshalla, J. D.; Maiese, W. M.; Steinberg, D. A.; Greenstein, M. *J. Antibiot.* **1994**, *47*, 1417.

⁽²⁾ Chern, M. S.; Li, W. R. Tetrahedron Lett. 2004, 45, 8323.

⁽³⁾ Glushkov, V. A.; Shklyaev, Y. V. Chem. Heterocycl. Compd. 2001, 37, 663

⁽⁴⁾ Gonzalez, D.; Martinot, T.; Hudlickly, T. Tetrahedron Lett. 1999, 40, 3077

⁽⁵⁾ Thompson, R. C.; Kallmerten, J. J. Org. Chem. 1990, 55, 6076.

^{(6) (}a) Coelho, F.; Veronese, D.; Lopes, E. C. S.; Rossi, R. C. Tetrahedron Lett. 2003, 44, 5731. (b) Heaney, H.; Shuhaibar, K. F. Synlett 1995, 47.

⁽⁷⁾ Gutillaumel, J.; Boccara, N.; Demersemann, P.; Royer, R. J. Chem. Soc., Chem. Commun. 1998, 1604.

⁽⁸⁾ Jagtap, P. G.; Baloglu, E.; Southan, G.; Williams, W.; Roy, A.; Nivorozhkin, A.; Landrau, N.; Desisto, K.; Salzman, A. L.; Szabo, C. *Org. Lett.* **2005**, *7*, 1753.

⁽⁹⁾ Otha, S.; Kimoto, S. Tetrahedron Lett. 1975, 16, 2279.

^{(10) (}a) Fisher, L. E.; Muchowski, J. M.; Clark, R. D. *J. Org. Chem.* **1992**, *57*, 2700. (b) Davis, S. E.; Church, A. C.; Griffith, C. L.; Beam, C. F. *Synth. Commun.* **1997**, *27*, 2961.

⁽¹¹⁾ Snow, R. J.; Butz, T.; Hammach, A.; Kapadia, S.; Morwick, T. M.; Prokopowicz, A. S.; Takahashi, H.; Tan, J. D.; Tschantza, M. A.; Wang, X. J. *Tetrahedron Lett.* **2002**, *43*, 7553.

⁽¹²⁾ Gutierrz, A. J.; Shea, K. J.; Svoboda, J. J. J. Org. Chem. 1989, 54, 4335.

3-substituted target compounds. The introduction of polysubstituents in the isoquinolone ring often requires multistep reactions.

As part of our continuing effort to attain the efficient preparation of different carbonyl-containing heterocycles by palladium-catalyzed cyclocarbonylation, we have synthesized thiochroman-4-ones, ¹⁶ lactones, ¹⁷ 2(5*H*)-furanones, ¹⁸ 1,3-oxazin-4-ones, ¹⁹ 1,3-benzothiazin-2-ones, ²⁰ quinazolin-4(3*H*)-ones, ²¹ and different ring-sized lactams. ²²

Encouraged by these results, we decided to explore the application of Pd-catalyzed carbonylation to the construction of the isoquinolin-1(2H)-one skeleton. Initial studies focused on the Pd-catalyzed cyclocarbonylation of ethyl(2-iodophenyl)acetate and N-(phenyl)benzimidoyl chloride using 3 mol % of Pd(OAc)₂, 13.5 mol % of PPh₃ as the catalyst, and 3 equiv of Et₃N in 8 mL of THF at 400 psi of pressure of carbon monoxide at 120 °C for 24 h. However, the substrates failed to produce any of the desired isoquinolin-1(2H)-one (Scheme 1).

Scheme 1. Carbonylation of *N*-(Phenyl)benzimidoyl Chloride with Ethyl(2-iodophenyl)acetate or Diethyl(2-iodophenyl)malonate

The same reaction using diethyl(2-iodophenyl)malonate instead of ethyl(2-iodophenyl)acetate did produce 2,3,4-trisubstituted isoquinolone **3a** in 21% yield with some recovered starting material and *N*-phenylbenzamide as a byproduct (Scheme 1). The starting materials were consumed completely by extending the reaction time to 48 h, and the

yield of 3a increased to 34% (Table 1, entry 2). An

Table 1. Optimization of the Reaction of Diethyl(2-iodoaryl)malonate with *N*-(Phenyl)benzimidoyl Chloride^a

entry	catalyst system	base	time(h)	CO (psi)	yield (%) ^b
1	Pd(OAc) ₂ /PPh ₃	Et ₃ N	24	400	21
2	Pd(OAc) ₂ /PPh ₃	$\mathrm{Et_{3}N}$	48	400	34
3	Pd(OAc)2/dppb	$\mathrm{Et_{3}N}$	48	400	trace
4	Pd(OAc) ₂ /dppp	$\mathrm{Et_{3}N}$	48	400	trace
5	Pd(OAc)2/dppf	$\mathrm{Et_{3}N}$	48	400	trace
6	$Pd(OAc)_2/(m-tolyl)_3P$	$\mathrm{Et_{3}N}$	48	400	33
7	Pd(OAc) ₂ /Bu ₃ P	$\mathrm{Et_{3}N}$	48	400	ND^c
8	Pd(OAc) ₂ /TDMPP	$\mathrm{Et_{3}N}$	48	400	47
9	Pd(OAc) ₂ /TDMPP	K_2CO3	48	400	41
10	Pd(OAc) ₂ /TDMPP	$\mathrm{Cs_2CO_3}$	48	400	44
11	Pd(OAc) ₂ /TDMPP	$i ext{-} ext{Pr}_2 ext{NEt}$	48	400	53
12	Pd(OAc) ₂ /TDMPP	$i ext{-} ext{Pr}_2 ext{NEt}$	48	200	31
13	PdCl ₂ (PPh ₃)/TDMPP	$i ext{-} ext{Pr}_2 ext{NEt}$	48	400	40
14	Pd ₂ (dba) ₃ / TDMPP	$i\text{-Pr}_2\mathrm{NEt}$	48	400	48

 $[^]a$ Reaction conditions: 1a (1.0 mmol), 2a (1.0 mmol), Pd cat. (0.03 mmol), phosphine ligand (0.135 or 0.07 mmol), base (3.0 mmol), CO 200 or 400 psi, 120 °C, THF (8.0 mL). b Isolated yield. c Not determined: a complex mixture of unidentified compounds was obtained.

interesting feature of this reaction is that the formation of the isoquinolin-1(2*H*)-one is accompanied by CO insertion and an ethyl carboxylate group leaving in a single operational step.

Optimization of the reaction was effected using different conditions, and the results are summarized in Table 1. Entries 2—8 indicated that the choice of phosphine ligand was important for this transformation. When bidentate phosphine ligands were employed (Table 1, entries 3–5), only trace amounts of the desired isoquinolin-1(2H)-ones were detected, while N-phenylbenzamide was obtained as a major product in good yields. Use of the tri-m-tolylphosphine ((m-tolyl)₃P) as ligand afforded 3a in only 33% yield (Table 1, entry 6), while the trialkylphosphine and tributylphosphine gave a complex mixture of products (Table 1, entry 7). Performing the same reaction using the tri(2,6-dimethoxyphenyl)phosphine (TDMPP) as the ligand increased the yield of 3a to 47% (Table 1, entry 8).

The yield of isoquinolin-1(2*H*)-one **3a** was also dependent on the nature of the base. The presence of inorganic bases, such as K₂CO₃ and Cs₂CO₃, gave **3a** in 41% and 44% yield, respectively (Table 1, entries 9 and 10). The more hindered amine base *N*,*N*-diisopropylethylamine (*i*-Pr₂NEt) afforded **3a** in 53% yield with a small amount of *N*-phenylbenzamide

Org. Lett., Vol. 10, No. 21, **2008**

⁽¹³⁾ Epsztajin, J.; Grzelak, R.; Jozwiak, A. Synthesis 1996, 1212.

^{(14) (}a) Guastavino, J. F.; Barolo, S. M.; Rossi, R. A. *Eur. J. Org. Chem.* **2006**, 3898. (b) Griesbeck, A. G.; Hirt, J.; Kramer, W.; Dallakian, P. *Tetrahedron* **1998**, *54*, 3169. (c) Weidner-Wells, M. A.; Oda, K.; Mazzochi, P. H. *Tetrahedron* **1997**, *53*, 3475.

^{(15) (}a) Cherry, K.; Duchene, A.; Thibonnet, J.; Parrain, L.; Abarbri, M. Synthesis 2005, 2349. (b) He, Z.; Yudin, A. K. Org. Lett. 2006, 8, 5892. (c) Kajita, Y.; Matsubara, S.; Kurahashi, T. J. Am. Chem. Soc. 2008, 130, 6058. (d) Hudlicky, T.; Olivo, H. F. J. Am. Chem. Soc. 1992, 114, 9694. (e) Grigg, R.; Sridharan, V.; Xu, L. H. J. Chem. Soc., Chem. Commun. 1995, 1903. (f) Miura, T.; Yamauchi, M.; Murakami, M. Org. Lett. 2008, 10, 3085.

⁽¹⁶⁾ Xiao, W. J.; Alper, H. J. Org. Chem. 1999, 64, 9646.

^{(17) (}a) Cao, H.; Xiao, W. J.; Alper, H. *Adv. Synth. Catal.* **2006**, *348*, 1807. (b) Li, Y.; Alper, H. *Org. Lett.* **2006**, *8*, 5199. (c) El Ali, B.; Okuro, K.; Vasapollo, G.; Alper, H. *J. Am. Chem. Soc.* **1996**, *118*, 4264.

⁽¹⁸⁾ Yu, W. Y.; Alper, H. J. Org. Chem. 1997, 62, 5684.

⁽¹⁹⁾ Larksarp, C.; Alper, H. J. Org. Chem. 1999, 64, 9194.

⁽²⁰⁾ Rescourio, G.; Alper, H. J. Org. Chem. 2008, 73, 1612.

^{(21) (}a) Larksarp, C.; Alper, H. J. Org. Chem. 2000, 65, 2773. (b) Zheng, Z. Y.; Alper, H. Org. Lett. 2008, 10, 829.

^{(22) (}a) Lu, S. M.; Alper, H. *J. Am. Chem. Soc.* **2008**, *130*, 6451. (b) Lu, S. M.; Alper, H. *Chem.—Eur. J.* **2007**, *13*, 5908. (c) Lu, S. M.; Alper, H. *J. Am. Chem. Soc.* **2005**, *127*, 14776.

Table 2. One-Step Synthesis of Substituted Isoquinolones from Diethyl(2-iodophenyl)malonates 1 and Imidoyl Chlorides 2^a

R
$$CO_2Et$$
 + CI R_2 + CO $Pd(OAc)_2/TDMPP$ R
 CO_2Et 1a: R = H
 CO_2Et 2

1b: R = OMe

1 1a	entry	1	2	product 3	yield(%) ^t
2 1a	1	1a		N Ph 3a	53
3 la	2	1a	2h	N 3b	63
4	3	1a	N 2c	N N 3c	60
5 1a	4	la	CI Zd	N Ph	52
6 la $\begin{pmatrix} C \\ Ph \end{pmatrix}$ 2f $\begin{pmatrix} C \\ Ph \end{pmatrix}$ 3f 50 $\begin{pmatrix} C \\ Ph \end{pmatrix}$ 2f $\begin{pmatrix} C \\ Ph \end{pmatrix}$ 3g 42 $\begin{pmatrix} C \\ C \\ C \end{pmatrix}$ 8 la $\begin{pmatrix} C \\ C \\ C \end{pmatrix}$ 2h $\begin{pmatrix} C \\ C \\ C \end{pmatrix}$ 3h 33 $\begin{pmatrix} C \\ C \\ C \end{pmatrix}$ 9 la $\begin{pmatrix} C \\ Ph \\ C \end{pmatrix}$ 2l $\begin{pmatrix} C \\ C \\ C \end{pmatrix}$ 3i 64 $\begin{pmatrix} C \\ C \\ C \end{pmatrix}$ 2l $\begin{pmatrix} C \\ Ph \\ C \end{pmatrix}$ 3j 65 $\begin{pmatrix} C \\ C \\ C \end{pmatrix}$ 10 la $\begin{pmatrix} C \\ Ph \\ C \end{pmatrix}$ 2l $\begin{pmatrix} C \\ Ph \\ C \end{pmatrix}$ 3l $\begin{pmatrix} C \\ C \end{pmatrix}$ 2l $\begin{pmatrix} C \\ C \end{pmatrix}$ 3l	5	1a	C 2e	N Me	48
7 la CI 2g CI CO_2EI CI	6	1a	N CI	Ph 3f	50
8 1a 2h 33 9 1a N 3h 33 9 1a N 3h 3i 64 CI Ph 2i Ph 3i 65 10 1a CI Ph 2a MeO Ph 3k 65 11 1b N Ph 2a MeO Ph 3k 65	7	1a	CI 2g	N Ph	42
9 1a N 2i Ph 3i 64 10 1a CI Ph 2a MeO Ph 3k 65 11 1b N Ph 2a MeO Ph 3k 65 12 1b N Ph 2a MeO Ph 3i 70	8	1a	Cl 2h	N 3h	33
10 la CI ZJ MEO N	9	la	N 2i	N Ph CO ₂ Et	64
11 1b N Ph 2a MeO Ph 3k 65 12 1b N 2a MeO Ph 3k 65	10	la	N	O Ph 3j	65
12 1b $\stackrel{MeO}{\underset{2i}{\bigvee}} \stackrel{MeO}{\underset{Ph}{\bigvee}} \stackrel{3i}{\underset{3i}{\bigvee}} 70$	11	1b	N 2a	MeO Ph	65
	12	1 b	N 2i	MeO N 31	70

 a Diethyl(2-iodophenyl)malonate **1** (1.0 mmol), imidoyl chloride **2** (1.0 mmol), Pd(OAc)₂ (0.03 mmol), TDMPP (0.135 mmol), *i*-Pr₂NEt (3.0 mmol), CO 400 psi, THF (8.0 mL), 120 °C, 48 h. b Ioslated yield.

as a byproduct (Table 1, entry 11). While Pd₂(dba)₃ or PdCl₂(PPh)₃ can be used to catalyze the reaction (Table 1, entries 13 and 14), neither are as effective as Pd(OAc)₂.

Scheme 2. Proposed Mechanism for the Pd-Catalyzed Carbonylation Reaction of 1 and 2

Reducing the pressure of carbon monoxide from 400 to 200 psi resulted in the recovery of some starting material and a lower yield for **3a** (Table 1, entry 12).

On the basis of the above results, reactions were effected using the catalytic system comprised of Pd(OAC)₂ and TDMPP, in *i*-Pr₂NEt as the base and CO (400 psi) at 120 °C in THF for 48 h.

The scope of the present synthetic method was extended to a variety of ethyl(2-iodoaryl)malonates and different imidoyl chlorides. The results are summarized in Table 2.

Reaction of 1a with an imidoyl chloride containing a 4-methoxyl or 4-methyl phenyl group at nitrogen or carbon gave the corresponding 2,3,4-trisubstituted isoquinolin-1(2H)ones 3b-e in 48-63% yields (Table 2, entries 2-5). The reaction tolerates both the electron-donating and -withdrawing substituents. Concerning the latter, the use of imidoyl chlorides having a 4-chlorophenyl group afforded 3f and 3g in 50% and 42% yields, respectively (Table 2, entries 6 and 7). The yield of **3h** was only 33% when the imidoyl chloride bearing two 4-chlorophenyl groups was subjected to the normal reaction conditions. An imidoyl chloride bearing an alkyl substituent gave better product yields. Treatment of **1a** with the imidoyl chloride having a t-butyl or isopropyl group afforded the expected products, 3i and 3j, in 64% and 65% yields (Table 2, entries 9 and 10). The diethyl(2iodophenyl)malonate derivative having electron-donating dimethoxy substituents 1b reacted with 2a to form the corresponding product 3k in 65% yield (Table 2, entry 11). In a similar manner, 1b underwent carbonylation with 2i affording 31 in 70% yield (Table 2, entry 12).

A possible reaction mechanism for the formation of isoquinolin-1(2H)-ones **3** is outlined in Scheme 2. It is conceivable that an imidoyl chloride reacts with diethyl(2-iodoaryl)malonate in the presence of a base to generate intermediate **4**. Oxidative addition of **4** to the in situ

Org. Lett., Vol. 10, No. 21, 2008

generated palladium(0) species²³ can lead to the arylpalladium complex **5**. Insertion of carbon monoxide into the aryl carbon—palladium bond of **5** would afford the aroylpalladium iodide complex **6**, and the imine nitrogen then attacks the acylpalladium to form a seven-membered palladacyclic ammonium salt **7**.²⁴ Reductive elimination of **7** may lead to the isoquinolone salt **8** and regenerate the palladium(0) species. The salt **8** subsequently undergoes base-induced decarboalkoxylation to afford isoquinolin-1(2*H*)-one **3**.

In conclusion, we have developed a novel and effective approach for the one-step synthesis of polysubstituted

isoquinolin-1(2*H*)-ones. The reaction is compatible with a variety of functional groups and affords the heterocycles in quite good yields. In addition, the present methodology demonstrates the viability of the Pd-catalyzed cyclocarbonylation—decarboxylation pathway.

Acknowledgment. We are grateful to the Natural Sciences and Engineering Research Council of Canada (NSERC) for support of this research.

Supporting Information Available: Experimental procedures, characterization data, and copies of ¹H and ¹³C NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

OL801991M

4906 Org. Lett., Vol. 10, No. 21, 2008

⁽²³⁾ MaCrindle, R.; Ferguson, G.; Arsenault, G. J.; McAlees, A. J.; Stephenson, D. K. J. Chem. Res., Synop. 1984, 360.

⁽²⁴⁾ Roesch, K. R.; Zhang, H. M.; Larock, R. C. J. Org. Chem. 2001, 66, 8042