LETTERS 2005 Vol. 7, No. 24 5437–5440

ORGANIC

Intramolecular Alkyne Hydroalkoxylation and Hydroamination Catalyzed by Iridium Hydrides

Xingwei Li, Anthony R. Chianese, Tiffany Vogel, and Robert H. Crabtree*

Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107

robert.crabtree@yale.edu

Received September 11, 2005

ABSTRACT

Iridium(III) hydrides prove to be air-stable active catalysts for intramolecular hydroalkoxylation and hydroamination of internal alkynes with proximate nucleophiles. The cyclization follows highly selective 6-endo-dig regiochemistry when regioselectivity is an issue.

When bound to transition metals, alkynes can be activated for attack by a variety of nucleophiles, including amines,¹ alcohols,² water,³ halides,⁴ nitro groups,^{5,6} imines,⁷ carboxylic acids,⁸ phenols,⁹ carbonyl groups,¹⁰ keto esters,¹¹ enol ethers,¹² and hemiacetals generated in situ.¹³ Binding to Lewis acids or electrophiles can give similar chemistry.^{13a,14} Catalytic applications with various metals have been reported; intramolecular examples are particularly useful in giving heterocycles. Metal-catalyzed hydroamination of alkynes has wide synthetic applications.¹⁵

Iridium-mediated activation of alkynes toward nucleophilic attack is uncommon,¹⁶ especially for weak nucleophiles such as esters or nitro compounds.^{3,17} We recently reported a stoichiometric intramolecular nitro oxygen transfer to the $C \equiv C$ bond of o-RC $\equiv CC_6H_4NO_2$ upon coordination to cationic iridium hydrides and proposed electrophilic activation of the alkynes on binding to Ir(III).⁶ Strong product binding inhibited catalysis in this case. Moving to nucleophiles stronger than the nitro group, we now report *catalytic* intramolecular hydroamination and hydroalkoxylation of

^{(1) (}a) Sakai, N.; Annaka, K.; Konakahara, T. *Org. Lett.* 2004, *6*, 1527.
(b) Zhang, H.-C.; Ye, H.; Moretto, A. F.; Brumfield, K. K.; Maryanoff, B. E. *Org. Lett.* 2000, *2*, 89.

^{(2) (}a) Gabriele, B.; Salerno, G.; Fazio, A.; Pittelli, R. *Tetrahedron* **2003**, 59, 6251. (b) Kadota, I.; Lutete, L. M.; Shibuya, A.; Yamamoto, Y. *Tetrahedron Lett.* **2001**, *42*, 6207. (c) Nakamura, H.; Ohtaka, M.; Yamamoto, Y. *Tetrahedron Lett.* **2002**, *43*, 7631.

⁽³⁾ Ogo, S.; Uehara, K.; Abura, T.; Watanabe, Y.; Fukuzumi, S. J. Am. Chem. Soc. 2004, 126, 16520.

⁽⁴⁾ Wang, Z.; Lu, X. Tetrahedron Lett. 1997, 38, 5213.

⁽⁵⁾ Asao, N.; Sato, K.; Yamamoto, Y. *Tetrahedron Lett.* **2003**, *44*, 5675. (6) Li, X.; Incarvito, C. D.; Vogel, T.; Crabtree, R. H. *Organometallics* **2005**, *24*, 3066.

^{(7) (}a) Dai, G.; Larock, R. C. Org. Lett. 2001, 3, 4035. (b) Roesch, K. R.; Larock, R. C. J. Org. Chem. 2002, 67, 86.

^{(8) (}a) Hua, R.; Tian, X. J. Org. Chem. 2004, 69, 5782. (b) Sashida, H.; Kawamukai, A. Synthesis 1999, 1145.

^{(9) (}a) Nan, Y.; Miao, H.; Yang, Z. Org. Lett. **2000**, *2*, 297. (b) Hu, Y.; Yang, Z. Org. Lett. **2001**, *3*, 1387.

^{(10) (}a) Asao, N.; Aikawa, H.; Yamamoto, Y. J. Am. Chem. Soc. 2004, 126, 7458. (b) Asao, N.; Takahashi, K.; Lee, S.; Kasahara, T.; Yamamoto, Y. J. Am. Chem. Soc. 2002, 124, 12650. (c) Iwasawa, N.; Shido, M.; Kusama, H. J. Am. Chem. Soc. 2001, 123, 5814. (d) Jiang, D.; Herndon, J. W. Org. Lett. 2000, 2, 1267. (e) Kusama, H.; Funami, H.; Takaya, J.; Iwasawa, N. Org. Lett. 2004, 6, 605.

⁽¹¹⁾ Kennedy-Smith, J. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 4526.

^{(12) (}a) Sherry, B. D.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 15978.
(b) Maeyama, K.; Iwasawa, N. J. Am. Chem. Soc. 1998, 120, 1928.

^{(13) (}a) Asao, N.; Nogami, T.; Takahashi, K.; Yamamoto, Y. J. Am. Chem. Soc. 2002, 124, 764. (b) Patil, N. T.; Yamamoto, Y. J. Org. Chem. 2004, 69, 5139.

^{(14) (}a) Lewis Acids in Organic Synthesis; Yamamoto, H., Ed.; Wiley-VCH: Weinheim, 2000; Vols. 1 and 2. (b) Asao, N.; Aikawa, H.; Yamamoto, Y. J. Am. Chem. Soc. 2004, 126, 7458. (c) Yue, D.; Cà, N. D.; Larock, R. C. Org. Lett. 2004, 6, 1581. (d) Huang, Q.; Hunter, J. A.; Larock, R. C. J. Org. Chem. 2002, 67, 3437. (e) Barluenga, J.; Vázquez-villa, H.; Ballesteros, A.; González, J. M. Org. Lett. 2003, 5, 4121. (f) Barluenga, J.; Vázquez-villa, H.; Ballesteros, A.; González, J. M. J. Am. Chem. Soc. 2003, 125, 9028.

^{(15) (}a) Beller, M.; Seayad, J.; Tillack, A.; Jiao, H. Angew. Chem., Int. Ed. 2004, 43, 3368. (b) Müller, T. E.; Beller, M. Chem. Rev. 1998, 98, 675. (c) Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. Rev. 2004, 104, 3079.

⁽¹⁶⁾ Genin, E.; Antoniotti, S.; Michelet, V.; Genêt, J.-P. Angew. Chem., Int. Ed. 2005, 44, 4949.

internal alkynes using closely related hydridoiridium catalysts. The reactions even proceed in undistilled solvents, without exclusion of air and water. The catalytic process is limited to internal alkynes, as terminal alkynes rearrange to vinylidenes, which are rapidly trapped by pendant nucleophiles to afford highly stable Fischer carbene complexes stoichiometrically.¹⁸

The iridium hydride catalysts (1-5, Figure 1) are obtained by a previously described cycloiridation reaction.¹⁹ The

Figure 1. Hydridoiridium complexes screened for cyclization of 6.

complexes are stable to air and moisture in both the solid form and in solution. These complexes were initially studied for the cyclization of **6** (eq 1). Each complex is an active catalyst for selective conversion of the starting alcohol to the isochromene **7** by 6-*endo-dig* cyclization, and screening revealed a reactivity order: $1 > 2 > 3 \ge 4 > 5$. [IrH₂(acetone)₂(PPh₃)₂]SbF₆ also catalyzes the same cyclization, but the reaction is not as clean (80 °C, full conversion, 80% NMR yield). We therefore chose **1** as a catalyst for further studies.

Various 2-alkynylbenzyl alcohols o-RC \equiv C(C₆H₄)CH₂OH undergo regioselective cyclization with 4 mol % loading of **1** (Table 1). For **6** (R = ⁿPr), the starting material was fully converted to the corresponding isochromene **7** in high yield (94% NMR; 77% isolated), slightly better than that reported with PdI₂-KI as catalyst.^{2a} For **8** (R = Ph), the starting material was also fully converted, but the corresponding

⁽¹⁹⁾ Li, X.; Chen, P.; Faller, J. W.; Crabtree, R. H. Organometallics 2005, 24, 4810.

5438

Table 1.	Cyclization	of Orth	o-Substituted	Internal	Alkvnes
I able II	Cyclibation	or orun	o buobilitatea	meerman	1 may neo

entry	substrate		product		loading (%)	conditions	yield (%) ^e
1	ОН	6		7	4	80 °C, 2 h ^b	77
2	ОН Рh	8	O Ph	9	3	85 °C, 2 h ^b	70
3	ОН	10		11	4	60 ^o C, 5 h ^b	85
	O	Н		12	2		
4	ОН	13		14	4	75 °C, 3 h ^b	69
5	ОН	15		16	3	rt, 14 h ^c	87
6	OH	17	O Ph	18	3	110 °C, 2 h ^d	72
7	СООН	19		20	3	75 °C, 1 h ^b	89
8	COOH	21	O O Ph	22	3	75 °C, 1 h ^b	91
9	NH ₂	23	HN NO	24	1	35 °C, 1 h ^c	92
10	NH ₂ Ph	25	H N Ph	26	1	35 °C, 1 h ^c	93
11	NHPh	27	Ph N	28	0.5	25 °C, 2 h ^c	96
12	NHPh	29			8	85 °C, 12 h ^b	0
13	OH	30			5	85 °C, 12 h ^b	0

^a 1 as the catalyst. ^b CHCl₃. ^c CH₂Cl₂. ^d PhMe. ^e Isolated yields.

isochromene **9** was observed in only 70% NMR yield, together with unidentified decomposition products. Cyclization of **8** has been reported under basic conditions using NaOH,²⁰ KH,²⁰ and TBAF²¹ or a Pd catalyst,^{2a} but with only 5-*exo-dig*^{20,21} or poor regioselectivity.^{2a} In the present work,

^{(17) (}a) Field, L. D.; Messerle, B. A.; Wren, S. L. Organometallics 2003, 22, 4393. (b) Burling, S.; Field, L. D.; Messerle, B. A.; Turner, P. Organometallics 2004, 23, 1714.

⁽¹⁸⁾ Li, X.; Vogel, T.; Incarvito, T.; Crabtree, R. H. Organometallics **2005**, *24*, 62.

⁽²⁰⁾ Weingarten, M. D.; Padwa, A. *Tetrahedron Lett.* **1995**, *36*, 4717.
(21) Hiroya, K.; Jouka, R.; Kameda, M.; Yasuhara, A.; Sakamoto, T. *Tetrahedron* **2001**, *57*, 9697.

we consistently obtain 6-*endo* regiochemistry for both R = alkyl and aryl groups. Cyclization of **10**, having two OH groups, gives the two regioisomeric spiroacetals **11** and **12** in a ratio of 11:1, presumably by nucleophilic addition of the pendant $-CH_2CH_2CH_2OH$ group to an isochromene or benzofuran intermediate. Analogously, **12** cyclizes to spiroacetal **13** much more efficiently than in a previous route.²² Alcohol **30** failed to cyclize (CDCl₃, 85 °C, 12 h), however.

Similarly, 2-alkynylphenols [RC \equiv C(C₆H₄)OH] undergo cyclization to give benzofurans, where no regiochemical complication applies. Compound **15** cyclizes cleanly (91% NMR yield) at room temperature with 3% loading of **1**. The cyclization of **17** is more difficult, but catalyst **1** efficiently gives the benzofuran **18** in 72% yield in refluxing toluene. Previously reported methods for the cyclization of 2-alky-nylphenols include strong bases,^{23a,b} Lewis aicds,^{23c} or palladium catalysis.⁹

Although the cyclization of 2-alkynylbenzoic acids o-RC \equiv C(C₆H₄)COOH can be catalyzed by strong acids, palladium, or silver compounds, the previously obtained products are often mixtures from both 6-*endo-dig* and 5-*exo-dig* pathways.^{8b,24} Here, for both R = ⁿPr (**19**) and Ph (**21**), we observed only the isocoumarins **20** and **22**, respectively, from selective 6-*endo-dig* cyclization, in high isolated yields.

The cyclization (intramolecular hydroamination) of *o*-alkynylanilines often involves palladium catalysts.^{1,25} A basepromoted cyclization using 'BuOK or KH has also been reported.^{23a,b} Hydride **1** is a highly active catalyst to convert these substrates nearly quantitatively to indoles under mild conditions (rt or 35 °C). The aniline substrates **23** and **25** both give nearly quantitative yield of the corresponding indoles, and cyclization of the diarylamine **27** to the indole **28** was achieved with even lower catalyst loading (0.5 mol %). Surprisingly, the cyclization of **29** failed, even with 8% loading of **1** at 85 °C.

The rarity both of iridium complexes and of metal hydrides as hydroamination catalysts led us to make some preliminary mechanistic observations.¹⁶ A mechanism involving aminoiridation of the alkyne seems unlikely, as only 4-*exo* cyclization is feasible, and the observed 5-*endo* regioselectivity would require subsequent rearrangements. To determine if the Ir-*H* was directly involved, we prepared **1-d**₈, containing Ir-D, by reaction (acetone, 65 °C, 5 h) of acetophenone-*d*₈ with [IrH₂(acetone)₂(PPh₃)₂]SbF₆ and an excess (20 equiv) of *tert*-butylethylene as a hydrogen acceptor. By ¹H NMR spectroscopy the deuterium content of Ir-D was 94%. The cyclization of 23 catalyzed by 10 mol % 1- d_8 (with 94% Ir-D) in CD₂Cl₂ was monitored by ¹H NMR spectroscopy at -10 °C. All resonances for 24 maintain the same $(\pm 4\%)$ integration throughout, indicating essentially no deuterium incorporation.²⁶ Meanwhile, at no point was there any change $(\pm 4\%)$ in integration observed for the residual Ir-H signal and for the proton residue of the acetophenone backbone. Even assuming an error of 10% given the weak signal for residual Ir-H, the maximum hydrogen incorporation into the iridium center can therefore be reliably estimated to be <1% (10% error \times 6% Ir-H) with respect to total catalyst (Ir-D + Ir-H) and <0.1% with respect to substrate. If a mechanism involving initial insertion of the alkyne into Ir-H were operative, significant deuterium incorporation at the 3-position of 24 would be expected at low conversion, coupled with replacement of Ir-D by Ir-H, which would be the highest at full conversion. As this was not observed, a mechanism involving initial insertion can be ruled out. Similar results were observed for substrate 27 (-35 °C). Given this result, the most straightforward mechanism involves electrophilic activation of the alkyne toward nucleophilic attack by binding to the Ir(III) center, followed by direct selective protonolysis of the Ir-C (indole) bond (Scheme 1).

The cyclization reactions of **23** and **27**, observed at low temperature with 10% catalyst loading, showed surprisingly

⁽²²⁾ Fugami, K.; Hagiwara, N.; Okeda, T.; Masanori, K. Chem. Lett. 1998, 81.

^{(23) (}a) Koradin, C.; Dohle, W.; Rodriguez, A. L.; Schmid, B.; Knochel,
P. *Tetrahedron* 2003, *59*, 1571. (b) Rodriguez, A. L.; Koradin, C.; Dohle,
W.; Knochel, P. *Angew. Chem., Int. Ed.* 2000, *39*, 2488. (c) Arcadi, A.;
Cacchi, S.; Fabrizi, G.; Marinelli, F.; Moro, L. *Synlett* 1999, 1432.

^{(24) (}a) Bellina, F.; Ciucci, D.; Vergamini, P.; Rossi, R. *Tetrahedron* **2000**, *56*, 2533. (b) Mukhopadhyay, R.; Kundu, N. G. *Tetrahedron* **2001**, *57*, 9475.

^{(25) (}a) Patil, N. T.; Pahadi, N. K.; Yamamoto, Y. *Tetrahedron Lett.* **2005**, *46*, 2101. (b) Müller, T. E.; Berger, M.; Grosche, M.; Herdtweck, E.; Schmidtchen, F. P. *Organometallics* **2001**, *20*, 4384. (c) Iritani, K.; Matsubara, S.; Utimoto, K. *Tetrahedron Lett.* **1988**, *29*, 1799. (d) Rudisill, D. E.; Stille, J. K. J. Org. Chem. **1989**, *54*, 5856. (e) Yu, M. S.; de Leon, L. L.; McGuire, M. A.; Botha, G. *Tetrahedron Lett.* **1998**, *39*, 9347.

⁽²⁶⁾ At early reaction times, big [Ir-D]/[24] ratios makes deuterium incorporation into 24 easily seen by ¹H NMR spectroscopy given appropriate precautions. See: Burk, M. J.; Crabtree, R. H. *J. Am. Chem. Soc.* 1987, 109, 8025.

different behavior. For 23, the catalyst resting state is assigned by ¹H and ¹³C NMR as the N-bound substrate complex 31 (Scheme 1). In a kinetic experiment, *zero-order* consumption of substrate was observed for the majority of the reaction (Figure 2). This is consistent²⁷ with reversible

Figure 2. Kinetic data for the cyclization of 23 (open symbols) and 27 (closed symbols), catalyzed by 10 mol % 1. For 23, the linear portion of the graph (open circles) was used for linear regression analysis.

dissociation of 23 from 31 to generate the reactive fivecoordinate intermediate 32. Catalysis may then proceed by re-coordination of 23 to 32 through the C=C bond to give 33, nucleophilic attack on the alkyne moiety to generate 34, and direct protonolysis of the Ir–C bond to complete the cycle (Scheme 1). Coordination of 23 through nitrogen thus leads to unproductive substrate binding^{25b,28} inhibiting catalytic turnover. Although this kinetic result is also consistent with saturation behavior, we consider a direct reaction of the amine complex to be unlikely (see above).

For the cyclization of **27**, the observed catalyst resting state is now the acetone complex **1**, and the kinetics is first order with respect to the substrate (Figure 2). We propose a mechanism analogous to that for **23**, except that here the secondary amine **27** is a weaker N-donor and it does not inhibit the catalytic reaction by binding to iridium. The firstorder kinetic behavior is consistent²⁷ with rate-determining reaction of **27** with a steady-state concentration of the reactive iridium complex **32**, generated by reversible dissociation of acetone from the resting complex **1**.

To provide support for the hypothesis of unproductive substrate binding in the cyclization of **23**, a competition experiment was performed with **23** and **27** both present. The kinetic plots are shown in Figure 3. As expected, the cyclization of **23** was unaffected by the presence of **27**. The cyclization of **27**, however, behaved consistently²⁷ with a model of *decreasing inhibition* as substrate **23** is consumed,

Figure 3. Kinetic data for the *competitive* cyclization of **23** (open symbols) and **27** (closed symbols), catalyzed by 10 mol % of **1**. For **23**, the linear portion of the graph (open circles) was used for linear regression analysis. For **27**, the non-zero portion of the graph (closed circles) was used for curve-fitting.

which strongly supports fast reversible dissociation of **23** from **31** on the time scale of the cyclization reaction. The consumption of **27** fits a curve defined by eq 2, where *A* is derived from the linear fit of the consumption of **23**.²⁷ Interestingly, the exponent in eq 2, k_{23}/k_{27} , corresponds to the ratio of intrinsic turnover frequencies for the consumption of **23** vs **27**, factoring out the unproductive binding by **23**.²⁷ The observed value of ca. 4.0 for k_{23}/k_{27} indicates that **27** is consumed four times faster than **23**. This is inconsistent with a simple rate-limiting nucleophilic attack of NHR on C=C, as **27** is less nucleophilic, but may be explained by the increased NH acidity of **27** (as in a concerted nucleophilic attack/proton-transfer pathway).

$$[27] = [27]_{\text{init}}(1 - At)^{k_{27}/k_{23}}$$
(2)

In summary, we report a novel class of hydridoiridium-(III) catalysts for the intramolecular hydroalkoxylation and hydroamination of ortho-substituted aryl alkynes, using a variety of tethered nucleophiles. When regioselectivity is an issue, highly selective 6-endo-dig cyclization is observed. Mechanistic experiments indicate that the reaction likely proceeds via electrophilic activation of the alkyne toward nucleophilic attack, followed by direct protonolysis of the resulting Ir–C bond. Moderately basic amines are shown to bind to iridium though nitrogen, providing a well-characterized example of unproductive substrate binding in organometallic catalysis.

Acknowledgment. We thank the U.S. DOE and the Johnson Matthey Co. for support and Leah Appelhans for assistance.

Supporting Information Available: Syntheses, derivation of eq 2, NMR spectra, and kinetics data. This material is available free of charge via the Internet at http://pubs.acs.org.

OL052186I

⁽²⁷⁾ See the Supporting Information.

⁽²⁸⁾ Pirrung, M. C.; Liu, H.; Morehead, A. T. J. Am. Chem. Soc. 2002, 124, 1014.