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ABSTRACT: A visible-light photoredox-catalyzed formal [5 + 1] cyclo-
addition of N-tosyl vinylaziridines with difluoroalkyl halides as unique C1
synthons was developed. The procedure provides an efficient and practical
method to synthesize diverse pyridines in moderate to good yields. The
reaction underwent a radical-initiated kinetically controlled ring-opening of
vinylaziridines and involved a key α,β-unsaturated imine intermediate,
followed by an E2 elimination, a 6π electrocyclization, and defluorinated
aromatization.

Cycloaddition reactions have received extensive attention
in organic synthesis, because they provide an efficient

and practical method for the construction of versatile
carbocycles and nitrogen-containing heterocycles. Over the
last few decades, extensive research has focused on the
development of cycloaddition methodologies to synthesize
various pyridines that are beneficial scaffolds for natural
products, agrochemicals, and pharmaceuticals.1 Compared to
classic condensation protocols, which are available for the
construction of pyridines, many elegant cycloaddition strat-
egies, including [4 + 2],2 [3 + 3],3 [2 + 2 + 2],4 and [3 + 2 +
1],5 have also been developed and reported. Despite these,
novel complementary cycloaddition approaches for the
preparation of diversely substituted pyridines are still highly
desirable.
Vinylaziridines are versatile building blocks in organic

synthesis;6 they have multiple reactive sites and are prone to
various ring opening functionalization, because of the presence
of the vinyl moiety and the highly strained aziridine scaffold.
By utilizing nucleophilic ring-opening and metal-catalyzed
ring-opening strategies, the synthesis of diverse N-heterocycles
from vinylaziridines through [3 + 1],7 [3 + 2],8 [3 + 3],9 [3 +
4],10 and [5 + 2]11 cycloadditions with different synthons is
well-known. In sharp contrast, radical initiated selective ring-
opening functionalization12 of aziridines via nitrogen-centered
radical13−16 remains underdeveloped. Recently, Maruoka
developed the thiyl-radical-catalyzed [3 + 2] cyclization ring
opening of vinylaziridines and alkenes.14 Remarkably, identical
transformations were also achieved through nitrogen radical
catalysis by Chen.15 Therefore, developing new radical
reactivities and novel [5 + 1]17 cycloaddition reactions of
vinylaziridines is highly desired. Inspired by difluoroalkyl
halides18 as a unique C1 synthon,19 we wished to develop a
visible-light, photoredox-catalyzed, formal [5 + 1] cyclo-
addition of N-tosyl vinylaziridines with difluoroalkyl halides

to synthesize various pyridines via a radical-mediated ring-
opening functionalization strategy (Scheme 1).20 To the best

of our knowledge, this transformation was the first [5 + 1]
cycloaddition reaction of vinylaziridines, first synthesis of
pyridines via a formal [5 + 1]-type reaction, and first
photoredox-catalyzed difluoroalkyl halides as C1 synthons.
We began our investigation with 2-(1-phenylvinyl)-1-

tosylaziridine 1a and ethyl 2-bromo-2,2-difluoroacetate 2a as
the model reaction; selected results are summarized in Table 1.
After an extensive screening of reaction parameters, we isolated
the desired product 3aa in 85% yield using fac-Ir(ppy)3 as the
photocatalyst in the presence of diisopropylethylamine
(DIPEA) in DMSO under blue LEDs. Considering that
difluoroalkyl radicals are more readily generated in the
presence of bases and silver salts,21 we discovered that
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Scheme 1. Cycloaddition Reactions of Vinylaziridines
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DIPEA was the most effective adjuvant (Table 1, entries 1−7).
The photocatalyst choice was critical in the transformation.
For example, 3aa was obtained in 50% yield using Ru(bpy)3Cl2
instead of fac-Ir(ppy)3; however, no product 3aa was observed
using Eosin Y as the photocatalyst (Table 1, entries 8 and 9).
Solvent screening revealed that the reaction proceeded
smoothly in other solvents, such as dimethylfluoride (DMF),
acetonitrile (MeCN), dichloroethane (DCE) (Table 1, entries
10−12). However, a messy reaction was found using CHCl3 as
the solvent (Table 1, entry 13). The byproduct 3-phenyl-1-
tosyl-2,5-dihydro-1H-pyrrole, which is generated from the self-
cyclization of 1a, was observed obviously when the Hantzsch
ester or sodium ascorbate was added (Table 1, entries 14 and
15). Notably, the yield of 3aa declined to 40% when using 0.6
equiv of DIPEA (Table 1, entry 16). To our delight, 3aa′ was
observed in the crude 1H NMR without DIPEA (Table 1,
entry 17). In addition, conducting the reaction in air resulted
in a yield of only 40% for 3aa (Table 1, entry 18). As expected,
control experiments verified the necessity of light irradiation
and the photocatalyst for the current transformation (Table 1,
entries 19 and 20).
Upon optimizing the reaction conditions, the scope and

limitations of this reaction, with respect to N-tosyl vinyl-
aziridines, were investigated with ethyl 2-bromo-2,2-difluor-
oacetate 2a (Scheme 2). To our delight, a series of
representative aryl N-tosyl vinylaziridines (at the R1 site)
containing either electron-donating (OMe and Me) or
electron-withdrawing (F, Cl, Br, and Ph) groups all worked

well with 2a, affording the desired indolin-2-ones (3aa−3ga)
in yields of 65%−85%. However, the sterically hindered 1h
could also be employed as a substrate, only giving the desired
product 3ha in 35% yield. Notably, disubstituted vinyl-
aziridines also proved to be suitable for this transformation,
with 1h giving the desired 3ia product in 65% yield, while the
thienyl-substituted vinylaziridine 1j also worked well in the
reaction, affording the desired product 3ja in a good yield.
Expanding the scope of N-tosyl vinylaziridines from aryl to
alkyl groups (R1 = Me) only gave the corresponding product
3ka in 28% yield. Unfortunately, the use of 1-tosyl-2-
vinylaziridine 1l (R1 = H) resulted in no reaction product
being observed.22 Besides, N-tosyl vinylaziridine 1m (R3 = Ph)
and internal olefins (1n and 1o) were not suitable for this
system.
Encouraged by the above results, we investigated the scope

of difluoroalkyl halides with 2-(1-phenylvinyl)-1-tosylaziridine
1a. As shown in Scheme 3, this catalytic system showed a
broad substrate scope and high functional group tolerance
concerning difluoroalkyl halides. As expected, 2-iodide-2,2-
difluoroacetate and methyl 2-bromo-2,2-difluoroacetate also
worked well, yielding the desired 3aa and 3ab in 88% and 60%
yields, respectively. Various types of bromodifluoroacetamide
derivatives were examined, affording the corresponding
pyridines (3ac−3am) in yields of 41%−95%. Unfortunately,
the reactions of N-tosyl vinylaziridine 1a and difluoroalkyl
bromides (R = PhCO, EtCO) does not proceed under
standard conditions. Significantly, bromodifluoroacetamide
amino acids can serve as versatile building blocks for diversified
transformations, giving the desired pyridines (3an−3ar) in
yields of 44%−81%. Bromodifluorooxadiazole also worked
well, yielding the desired 3as in 82% yield, and using
dibromofluoromethane instead of difluoroalkyl halides, the
desired pyridine 3at was obtained in 45% yield. When N-aryl

Table 1. Reaction Optimizationa

entry variation from the standard conditions yield (%)

1 standard conditions 88 (85b)
2 TMEDA instead of DIPEA 42
3 K2CO3 instead of DIPEA 46
4 K3PO4 instead of DIPEA 55
5 NaOAc instead of DIPEA 60
6 AgF instead of DIPEA 53
7 Ag2CO3 instead of DIPEA 46
8 Ru(bpy)3Cl2 instead of fac-Ir(ppy)3 50
9 eosin instead of fac-Ir(ppy)3 NDc

10 DMF instead of DMSO 52
11 MeCN instead of DMSO 49
12 DCE instead of DMSO 52
13 CHCl3 instead of DMSO messy
14 addition of 1 equiv of Hantzsch ester NDc,d

15 addition of 1 equiv of sodium ascorbate 15d

16 0.6 equiv DIPEA 40
17 without DIPEA NDc,e

18 in air 40
19 without fac-Ir(ppy)3 trace
20 in darkness NRf

aReaction conditions: 1a (0.2 mmol), 2a (0.24 mmol), fac-Ir(ppy)3
(1 mol %), DIPEA (0.24 mmol), solvent (2 mL), blue LEDs, Ar, rt,
12 h. Yields were determined by 1H NMR spectroscopy using 1,3,5-
trimethoxybenzene as the internal standard. bYield of the isolated
product after column chromatography. cND = none detected. dSelf-
cyclization product of 1a was observed. eThe intermediate 3aa′ was
observed in the crude 1H NMR. fNR = no reaction.

Scheme 2. Scope and Limitation of N-Tosyl Vinylaziridinesa

aStandard conditions: 1 (0.2 mmol), 2a (0.24 mmol), fac-Ir(ppy)3 (1
mol %), DIPEA (0.24 mmol), DMSO (2 mL), blue LEDs, Ar, rt, 12 h.
Isolated yields after column chromatography.
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chlorodifluoromethyl alkynyl ketoimines were used, the
desired product 3au was obtained in 58% yield. The structure
was unambiguously confirmed by X-ray diffraction (XRD)
(CCDC No. 2025029).
To elucidate the reaction mechanism, essential radical

trapping experiments with substrates 1a and 2a were
conducted as shown in Scheme 4. The reaction stopped
completely when 2,2,6,6-tetramethylpiperidinooxy (TEMPO)

was added into the model reaction (see eq 1 in Scheme 4).
Only trace amounts of 3aa were observed using ethene-1,1-
diyldibenzene instead of TEMPO. Also, the adduct 4 of
difluoroalkyl radical and ethene-1,1-diyldibenzene were
obtained in 28% yield (see eq 2 in Scheme 4). Different
from 2-(1-phenylvinyl)-1-tosylaziridine 1a, the classic radical
clock experiment revealed the corresponding 5 was obtained in
18% yield under standard conditions (see eq 3 in Scheme 4).23

These results suggested that •CF2CO2Et may be involved
during the reaction.
To gain further insight into the reaction mechanism,

additional control experiments were conducted (see Scheme
5). Fortunately, a key intermediate 3aa′ (although not stable)

was observed in the crude 1H NMR and LCMS under standard
conditions without DIPEA (see eq 1 in Scheme 5),24 and 3aa′
further transformed to 3aa in 80% yield in the presence of
DIPEA in a one pot, two-step process (see eq 2 in Scheme 5).
These two results undoubtedly demonstrated that the
generation of pyridine 3aa involved the 3aa′ intermediate. In
addition, using vinyl epoxide 6 instead of 1a, the product 7 was
obtained in 40% yield under standard conditions without
DIPEA (see eq 3 in Scheme 5).
Based on the above results, a proposed mechanism is

depicted with 2-(1-phenylvinyl)-1-tosylaziridine 1a and ethyl
2-bromo-2,2-difluoroacetate 2a as the standard substrates (see
Scheme 6).25 Initially, •CF2CO2Et was generated from 2a with
the assistance of a photoexcited *IrIII catalyst, which was then
oxidized to form an IrIV catalyst. The electrophilic •CF2CO2Et
then reacted with 1a to form the carbon radical M1, which
rapidly undergoes selective ring-opening, because of the ring
strain of aziridine. C−N bond cleavage formed a nitrogen
radicalM2 (Path A); alternatively, C−C bond cleavage26 could
form a nitrogen-stabilized carbon radical M2′ (Path B). It is
well-known that the carbon radical is more stable than the
nitrogen radical, the formation of carbon radicalM2′ should be
thermodynamically favored. However, based on the bond
dissociation energy (BDE) of the C−C bond (81 kcal/mol),
relative to the C−N bond (66 kcal/mol), the formation of
nitrogen radical M2 was kinetically favored.27 Subsequently,
M2 could donate an electron to IrIV to regenerate the IrIII

catalyst for the next catalytic cycle,28 giving an α,β-unsaturated
imine 3aa′ via deprotonation. Alternatively, M2 could be easily
reduced to M3′ (Path C), then underwent an intramolecular
cyclization to give M4′, which could also transform to the final
product 3aa. Based on the control experiments (Scheme 5)
and Stern−Volmer experiments (see the Supporting Informa-

Scheme 3. Scope of Difluoroalkyl Halidesa

aStandard conditions: 1a (0.2 mmol), 2 (0.24 mmol), fac-Ir(ppy)3 (1
mol %), DIPEA (0.24 mmol), DMSO (2 mL), blue LEDs, Ar, rt, 12 h.
Isolated yields after column chromatography. b3ai was obtained in
86% yield on a 2 mmol scale. cA quantity of 2 equiv of BrCF2R was
used, 48 h.

Scheme 4. Radical Trapping Experiments

Scheme 5. Control Experiments
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tion for details), Path C should be excluded. With the
assistance of base, 3aa′ transformed to M3 via an E2
elimination, then underwent a 6π electrocyclization to give
M4.29 Eventually, the desired product 3aa was obtained from
M4 via a defluorinated aromatization.
In summary, we have first developed a visible-light

photoredox-catalyzed [5 + 1] cycloaddition of N-tosyl
vinylaziridines. The procedure provided a novel method for
the synthesis of diverse pyridines in moderate to good yields
from N-tosyl vinylaziridines using difluoroalkyl halides as
distinctive C1 synthons. These investigations showed that the
reaction underwent a radical-initiated ring-opening functional-
ization. Significantly, control experiments undoubtedly dem-
onstrated that an α,β-unsaturated imine is the key
intermediate. Efforts in our laboratory are ongoing to explore
other novel radical-initiated ring-opening functionalization of
vinylaziridines.
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