Article

A Novel Class of Tunable Zinc Reagents (RXZnCH₂Y) for Efficient Cyclopropanation of Olefins

Jon C. Lorenz,[†] Jiang Long,[†] Zhiqiang Yang,[†] Song Xue, Yinong Xie, and Yian Shi*

Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523

yian@lamar.colostate.edu

Received October 10, 2003

A class of zinc reagents ($RXZnCH_2Y$) generated with an appropriate organozinc is very effective for the cyclopropanation of olefins. The reactivity and selectivity of these reagents can be regulated by tuning the electronic and steric nature of the RX group on Zn. A reasonable level of enantioselectivity was obtained for the cyclopropanation of unfunctionalized olefins when a chiral (iodomethyl)zinc species was used, providing a valuable approach for the asymmetric cyclopropanation of unfunctionalized olefins.

The Simmons–Smith reaction is a very powerful method for the cyclopropanation of olefins,¹ and various versions of this reaction have been developed. In Simmons and Smith's original studies, the cyclopropanation reagent IZnCH₂I was generated from CH₂I₂ and Zn–Cu.^{2.3} This CH₂I₂–Zn procedure with various modifications⁴ has been widely used since then.¹ Wittig showed that cyclopropanation reagents XZnCH₂X or Zn(CH₂X)₂ could also be prepared by reacting ZnX₂ with CH₂N₂.⁵ In 1966, Furukawa reported that cyclopropanation reagents could be generated by the alkyl exchange between Et₂Zn and CH₂I₂,^{6.7} giving active species EtZnCH₂I or Zn(CH₂I)₂. In another study, Denmark found that the (chloromethyl)zinc reagent generated from

(3) For an earlier report on preparation of IZnCH₂I, see: Emschwiller, G. Compt. Rend. **1929**, 188, 1555.

Et₂Zn and ClCH₂I is more reactive than the corresponding (iodomethyl)zinc from Et₂Zn and CH₂I₂.⁸ Recently, Charette has reported that bipy-Zn(CH₂I)₂ complex can be isolated and stored for an extended period of time in the freezer with little decomposition.⁹ This complex can effectively cyclopropanate olefins upon addition of ZnI₂. In addition to (halomethyl)zinc reagents, (acyloxymethyl)zinc species can also cyclopropanate olefins. Wittig reported that bis(benzoyloxymethyl)zinc [(PhCOOCH₂)₂-Zn] could cyclopropanate olefins upon activation by ZnI₂.^{5d} Very recently, Charette has shown that *n*-C₄F₉-COOCH₂ZnEt generated from *n*-C₄F₉COOCH₂I and Et₂Zn is a highly reactive cyclopropanating reagent.¹⁰ Significant progress has also been made in the structural elucidation of various possible reactive cyclopropanating species. Several (halomethyl)zinc compounds or their complexes with other ligands have been investigated and characterized via both X-ray crystallography and NMR spectroscopy by Denmark¹¹ and Charette.^{7b,9,12}

As mentioned above, a (halomethyl)zinc reagent in the Simmons–Smith reaction is generally represented as $XZnCH_2Y$ (1)¹³ where the X substituent on the Zn is usually limited to halogens, Et, YCH₂, or other alkyl groups¹⁴ depending upon the protocol used (Scheme 1). In 1998, we reported that the cyclopropanation of olefins can be efficiently carried out using a new class of (iodomethyl)zinc species (RXZnCH₂I) generated by reacting RXH with an appropriate organozinc reagent (Scheme 2).¹⁵ A wide range of RXH from alcohols to acids can be

(12) Charette, A. B.; Marcoux, J.-F.; Bélanger-Gariépy, F. J. Am. Chem. Soc. 1996, 118, 6792.

[†] J.C.L., J.L., and Z.Y. contributed equally to this work.

^{*} Phone: 970-491-7424. Fax: 970-491-1801.

⁽¹⁾ For leading reviews, see: (a) Simmons, H. E.; Cairns, T. L.; Vladuchick, S. A.; Hoiness, C. M. Org. React. **1973**, 20, 1. (b) Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. **1993**, 93, 1307. (c) Charette, A. B.; Marcoux, J.-F. Synlett, **1995**, 1197. (d) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. **1996**, 96, 49. (e) Charette, A. B.; Beauchemin, A. Org. React. **2001**, 58, 1. (f) Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B. Chem. Rev. **2003**, 103, 977.

^{(2) (}a) Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1958, 80, 5323.
(b) Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1959, 81, 4256.

⁽⁴⁾ For leading references on various modifications of the reaction using Zn, see: (a) Shank, R.; Shechter, H. J. Org. Chem. 1959, 24, 1825. (b) LeGoff, E. J. Org. Chem. 1964, 29, 2048. (c) Rawson, R. J.; Harrison, I. T. J. Org. Chem. 1970, 35, 2057. (d) Denis, J. M.; Girard, C.; Conia, J. M. Synthesis 1972, 549. (e) Rieke, R. D.; Li, P. T.-J.; Burns, T. P.; Uhm, S. T. J. Org. Chem. 1981, 46, 4323. (f) Repic, O.; Vogt, S. Tetrahedron Lett. 1982, 23, 2729. (g) Friedrich, E. C.; Domek, J. M.; Pong, R. Y. J. Org. Chem. 1985, 50, 4640. (h) Friedrich, E. C.; Luewis, E. J. J. Org. Chem. 1989, 54, 2388. (i) Friedrich, E. C.; Lewis, E. J. J. Org. Chem. 1989, 54, 2388. (i) Friedrich, E. C.; Lewis, E. J. J. Org. Chem. 1990, 55, 2491. (j) Takai, K.; Kakiuchi, T.; Utimoto, K. J. Org. Chem. 1994, 59, 2671. (k) StenstrØm, Y. Synth. Commun. 1992, 22, 2801.
(5) (a) Wittig C. Schwarzenbach K. Angew. Chem. 1959, 74, 652

^{(5) (}a) Wittig, G.; Schwarzenbach, K. Angew. Chem. 1959, 71, 652.
(b) Wittig, G.; Schwarzenbach, K. Liebigs Ann. Chem. 1961, 650, 1. (c) Wittig, G.; Wingler, F. Liebigs Ann. Chem. 1962, 656, 18. (d) Wittig, G.; Jautelat, M. Liebigs Ann. Chem. 1967, 702, 24.

^{(6) (}a) Furukawa, J.; Kawabata, N.; Nishimura, J. *Tetrahedron Lett.* **1966**, 3353. (b) Furukawa, J.; Kawabata, N.; Nishimura, J. *Tetrahedron* **1968**, *24*, 53. (c) Nishimura, J.; Furukawa, J.; Kawabata, N.; Kitayama, M. *Tetrahedron* **1971**, *27*, 1799.

⁽⁷⁾ EtZnI could also be used to react with CH_2I_2 to form cyclopropanation reagents; see: (a) Sawada, S.; Inouye, Y. *Bull. Chem. Soc. Jpn.* **1969**, *42*, 2669. (b) Charette, A. B.; Marcoux, J.-F. *J. Am. Chem. Soc.* **1996**, *118*, 4539.

 ⁽⁸⁾ Denmark, S. E.; Edwards, J. P. J. Org. Chem. 1991, 56, 6974.
 (9) Charette, A. B.; Marcoux, J.-F.; Molinaro, C.; Beauchemin, A.;
 Brochu, C.; Isabel, E. J. Am. Chem. Soc. 2000, 122, 4508

 ⁽¹⁰⁾ Charette, A. B., Marcoux, J.-T., Monnar, C., Deautenin, A.,
 Brochu, C.; Isabel, E. J. Am. Chem. Soc. 2000, 122, 4508.
 (10) Charette, A. B.; Beauchemin, A.; Francoeur, S. J. Am. Chem.
 Soc. 2001, 123, 8139.

^{(11) (}a) Denmark, S. E.; Edwards, J. P.; Wilson, S. R. J. Am. Chem. Soc. **1991**, 113, 723. (b) Denmark, S. E.; Edwards, J. P.; Wilson, S. R. J. Am. Chem. Soc. **1992**, 114, 2592.

SCHEME 1

$$R \xrightarrow{R} \frac{XZnCH_2Y (1)}{X = halogen, Et, YCH_2; Y = Br, Cl, I}$$

SCHEME 2

$$R \xrightarrow{R} R \xrightarrow{RXZnCH_2I} R \xrightarrow{R} R$$

used to form the (iodomethyl)zinc species,^{15,16} and the reactivity of these resulting cyclopropanation reagents can be regulated by changing the electronic and/or steric nature of the modifier RXH. Furthermore, we showed that the asymmetric cyclopropanation of unfunctionalized olefins is possible with a chiral RXH.¹⁵ Herein we wish to report our detailed studies on this subject.

Results and Discussions

We began our studies by generating a series of (iodomethyl)zinc species from various modifiers and studying their reactivity. A number of methods are conceivable for the generation of RXZnCH₂I (**3**) from RXH as shown in Scheme 3.¹⁷ In Method A, Et₂Zn is treated with 2 equiv of CH₂I₂ to form Zn(CH₂I)₂, which subsequently reacts with RXH (**2**) to generate RXZnCH₂I (**3**). In Method B, Et₂Zn is combined with RXH first to form RXZnEt, which then reacts with 1 equiv CH₂I₂ to generate RXZnCH₂I. In method C, Et₂Zn reacts with 1 equiv of CH₂I₂ to form EtZnCH₂I (**4**), which is then treated with RXH to generate RXZnCH₂I (it should be pointed out that the various iodomethylzinc species in Scheme 3 are currently proposed only on the basis of stoichiometry). Methods B and C require 1 equiv of CH₂I₂ less than Method A.

For our initial studies, Method A was used to generate RXZnCH₂I and *trans-* β -methylstyrene was used as the substrate. As shown in Figure 1, the reactivity of RXZnCH₂I was highly dependent upon the RX group. When RXH was EtOH or ClCH₂CH₂OH, no reaction occurred after stirring for 24 h at room temperature.^{18,19} It was found that, in general, as RXH became more

(14) Charette, A. B.; Beauchemin, A.; Marcoux, J.-F. Tetrahedron Lett. **1999**, 40, 33.

(15) For a preliminary report of a portion of this work, see: Yang, Z.; Lorenz, J. C.; Shi, Y. *Tetrahedron Lett.* **1998**, *39*, 8621.

(16) For a related study of ArOZnCH₂I for cyclopropanation recently reported by Charette, see: Charette, A. B.; Francoeur, S.; Martel, J.; Wilb, N. *Angew. Chem., Int. Ed.* **2000**, *39*, 4539.

(17) For references on the generation and studies of RXZnR, see: (a) Noltes, J. G.; Boersma, J. J. Organomet. Chem. **1968**, 12, 425 and references therein. (b) Inoue, S.; Kobayashi, M.; Tozuka, T. J. Organomet. Chem. **1974**, 81, 17 and references therein. acidic, the reactivity increased. While no cyclopropanation was observed with phenol,²⁰ cyclopropanation occurred when certain substituted phenols were used (Figure 1).¹⁶ CF₃CO₂H was found to accelerate the cyclopropanation reaction dramatically compared to the standard cyclopropanation conditions (i.e., without RXH). The reaction was complete within 30 min at room temperature for *trans*- β -methylstyrene and was very clean as judged by the ¹H NMR of the crude reaction mixture. To further compare the cyclopropanation reactivities, the Zn reagents generated from a variety of RXH modifiers were tested with *trans*- β -methylstyrene and trans-stilbene.^{21,22} The reagents generated from halogen-substituted carboxylic acids such as CF₃CO₂H and CCl₃CO₂H were found to be among the most reactive cyclopropanation reagents (Table 1, entries 5, 6, 11, and 12). The reactivity of the generated Zn reagent is also affected by the solubility and stability of the reagent. For example, the relatively poor conversion observed with CF₃SO₃ZnCH₂I (Table 1, entry 2) could be due to its poor solubility in the noncoordinating solvents required for this reaction and/or its instability.

The induction periods displayed in the cases of Cl_2CHCH_2OH and Cl_3CCH_2OH (curves C and D, Figure 1) suggested that the cyclopropanation might be accelerated by the reaction products, possibly ROZnI.²³ In light of this observation, the effects of Lewis acids on the cyclopropanation of unreactive $ClCH_2CH_2OZnCH_2I$ (curve B, Figure 1) were investigated.^{24–27} It was found that cyclopropanations proceeded at a reasonable rate when the proper Lewis acid was used (Table 2). Among these Lewis acids, TiCl₄, SnCl₄, AlCl₃, AlEt₃, and Et₂AlCl were the best activators. The Lewis acid may accelerate the cyclopropanation in a number of ways.^{25–27} One of these is that the Lewis acid may disrupt the aggregate of ROZnCH₂I by complexing to the oxygens (Scheme 4) and generate a vacant orbital on zinc for iodine to coordinate,

(20) It has been reported that $PhOZnCH_2I$ can undergo ortho methylation of the phenol; see: Lehnert, E. K.; Sawyer, J. S.; Macdonald, T. L. *Tetrahedron Lett.* **1989**, *30*, 5215.

(21) For a recent report on an intramolecular cyclopropanation of allylphosphinoylamino (chloromethyl)zinc, see: Wipf, P.; Kendall, C.; Stephenson, C. R. J. *J. Am. Chem. Soc.* **2001**, *123*, 5122. (22) Since the rate of formation and the reactivity of RXZnCH₂I vary

(22) Since the rate of formation and the reactivity of $RXZnCH_2I$ vary with modifier RXH, it is possible that besides the proposed $RXZnCH_2I$, additional (iodomethyl)zinc species may exist in the reaction mixture and contribute to the cyclopropanation.

(23) Denmark reported autocatalytic behavior in the cyclopropanation of allyloxy ethylzinc with $Zn(CH_2I)_2$. Studies showed that ZnI_2 generated from the reaction catalyzed the cyclopropanation. See: (a) Denmark, S. E.; Christenson, B. L.; Coe, D. M.; O'Connor, S. P. *Tetrahedron Lett.* **1995**, *36*, 2215. (b) Denmark, S. E.; Christenson, B. L.; O'Connor, S. P.; Murase, N. Pure Appl. Chem. **1996**, *68*, 23. (c) Denmark, S. E.; O'Connor, S. P. J. Org. Chem. **1997**, *62*, 3390.

(24) For TiCl₄-catalyzed cyclopropanations of alkenes using zinc dust, CuCl, and CH_2X_2 , see: ref 4h. (25) For theoretical studies on Lewis acid acceleration in the

(25) For theoretical studies on Lewis acid acceleration in the Simmons–Smith reaction, see: Nakamura, E.; Hirai, A.; Nakamura, M. *J. Am. Chem. Soc.* **1998**, *120*, 5844.

(26) For Lewis acid-catalyzed intramolecular cyclopropanation of alkoxy (iodomethyl)zinc formed from allylic alcohols, see: (a) Ref 18c.
(b) Ref 19. (c) Charette, A. B.; Molinaro, C.; Brochu, C. J. Am. Chem. Soc. 2001, 123, 12168.

(27) For a related study on Lewis acid-catalyzed intermolecular cyclopropanation of ROZnCH₂I, see: ref 19.

⁽¹³⁾ For leading references on analogous cyclopropanations using other MCH₂X reagents, see the following. For Al, see: (a) Hoberg, H. Liebigs Ann. Chem. 1962, 656, 1. (b) Miller, D. B. Tetrahedron Lett. 1964, 989. (c) Maruoka, K.; Fukutani, Y.; Yamamoto, H. J. Org. Chem. 1985, 50, 4412. For Cd, see: (d) Furukawa, J.; Kawabata, N.; Fujita, T. Tetrahedron 1970, 26, 243. For Cu, see: (e) Kawabata, N.; Naka, M.; Yamashita, S. J. Am. Chem. Soc. 1976, 98, 2676. (f) Kawabata, N.; Kamemura, I.; Naka, M. J. Am. Chem. Soc. 1979, 101, 2139. For Hg, see: (g) Seyferth, D.; Eisert, M. A.; Todd, L. J. J. Am. Chem. Soc. 1964, 86, 121. For In, see: (h) Maeda, T.; Tada, H.; Yasuda, K.; Okawara, R. J. Organomet. Chem. 1971, 27, 13. For Mg, see: (i) Fauveau, C.; Gault, Y.; Gault, F. G. Tetrahedron Lett. 1967, 3149. (j) Bolm, C.; Pupowicz, D. Tetrahedron Lett 1997, 38, 7349. For Sm, see: (k) Imamoto, T.; Takiyama, N. Tetrahedron Lett. 1987, 52, 3942. (n) Molander, G. A.; Etter, J. B. J. Org. Chem. 1987, 52, 3942. (o) Imamoto, T.; Kamiya, Y.; Hatajima, T.; Takahashi, H. Tetrahedron Lett. 1989, 30, 5149.

⁽¹⁸⁾ For a discussion on intramolecular cyclopropanation of alkoxy (iodomethyl)zinc formed from unsaturated alcohols, see: (a) Blanchard, E. P.; Simmons, H. E. *J. Am. Chem. Soc.* **1964**, *86*, 1337. (b) Ref 1b. (c) Charette, A. B.; Brochu, C. *J. Am. Chem. Soc.* **1995**, *117*, 11367.

⁽¹⁹⁾ For a related study of ROZnCH₂I for cyclopropanation recently reported by Charette, see: Charette, A. B.; Molinaro, C.; Brochu, C. *J. Am. Chem. Soc.* **2001**, *123*, 12160.

JOC Article

TABLE 1. Studies of RXH Effect on Cyclopropanation with Zn(CH₂I)₂^a

_		Ph	✓ c	onv. (%))	_	Ph	<> ^{Ph}	Conv. (%)
Entry	RXH	1h	2h	6.5h	18h		1h	2h	6.5h	18h
1	none	21	23	34	45		11	19	24	29
2	CF ₃ SO ₃ H	47	53	55	58		15	20	25	27
3	p-TsOH (anhy.)	23	34	61	86		8	11	18	37
4	F ₂ CHCO ₂ H	60	82	89	99		36	51	62	69
5	CF ₃ CO ₂ H	100					73	79	81	82
6	CF ₃ CF ₂ CO ₂ H	99					61	80	81	84
7	$CF_3(CF_2)_2CO_2H$	98					38	40	42	43
8	$CF_3(CF_2)_3CO_2H$	66	68	70	71		38	39	40	41
9	ClCH ₂ CO ₂ H	47	74	92	96		10	14	36	61
10	Cl ₂ CHCO ₂ H	86	90	96	98		45	60	73	74
11	CCl ₃ CO ₂ H	100					53	87	91	91
12	CClF ₂ CO ₂ H	99					83	87	90	92
13	CH ₃ CO ₂ H	24	41	62	86		7	12	29	47
14	(CH ₃) ₃ CCO ₂ H	58	63	70	73		13	19	30	39
	CO ₂ H									
15		54	64	71	85		11	25	34	40
16	3,5-F ₂ PhCO ₂ H	71	79	89	97		28	42	57	67
17	o-NO ₂ PhCO ₂ H	30	60	74	79		6	10	16	19
18	<i>m</i> -NO ₂ PhCO ₂ H	44	49	51	53		6	7	9	9
19	<i>p</i> -NO ₂ PhCO ₂ H	41	46	49	50		7	9	10	11
20 ^b	$(CO_2H)_2$	23	39	68	85		9	18	37	47
21 ^b	HO ₂ CCH ₂ CO ₂ H	21	38	41	52		14	19	20	23
22 ^b	$HO_2C(CH_2)_2CO_2H$	22	24	27	30		9	10	12	13
	CO ₂ H									
23 ^b	CO2H	23	29	36	43		8	11	13	17
24	2,6-F ₂ PhOH	34	48	74	87		4	7	15	31
25	2,6-Cl ₂ PhOH	11	20	50	75		2	3	14	39
26	2,6-Br ₂ PhOH	1	5	17	22		<1	1	3	7
27	H ₂ O	4	8	20	61		1	2	4	22
28 ^b	H ₂ O	5	13	23	45		8	13	20	22
29	CF ₃ CONH ₂	40	67	81	84		15	27	39	47

^{*a*} RXZnCH₂I was generated by treating Zn(CH₂I)₂ with RXH (1:1) (Method A), and all reactions were carried out with a 2:1 ratio of Zn/olefin in CH₂Cl₂ at room temperature. The conversion was determined by GC. ^{*b*} Performed with 0.5 equiv of RXH relative to Zn(CH₂I)₂.

thus activating the methylene group toward cyclopropanation.²⁸ The complexation of the Lewis acid to the oxygen could also increase the electrophilicity of the methylene group, further accelerating the cyclopropanation. The high reactivity displayed by $CF_3CO_2ZnCH_2I$ prompted us to examine more substrates to test its scope. As shown in Table 3, a variety of substrates can be converted into cyclopropanes efficiently by this reagent within a short period of time. Having these cyclopropanation reactions proceed with high conversion is operationally beneficial since it is often difficult to separate the starting olefin from the cyclopropane. Considering that many cyclopropanation protocols require refluxing and long reaction times, $CF_3CO_2ZnCH_2I$ and related

TABLE 2. Effect of Lewis Acids on CyclopropanationUsing $CICH_2CH_2OZnCH_2I^a$

	2 eq. Cl	CH ₂ CH ₂ OZnCH ₂	Ph
Ph			
Entry	LA	Time (h)	Conversion (%) ^{b}
1	AgOTf	36	20
2	Cu(OTf) ₂	36	5
3	Ti(O ⁱ Pr) ₄	45	<1
4	TiCl ₄	36	76
5	SnCl ₄	40	73
6	BF ₃ •OEt ₂	40	54
7	FeCl ₃	36	41
8	AlCl ₃	40	70
9	AlMe ₃	36	59
10	AlEt ₃	36	97
11	Et ₂ AlCl	48	100

^{*a*} All reactions were carried out with a 2:1 ratio of Zn/olefin and 0.3 equiv of Lewis acid in CH_2Cl_2 at room temperature. ^{*b*} Conversion was determined from the crude reaction mixture by GC.

FIGURE 1. Plot of the conversion of *trans-* β -methylstyrene against time (h). The curves presented are: (A) no RXH, (B) EtOH (similar results obtained with ClCH₂CH₂OH), (C) Cl₂CHCH₂OH, (D) CCl₃CH₂OH, (E) CF₃CH₂OH, (F) 2-chlorophenol, (G) 2,6-dichlorophenol, (H) PhCO₂H, and (I) CF₃-CO₂H. The RXZnCH₂I was generated by Method A. All reactions were carried out with a 2:1 ratio of Zn/olefin in CH₂Cl₂ at room temperature.

reagents should provide an attractive alternative, particularly for substrates that are slow to react by other methods.²⁹ It should be pointed out that better yields are usually obtained if the reaction is stopped as soon as the starting material is consumed since unnecessarily long reaction times could lead to the decomposition of the cyclopropane product.³⁰ **SCHEME 4**

SCHEME 5

Y = OMe, O₂CCH₃, O₂CPh, OTs

In addition to CH₂I₂, other CH₂ sources such as ICH₂Cl, ICH₂OMe, ICH₂O₂CCH₃, ICH₂O₂CPh, and ICH₂OTs were also briefly investigated (Scheme 5).³¹⁻³³ While CF₃CO₂ZnCH₂Cl generated from ICH₂Cl showed reactivities similar to CF₃CO₂ZnCH₂I, CF₃CO₂ZnCH₂-OMe showed poor reactivity. When cyclohexene was treated with CF₃CO₂ZnCH₂OMe, only trace amounts of cyclopropane were observed in the crude ¹H NMR spectrum after extended reaction times. On the other hand, CF₃CO₂ZnCH₂O₂CCH₃, CF₃CO₂ZnCH₂O₂CPh, and CF₃CO₂ZnCH₂OTs were found to be active for cyclopropanation, although their reactivities were substantially lower than CF₃CO₂ZnCH₂I. For example, 90% conversion was obtained for the cyclopropanation of cyclohexene with CF₃CO₂ZnCH₂O₂CPh at room temperature for 24 h. Interestingly, no cyclopropanation of cyclohexene was observed with Et₂Zn and ICH₂O₂CPh, suggesting that the CF₃CO₂ group greatly enhances the reactivity of the Zn reagent.

Cyclopropanation using metal carbenoids can proceed via [2 + 2] carbometalation (pathway **a**) or concerted [2 + 1] methylene transfer (pathway **b**) (Scheme 6).¹ The preference of the reaction pathway is highly dependent on the nature of the metal. While both pathways may compete in the cyclopropanation with lithium carbenoids,³⁴ both experimental³⁵ and theoretical³⁶ studies

⁽²⁹⁾ For recent applications of $CF_3CO_2ZnCH_2I$ for cyclopropanation, see: (a) Carter, K. N.; Taverner, T.; Schiesser, C. H.; Greenberg, M. M. J. Org. Chem. **2000**, 65, 8375. (b) Evans, D. A.; Burch, J. D. Org. Lett. **2001**, 3, 503. (c) Rossi, R.; Carpita, A.; Ribecai, A.; Mannina, L. Tetrahedron **2001**, 57, 2847. (d) Carpita, A.; Ribecai, A.; Rossi, R.; Stabile, P. Tetrahedron **2002**, 58, 3673. (e) Charette, A. B.; Lacasse, M.-C. Org. Lett. **2002**, 4, 3351.

⁽³⁰⁾ Reaction conditions for the cyclopropanation using CF_3CO_2 -ZnCH₂I are slightly acidic. Modifiers (RXH) less acidic than CF_3CO_2H may be used if the substrate is acid sensitive.

⁽³¹⁾ For earlier studies on the cyclopropanation of $(PhCO_2CH_2)_2Zn$, see: ref 5d.

⁽³²⁾ For a recent report on cyclopropanation using Et_2Zn and $n-C_4F_9-CO_2CH_2I$, see: ref 10.

⁽³³⁾ For studies on the Sm-mediated cyclopropanation using $ICH_2X,$ see: ref 13n.

TABLE 3. Cyclopropanation of Representative OlefinsAccelerated by $CF_3CO_2H^a$

Entry	Substrate	Time	Conv.	Yield
		(min)	(%)	(%)•
1d	Ph	30	100	77
2	Ph	40	100	80
3	Ph	30	100	95
4 ^d	Ph	60	>90	70
5	C ₆ H ₁₃	40	100	99
6 ^d	Ph	90	100	76
7d	Ph Ph	60	nd	72
8		120	100	99
9e	C Ph	240	100	83
10		30	100	78
11	Ph	180	100	94
12		240	100	97
13e	X = Et	180	100	93
14 15	X = Ph $X = p_MeO_Ph$	180 ^f 180	100	65 08
16	X = p - F - Ph	120g	100	65
17	OTBS QTMS	25	100	50 ^h
18 ^e	Ph	30	100	69
19	Ph	20	100	85
20	PhO	30	>97	88
21	PhCO ₂	150	>90	90

^{*a*} CF₃CO₂ZnCH₂I was generated by Method B except for entry 13, where Method A was used. All reactions were carried out at room temperature with 2 equiv of CF₃CO₂ZnCH₂I unless otherwise noted. For entry 14, 3 equiv of CF₃CO₂ZnCH₂I was used. For entries 4, 7, 13, and 16, 4 equiv of CF₃CO₂ZnCH₂I was used. ^{*b*} Conversion was determined from the crude reaction mixture either by GC or ¹H NMR. ^{*c*} Isolated yield. ^{*d*} *trans*-Olefins gave *trans*-cyclopropanes, and *cis*-olefins gave *cis*-cyclopropanes. ^{*e*} Reaction was carried out at 0 °C. ^{*f*} Reaction was carried out at 0 °C for 1 h and then at room temperature for 2 h. ^{*g*} Reaction was carried out at 0 °C for 1 h and then at room temperature for 1 h. ^{*h*} Yield was for the product after desilylation by TBAF.

show that cyclopropanation using zinc carbenoids proceeds by the $[2\,+\,1]$ pathway, primarily due to the fact that the C–Zn bond is covalent and unpolarized. 36b The

SCHEME 6

drastic difference in reactivity observed between the traditional zinc carbenoids and the CF₃CO₂H-modified carbenoid prompted us to probe the mechanism of cyclopropanation using *trans*-1,6-diiodo-3-hexene (**6**) (Scheme 7).³⁷ Cyclopropanation via the [2 + 2] pathway would form both compounds **8** and **9**, while the [2 + 1] pathway leads to **8** exclusively. Subjecting olefin **6** to CF₃CO₂-ZnCH₂I at room temperature led to the clean formation of the symmetrical cyclopropane **8** as judged by ¹H and ¹³C NMR analysis of the crude reaction mixture. This suggests that the modified zinc carbenoid behaves in a manner similar to the typical Simmons–Smith carbenoid by addition in a concerted [2 + 1] fashion. However, full understanding of the reaction pathways requires further studies.

The discovery that zinc reagents modified by a covalent ligand (RXZnCH₂I) are effective for cyclopropanation prompted us to investigate whether a chiral (iodomethyl)-zinc species (R*XZnCH₂I) could induce enantioselectivity. Thus, a number of chiral alcohols were tested using *trans*- β -methylstyrene as a substrate. Generally, cyclopropanations with these R*OZnCH₂I reagents were very sluggish but accelerated by the addition of a catalytic amount of Lewis acid. As shown in Table 4, 51% ee was obtained for the cyclopropane product using the fructose-derived alcohol **15** as a modifier.

Great progress has been made in the area of asymmetric Simmons–Smith reactions. Efficient asymmetric cyclopropanations using a variety of chiral auxiliaries have been reported.^{38–41} Recently, highly enantioselective cyclopropanations of allylic alcohols have been achieved using either chiral reagents or catalysts.^{42,43} On the other hand, the direct asymmetric cyclopropanation of unfunctionalized olefins by transferring a methylene group from a (halomethyl)zinc reagent is an unsolved problem. Prior

⁽³⁴⁾ Stiasny, H. C.; Hoffmann, R. W. *Chem. Eur. J.* **1995**, *1*, 619. (35) Wittig, G.; Wingler, F. *Chem. Ber.* **1964**, *97*, 2146.

^{(36) (}a) Bernardi, F.; Bottoni, A.; Miscione, G. P. J. Am. Chem. Soc. **1997**, 119, 12300. (b) Hirai, A.; Nakamura, M.; Nakamura, E. Chem. Lett. **1998**, 927. (c) Zhao, C.; Wang, D.; Phillips, D. L J. Am. Chem. Soc. **2002**, 124, 12903.

⁽³⁷⁾ Similar probe using 1,6-dichloro-3-hexene was reported by Wittig; see: ref 35.

⁽³⁸⁾ For leading references on chiral ketal-based asymmetric cyclopropanations, see: (a) Arai, I.; Mori, A.; Yamamoto, H. J. Am. Chem. Soc. **1985**, 107, 8254. (b) Mash, E. A.; Nelson, K. A. J. Am. Chem. Soc. **1985**, 107, 8256. (c) Mori, A.; Arai, I.; Yamamoto, H.; Nakai, H.; Arai, Y. Tetrahedron **1986**, 42, 6447. (d) Kang, J.; Lim, G. J.; Yoon, S. K.; Kim, M. Y. J. Org. Chem. **1995**, 60, 564. (e) Mash, E. A.; Gregg, T. M.; Kaczynski, M. A. J. Org. Chem. **1996**, 61, 2743. (f) Kaye, P. T.; Molema, W. E. Chem. Commun. **1998**, 2479.

⁽³⁹⁾ For leading references on chiral allylic ether-based asymmetric cyclopropanations, see: (a) Charette, A. B.; Côté, B.; Marcoux, J.-F. J. Am. Chem. Soc. 1991, 113, 8166. (b) Charette, A. B.; Côté, B. J. Org. Chem. 1993, 58, 933. (c) Charette, A. B.; Marcoux, J.-F. Tetrahedron Lett. 1993, 34, 7157. (d) Charette, A. B.; Turcotte, N.; Marcoux, J.-F. Tetrahedron Lett. 1994, 35, 513. (e) Charette, A. B.; Côté, B. J. Am. Chem. Soc. 1995, 117, 12721.

TABLE 4. Cyclopropanation of trans-β-Methylstyrene Using Chiral R*OZnCH₂I^a

\downarrow	Дон			OMe	
тон 10	رم 11	MeO ₂ C Y O ²	HO 13	0" OH 	0 ¹¹ 0H 15

entry	R*OH	LA	time (h)	conversion (%) ^b	ee (%) ^c
1	10	Et ₂ AlCl	44	85	8
2	11	Et ₂ AlCl	45	91	17^d
3	12	Et ₂ AlCl	36	4	nd
4	13	TiCl ₄	64	6	8^d
5	14	Et ₂ AlCl	45	19	20
6	15	Et ₂ AlCl	44	74	51

^{*a*} \mathbb{R}^* OZnCH₂I was generated by Method A, and all reactions were carried out with olefin (0.5 mmol), \mathbb{R}^* OZnCH₂I (1.0 mmol), and Lewis acid (0.15 mmol) in CH₂Cl₂-hexane at room temperature. ^{*b*} Conversion was determined from the crude reaction mixture by GC. ^{*c*} Enantioselectivity was determined by chiral GC (Chiraldex GTA). ^{*d*} Opposite configuration was obtained.

to our earlier studies,¹⁵ only two reports appeared in the literature for asymmetric cyclopropanation of unfunctionalized olefins using (halomethyl)zinc reagents. In one case, (–)-menthol was used as a chiral inducer, and <4% ee was obtained for a number of test substrates.^{44a} In the other case, L-leucine was used as the chiral inducer, and an optical rotation of -0.77 was reported for *cis*-1-ethoxy-

(41) For leading references on chiral vinyl boronic ester-based asymmetric cyclopropanations, see: (a) Imai, T.; Mineta, H.; Nishida, S. *J. Org. Chem.* **1990**, *55*, 4986. (b) Luithle, J. E. A.; Pietruszka, J. *Liebigs Ann./Recueil* **1997**, 2297.

Liebigs Ann./Recueil 1997, 2297.
(42) For leading references on chiral reagent-based asymmetric cyclopropanations of allylic alcohols, see: (a) Ukaji, Y.; Nishimura, M.; Fujisawa, T. Chem. Lett. 1992, 61. (b) Denmark, S. E.; Edwards, J. P. Synlett 1992, 229. (c) Ukaji, Y.; Sada, K.; Inomata, K. Chem. Lett. 1993, 1227. (d) Charette, A. B.; Juteau, H. J. Am. Chem. Soc. 1994, 116, 2651. (e) Charette, A. B.; Prescott, S.; Brochu, C. J. Org. Chem. 1995, 60, 1081. (f) Kitajima, H.; Aoki, Y.; Ito, K.; Katsuki, T. Chem. Lett. 1995, 1113. (g) Charette, A. B.; Juteau, H.; Lebel, H.; Deschênes, D. Tetrahedron Lett. 1996, 37, 7925. (h) Kitajima, H.; Ito, K.; Aoki, Y.; Katsuki, T. Bull. Chem. Soc. Jpn. 1997, 70, 207. (i) Charette, A. B.; Juteau, H.; Lebel, H.; Melinaro, C. J. Am. Chem. Soc. 1998, 120, 11943.

(43) For leading references on chiral catalyst based asymmetric cyclopropanations of allylic alcohols, see: (a) Takahashi, H.; Yoshioka, M.; Ohno, M.; Kobayashi, S. *Tetrahedron Lett.* **1992**, *33*, 2575. (b) Imai, N.; Takahashi, H.; Kobayashi, S. *Chem. Lett.* **1994**, *177*. (c) Imai, N.; Sakamoto, K.; Takahashi, H.; Kobayashi, S. *Chem. Lett.* **1994**, *177*. (c) Imai, N.; Sakamoto, K.; Takahashi, H.; Kobayashi, S. *Tetrahedron Lett.* **1994**, *35*, 7045. (d) Ref 23a. (e) Denmark, S. E.; Christenson, B. L.; O'Connor, S. P. *Tetrahedron Lett.* **1995**, *36*, 2219. (f) Takahashi, H.; Yoshioka, M.; Shibasaki, M.; Ohno, M.; Imai, N.; Kobayashi, S. *Tetrahedron* **1995**, *51*, 12013. (g) Ref 18c. (h) Denmark, S. E.; O'Connor, S. P. *J. Org. Chem.* **1997**, *62*, 584. (i) Imai, N.; Sakamoto, K.; Maeda, M.; Kouge, K.; Yoshizane, K.; Nokami, J. *Tetrahedron Lett.* **1997**, *38*, 1423. (j) Ref 23c. (k) Balsells, J.; Walsh, P. J. J. Org. Chem. **2000**, *65*, 5005. (l) Ref 26c.

2-isopropylethylene (no ee was mentioned).^{44b} Although only moderate ee has been obtained, the current study provides a valuable approach toward asymmetric cyclopropanation of unfunctionalized olefins. Also, since the cyclopropanation of RXZnCH₂I is greatly facilitated by addition of a Lewis acid, it is possible that the addition of a catalytic amount of the proper chiral Lewis acid might further introduce asymmetry into the reaction. Such an approach is currently under investigation.

In summary, we have developed a novel class of zinc reagents ($RXZnCH_2Y$) that can efficiently cyclopropanate olefins. These reagents provide the opportunity to regulate the reactivity and selectivity of cyclopropanations by tuning the electronic and/or steric nature of the RX group on Zn. A reasonable level of enantioselectivity was obtained for the cyclopropanation of unfunctionalized olefins with a chiral (iodomethyl)zinc species. Further studies to expand the scope of these modified zinc reagents and develop an effective enantioselective cyclopropanation of unfunctionalized olefins are currently underway.

Experimental Section

General Methods. Dichloromethane was distilled from calcium hydride.

Representative Procedure for the Effect of RXH on Cyclopropanation (Method A) (Figure 1). To a solution of Et₂Zn (1.0 M in hexane) (1.0 mL, 1.0 mmol) in CH₂Cl₂ (1 mL) at -78 °C under N₂ was added a solution of CH₂I₂ (0.53 g, 2.0 mmol) in CH₂Cl₂ (0.5 mL). After the reaction mixture was stirred at -15 °C for 30 min, a solution of RXH (1.0 mmol) in CH₂Cl₂ (0.5 mL) was added. After an additional 30 min of

⁽⁴⁰⁾ For leading references on chiral enol ether-based asymmetric cyclopropanations, see: (a) Sugimura, T.; Futagawa, T.; Tai, A. *Tetrahedron Lett.* **1988**, *29*, 5775. (b) Sugimura, T.; Koguro, K.; Tai, A. *Tetrahedron Lett.* **1993**, *34*, 509. (c) Sugimura, T.; Yoshikawa, M.; Mizuguchi, M.; Tai, A. *Chem. Lett.* **1999**, 831. (d) Sugimura, T.; Futagawa, T.; Yoshikawa, M.; Katagiri, T.; Miyashige, R.; Mizuguchi, M.; Nagano, S.; Sugimori, S.; Tai, A.; Tei, T.; Okuyama, T. *Tetrahedron* **2001**, *61*, 7495.

^{(44) (}a) Sawada, S.; Oda, J.; Inouye, Y. J. Org. Chem. **1968**, 33, 2141. (b) Furukawa, J.; Kawabata, N.; Nishimura, J. Tetrahedron Lett. **1968**, 3495. (c) Ref 16. (d) For recent progress on asymmetric Simmons– Smith cyclopropanation of unfunctionalized olefins, see: Long, J.; Yuan, Y.; Shi, Y. J. Am. CHem. Soc. **2003**, 125, 13632.

stirring, a solution of *trans*- β -methylstyrene (0.06 g, 0.5 mmol) in CH₂Cl₂ (0.5 mL) was added. The reaction mixture was then stirred at room temperature. Samples were taken over the course of the reaction and analyzed by GC to determine the conversion.

Representative Cyclopropanation Procedure Using CF₃CO₂ZnCH₂I (Method B). To freshly distilled CH₂Cl₂ (20 mL) was added Et_2Zn (1.0 M in hexanes) (20.0 mL, 20.0 mmol) under N₂ (it is best to use an inlet adapter for the nitrogen line since needles often become clogged). The solution was cooled in an ice bath and a solution of trifluoroacetic acid (1.54 mL, 20.0 mmol) in CH₂Cl₂ (10 mL) was then dripped very slowly into the reaction mixture via syringe. Upon stirring for 20 min, a solution of CH₂I₂ (1.61 mL, 20.0 mmol) in CH₂Cl₂ (10 mL) was added. After an additional 20 min of stirring, a solution of the TBS ether of cinnamyl alcohol (2.60 g, 10.0 mmol) in CH₂Cl₂ (10 mL) was added, and the ice bath was removed. After an additional 30 min of stirring, the reaction mixture was quenched with 0.1 N HCl (50 mL) (alternatively with saturated aqueous NH₄Cl or Et₃N followed by saturated aqueous NaHCO₃) and hexanes (25 mL), and the layers were separated. The aqueous layer was extracted with hexanes. The combined organic layers were washed with saturated NaHCO₃, H₂O, and brine and then dried (Na₂SO₄), filtered, concentrated, and purified by column chromatography (hexanes/ether = 50/1) to yield the cyclopropane product (2.61 g, 95%).

Representative Procedure for Lewis Acid-Catalyzed Cyclopropanation (Table 2). To a solution of Et_2Zn (1.0 M in hexane) (1.0 mL, 1.0 mmol) in CH_2Cl_2 (1 mL) at -78 °C under N₂ was added a solution of CH_2I_2 (0.53 g, 2.0 mmol) in CH_2Cl_2 (0.5 mL). After the reaction mixture was stirred at -15 °C for 1-2 h, a solution of $CICH_2CH_2OH$ (0.079 g, 1.0 mmol) in CH_2Cl_2 (1 mL) was added. After 30–45 min of stirring, a solution of $trans-\beta$ -methylstyrene (0.06 g, 0.5 mmol) in CH_2Cl_2 (0.5 mL) was added. After an additional 15 min of stirring, Lewis acid (0.15 mmol) was added. The reaction mixture was then stirred at room temperature for the indicated time, poured into diluted HCl, extracted with hexanes, washed with saturated NaHCO₃, H₂O, brine, dried (Na₂SO₄), and concentrated. The crude product was then analyzed by GC and/ or ¹H NMR to determine the conversion.

trans-1-Methyl-2-phenylcyclopropane (Table 3, Entry 1):^{2b,8} IR (film) 1605, 1495, 696 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.27–7.20 (m, 2H), 7.15–7.08 (m, 1H), 7.05–7.00 (m, 2H), 1.56 (dt, J = 8.8, 4.6 Hz, 1H), 1.18 (d, J = 5.7 Hz, 3H), 1.04 (m, 1H), 0.88 (m, 1H), 0.73 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 144.3, 128.4, 125.7, 125.4, 24.6, 19.3, 18.2, 17.8.

(*trans*-2-Phenylcyclopropyl)methanol (Table 3, Entry 2):^{43f,h} IR (film) 3341, 1604, 1497, 1020, 697 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.25 (m, 2H), 7.15 (m, 1H), 7.06 (m, 2H), 3.63 (dd, J = 11.4, 6.6 Hz, 1H), 3.59 (dd, J = 11.4, 6.6 Hz, 1H), 1.82 (dt, J = 8.4, 4.8 Hz, 1H), 1.56 (m, 1H), 1.45 (m, 1H), 0.96 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 142.7, 128.6, 126.1, 125.9, 66.8, 25.5, 21.5, 14.1.

trans-1-[(*tert*-Butyldimethylsiloxy)methyl]-2-phenylcyclopropane (Table 3, Entry 3): IR (film) 1606, 1497, 1097, 836, 696 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.28–7.03 (m, 5H), 3.72 (dd, J = 10.8, 5.7 Hz, 1H), 3.62 (dd, J = 10.8, 6.3 Hz, 1H), 1.80 (dt, J = 8.5, 5.0 Hz, 1H), 1.33 (m, 1H), 0.98– 0.89 (m, 2H), 0.90 (s, 9H), 0.07 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 143.3, 128.5, 126.1, 125.6, 66.1, 26.2, 25.5, 21.0, 18.7, 13.9, -4.9. Anal. Calcd for C₁₆H₂₆OSi: C, 73.22; H, 9.98. Found: C, 73.19; H, 9.71.

trans-1,2-Diphenylcyclopropane (Table 3, Entry 4):⁴⁵ IR (film) 1603, 1498, 696 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.32–7.12 (m, 10H), 2.16 (dd, J = 7.5, 6.9 Hz, 2H), 1.45 (dd, J = 7.5, 6.9 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 142.8, 128.6, 126.0, 126.0, 28.3, 18.5.

trans-1,2-Dihexylcyclopropane (Table 3, Entry 5): IR (film) 1465, 1458 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.38– 1.14 (m, 20H), 0.88 (t, J = 6.7 Hz, 6H), 0.38 (m, 2H), 0.13 (t, J = 6.4 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 34.6, 32.2, 29.9, 29.5, 23.0, 19.0, 14.4, 12.0. Anal. Calcd for C₁₅H₃₀: C, 85.63; H, 14.37. Found: C, 85.76; H, 14.13.

cis-1-Methyl-2-Phenylcyclopropane (Table 3, Entry 6): ⁴⁶ IR (film) 1497 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.29– 7.12 (m, 5H), 2.08 (td, J = 8.7, 6.3 Hz, 1H), 1.17–1.07 (m, 1H), 0.97 (td, J = 8.7, 4.8 Hz, 1H), 0.80 (d, J = 6.3 Hz, 3H), 0.58 (q, J = 5.4 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 139.6, 129.4, 127.9, 125.7, 21.4, 13.9, 13.0, 11.2.

cis-1,2-Diphenylcyclopropane (Table 3, Entry 7):⁴⁷ IR (film) 1602, 1497, 696 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.10–6.92 (m, 10H), 2.48 (dd, J = 8.6, 6.2 Hz, 2H), 1.46 (td, J= 8.6, 5.4 Hz, 1H), 1.37 (td, J = 6.2, 5.4 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 138.6, 129.2, 127.9, 125.8, 24.6, 11.6.

Benzo[2,3]bicyclo[3.1.0]hexane (Table 3, Entry 8).⁴¹ IR (film) 1475 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.31–7.26 (m, 1H), 7.16–7.02 (m, 3H), 3.19 (dd, J = 16.8, 6.6 Hz, 1H), 2.95 (d, J = 16.8 Hz, 1H), 2.38–2.28 (m, 1H), 1.88–1.78 (m, 1H), 1.05 (td, J = 8.1, 4.5 Hz, 1H), 0.06 (q, J = 3.9 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 147.1, 142.0, 126.0, 125.54, 125.46, 123.5, 35.7, 24.2, 17.0, 16.3. Anal. Calcd for C₁₀H₁₀: C, 92.26; H, 7.74. Found C, 92.12; H, 7.89.

Benzo[2,3]bicyclo[5.1.0]octane (Table 3, Entry 9):⁴⁸ IR (film) 1450 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.33–7.28 (m, 1H), 7.19–7.09 (m, 2H), 7.06–7.00 (m, 1H), 3.35 (td, J=12.6, 7.2 Hz, 1H), 2.54 (dd, J=13.2, 5.7 Hz, 1H), 2.08–1.91 (m, 2H), 1.90–1.77 (m, 1H), 1.58–1.44 (m, 1H), 1.12–0.86 (m, 2H), 0.54–0.37 (m, 1H), 0.27–0.18 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 139.9, 130.8, 128.2, 126.6, 126.5, 31.5, 27.1, 24.2, 17.6, 12.5, 12.4. Anal. Calcd for C₁₂H₁₄: C, 91.08; H, 8.92. Found: C, 90.88; H, 9.07.

1-Phenylbicyclo[4.1.0]heptane (Table 3, Entry 10):⁴⁹ IR (film) 1601, 1494, 1448, 698 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.27–7.24 (m, 4H), 7.14 (m, 1H), 2.12–1.86 (m, 3H), 1.66 (m, 1H), 1.50–1.18 (m, 5H), 0.93 (dd, J = 9.3, 4.5 Hz, 1H), 0.62 (dd, J = 5.4, 4.5 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 149.9, 128.4, 127.7, 125.6, 31.8, 24.8, 24.3, 22.0, 21.9, 19.2, 18.6. Anal. Calcd for C₁₃H₁₆: C, 90.64; H, 9.36. Found: C, 90.46; H, 9.30.

Benzo[3,4]-1-methylbicyclo[3.1.0]hexane (Table 3, Entry 11):⁵⁰ IR (film) 1477 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.22–7.17 (m, 1H), 7.11–6.98 (m, 3H), 3.01 (d, J=16.8 Hz, 1H), 2.93 (d, J=16.8 Hz, 1H), 2.06 (ddd, J=7.8, 3.3, 0.9 Hz, 1H), 1.37 (s, 3H), 0.95 (dd, J=7.8, 4.2 Hz, 1H), 0.23 (dd, J= 4.2, 3.3 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 148.0, 142.6, 125.9, 125.3, 125.2, 123.1, 41.8, 31.2, 24.3, 24.0, 22.0.

Benzo[2,3]-1-phenylbicyclo[3.1.0]hexane (Table 3, Entry 12):⁵¹ IR (film) 1477 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.48–7.02 (m, 9H), 3.40 (dd, J = 16.8, 6.6 Hz, 1H), 3.03 (d, J = 16.8 Hz, 1H), 2.05–1.94 (m, 1H), 1.77 (dd, J = 8.1, 4.5Hz, 1H), 0.59 (dd, J = 4.8, 4.2 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 149.1, 142.0, 141.3, 129.2, 128.4, 126.5, 126.1, 125.8, 125.6, 123.9, 39.8, 35.8, 26.7, 22.0. Anal. Calcd for C₁₆H₁₄: C, 93.16; H, 6.84. Found: C, 92.90; H, 6.68.

Benzo[2,3]-1-ethylbicyclo[4.1.0]heptane (Table 3, Entry 13): IR (film) 1491 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.42 (d, J = 7.8 Hz, 1H), 7.21–7.12 (m, 1H), 7.08–6.99 (m, 2H), 2.68–2.36 (m, 3H), 2.06–1.94 (m, 1H), 1.90–1.74 (m, 1H), 1.33–1.23 (m, 1H), 1.21–1.04 (m, 1H), 0.95 (t, J = 6.9 Hz, 3H),

(48) Hahn, R. C.; Howard, P. H.; Kong, S.-M.; Lorenzo, G. A.; Miller, N. L. J. Am. Chem. Soc. **1969**, *91*, 3558.

^{(45) (}a) Hildebrand, J. P.; Marsden, S. P. *Synlett* **1996**, 893. (b) Zhou, S.-M.; Deng, M.-Z.; Xia, L.-J.; Tang, M.-H. *Angew. Chem., Int. Ed.* **1998**, *37*, 2845. (c) Yao, M.-L.; Deng, M.-Z. *Synthesis* **2000**, 1095.

⁽⁴⁶⁾ Casey, C. P.; Polichnowski, S. W.; Shusterman, A. J.; Jones, C. R. J. Am. Chem. Soc. **1979**, 101, 7282.

⁽⁴⁷⁾ Kawabata, N.; Kamemura, I.; Naka, M. J. Am. Chem. Soc. **1979**, 101, 2139.

⁽⁴⁹⁾ Balsamo, A.; Battistini, C.; Crotti, P.; Macchia, B.; Macchia, F. *J. Org. Chem.* **1975**, *40*, 3233.

⁽⁵⁰⁾ O'Leary, M. A.; Wege, D. Tetrahedron 1981, 37, 801.

⁽⁵¹⁾ Lamberts, J. J. M.; Laarhoven, W. H. J. Org. Chem. 1983, 48, 2202.

0.88 (t, J = 5.1 Hz, 1H), 0.72 (dd, J = 8.1, 4.8 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 140.1, 135.4, 128.8, 126.2, 126.0, 124.5, 30.3, 27.2, 22.9, 22.0, 20.6, 17.3, 11.5. Anal. Calcd for C₁₃H₁₆: C, 90.64; H, 9.36. Found: C, 90.80; H, 9.19.

Benzo[2,3]-1-phenylbicyclo[4.1.0]heptane (Table 3, Entry 14):⁵² mp 49–50 °C; IR (film) 1487 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.42–7.22 (m, 5H), 7.10–6.94 (m, 3H), 6.76– 6.71 (m, 1H), 2.82–2.54 (m, 2H), 2.24–2.10 (m, 1H), 2.07 (tdd, J = 12.6, 5.8, 2.7 Hz, 1H), 1.76–1.62 (m, 1H), 1.43 (dd, J = 8.4, 5.1 Hz, 1H), 1.26 (t, J = 5.4 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 145.4, 141.7, 134.1, 130.7, 128.6, 128.4, 126.5, 126.0, 124.8, 28.7, 26.8, 24.2, 19.9, 15.3. Anal. Calcd for C₁₇H₁₆: C, 92.68; H, 7.32. Found: C, 92.44; H, 7.21.

Benzo[2,3]-1-(*p*-methoxyphenyl)bicyclo[4.1.0]heptane (Table 3, Entry 15): mp 64–65 °C; IR (film) 1514, 1244 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.32–7.26 (m, 2H), 7.08–6.94 (m, 3H), 6.92–6.86 (m, 2H), 6.77 (m, 1H), 3.82 (s, 3H), 2.80–2.54 (m, 2H), 2.23–2.12 (m, 1H), 2.06–1.92 (m, 1H), 1.72–1.66 (m, 1H), 1.37 (dd, J = 8.4, 5.1 Hz, 1H), 1.24 (t, J = 5.4 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 158.2, 142.1, 137.7, 134.1, 131.8, 128.6, 128.5, 125.9, 124.8, 113.8, 55.5, 27.9, 26.8, 24.3, 19.9, 15.4. Anal. Calcd for C₁₈H₁₈O: C, 86.36; H, 7.25. Found: C, 86.50; H, 7.40.

Benzo[2,3]-1-(*p*-fluorophenyl)bicyclo[4.1.0]heptane (Table 3, Entry 16): mp 55–56 °C; IR (film) 1510, 1220 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.38–7.30 (m, 2H), 7.12–6.98 (m, 5H), 6.72 (d, J = 7.2 Hz, 1H), 2.80–2.54 (m, 2H), 2.24– 2.13 (m, 1H), 2.06–1.92 (m, 1H), 1.74–1.64 (m, 1H), 1.42– 1.34 (m, 1H), 1.30–1.23 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 163.1, 159.9, 141.5, 141.22, 141.16, 134.1, 132.3, 132.2, 128.7, 128.4, 126.0, 125.0, 115.4, 115.1, 27.9, 26.7, 24.3, 19.8, 15.4. Anal. Calcd for C₁₇H₁₅F: C, 85.68; H, 6.34. Found: C, 85.89; H, 6.43.

Benzo[2,3]bicyclo[4.1.0]heptan-1-ol (Table 3, Entry 17).⁵³ The crude cyclopropanation product was desilyled with TBAF to give an alcohol: IR (film) 3292, 1488, 1223, 1206, 752, 740 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.71 (dd, J = 7.8,

1.3 Hz, 1H), 7.26 (m, 1H), 7.13 (td, J = 7.3, 1.3 Hz, 1H), 7.07 (m, 1H), 2.64 (m, 1H), 2.42–2.29 (m, 2H), 1.99 (m, 1H), 1.80–1.70 (m, 2H), 1.23 (dd, J = 9.6, 5.7 Hz, 1H), 1.07 (t, J = 5.7 Hz, 1H); ¹³C NMR (75 MHZ, CDCl₃) δ 140.8, 133.1, 128.4, 126.6, 125.8, 124.3, 54.8, 26.3, 24.8, 18.6, 16.6. Anal. Calcd for C₁₁H₁₂O: C, 82.46; H, 7.55. Found: C, 82.60; H, 7.68.

cis-2-Methyl-1-phenyl-1-(trimethylsiloxy)cyclopropane (Table 3, Entry 18): IR (film) 1497, 1251 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.31–7.14 (m, 5H), 1.32 (dd, J = 9.9, 6.0 Hz, 1H), 1.23 (d, J = 6.3 Hz, 3H), 1.03–0.94 (m, 1H), 0.74 (dd, J = 6.6, 6.0 Hz, 1H), 0.09 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 146.0, 128.1, 126.0, 124.8, 61.2, 23.2, 22.4, 13.2, 1.5; HRMS calcd for C₁₃H₂₀OSi (M⁺) 220.1283, found 220.1279.

Phenylcyclopropane (Table 3, Entry 19):^{2b.6b} IR (film) 1604, 1496, 1464, 1260, 751, 696 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.28–7.05 (m, 5H), 1.89 (tt, J = 8.4, 5.1 Hz, 1H), 0.95 (m, 2H), 0.70 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 144.2, 128.5, 125.8, 125.6, 15.6, 9.4.

(Phenoxymethyl)cyclopropane (Table 3, Entry 20):⁵⁴ IR (film) 1600, 1496, 1243 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.26 (m, 2H), 6.90 (m, 3H), 3.79 (d, J = 7.0 Hz, 2H), 1.27 (m, 1H), 0.63 (m, 2H), 0.33 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 159.2, 129.6, 120.8, 114.8, 72.9, 10.5, 3.4.

Cyclopropyl Benzoate (Table 3, Entry 21): IR (film) 1725, 1273 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.00 (m, 2H), 7.55 (m, 1H), 7.42 (m, 2H), 4.36 (m, 1H), 0.84–0.82 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 167.8, 133.2, 130.3, 129.7, 128.6, 49.6, 5.5. Anal. Calcd for C₁₀H₁₀O₂: C, 74.06; H, 6.21. Found: C, 74.06; H, 6.20.

Acknowledgment. We are grateful for the generous financial support from the National Science Foundation Career Award Program (CHE-9875497). J.C.L. thanks Boehringer-Ingelheim for a graduate fellowship.

JO030312V

⁽⁵²⁾ Klemm, L. H.; Lee, D. H.; Santhanam, P. S.; White, D. V.; Shabtai, J.; Olson, D. R. *J. Org. Chem.* **1972**, *37*, 2043.

^{(53) (}a) Rubottom, G. M.; Lopez, M. I. *J. Org. Chem.* **1973**, *38*, 2097.
(b) Murai, S.; Aya, T.; Sonoda, N. *J. Org. Chem.* **1973**, *38*, 4354. (c) Imamoto, T.; Takiyama, N. *Tetrahedron Lett.* **1987**, *28*, 1307.

⁽⁵⁴⁾ Durandetti, S.; Sibille, S.; Périchon, J. J. Org. Chem. **1991**, 56, 3255.