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A tetrabutylammonium hydrogen sulfate (TBA-HS) mediated procedure for one pot synthesis of novel
benzopyran-annulated pyrano[2,3-c]pyrazoles via domino/Knoevenagel-hetero-Diels–Alder reaction
has been demonstrated.

� 2011 Elsevier Ltd. All rights reserved.
Scheme 1. Reagents and conditions: (i) NaNO2, HCl, 0–5 �C; (ii) salicylaldehyde,
NaOH, 0–5 �C; (iii) allyl or prenyl bromide, K2CO3, DMF, rt.

Table 1
Effect of catalyst and solvent on DKHDA reaction of 3a/3c to 4a

Entry Substrate mol % of TBA-HS Solvent
(reflux)

Time (h) Yield (%)

1 3a/3c — Acetonitrile 24 —
2 3a/3c — Ethanol 24 —
3 3a/3c — Xylene 24 Trace
4 3a/3c 10 Acetonitrile 24 10a/65b

5 3a/3c 10 Ethanol 24 10a/35b

6 3a/3c 10 Xylene 24 40a/43b

7 3a 25 Xylene 9 82
8 3a 30 Xylene 9 80
9 3c 25 Acetonitrile 12 70

10 3c 30 Acetonitrile 12 70

a Product from substrate 3a.
b Product from substrate 3c.
Pyrano- and benzopyrano-fused heterocycles have attracted an
increasing interest of many researchers because of their potential
applications in medicinal chemistry. The compounds containing a
pyrano[2,3-c]pyrazole unit have shown antimicrobial,1 insecti-
cidal,2 anti-inflammatory,3 and molluscicidal activity.4 On the
other hand, photochromic compounds having a benzopyrane nu-
cleus have practical applications in the data storage, optical filters,
displays, sensor protection, waveguides, and ophthalmic plastic
lenses.5 The 6-aminochromene, particularly, is a precursor to many
bioactive compounds.6 In view of this, it is of interest to develop
the benzopyranopyran skeleton bearing amino group and its pre-
cursors. In the present work, an aryldiazenyl moiety has been
introduced in a benzopyrano-fused pyrano[2,3-c]pyrazole unit giv-
ing a precursor to novel bioactive polyheterocyclic systems.

The domino/Knoevenagel-hetero-Diels–Alder (DKHDA) strategy
represents one of the most powerful ways to construct pyrano- and
benzopyrano-fused heterocycles.7 Various catalysts such as Lewis
acids,8 EDDA,9 copper(I) iodide,10 bismuth(III) chloride,11 indiu-
m(III) chloride,12 lithium perchlorate,13 triphenylphosphonium
perchlorate,14 zinc oxide,7a

D-proline,15 ionic liquids,16 and pyri-
dine17 have been employed to promote this reaction. To the best
of our knowledge, there exists no report on the use of quaternary
ammonium salts as a phase transfer catalyst (PTC). TBA-HS is an
acidic catalyst18 and has been successfully employed in dehydra-
tion and ring closing step of Hantzsch dihydropyridine like trans-
ll rights reserved.
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formations,19 synthesis of 1,8-dioxo-octahydroxanthene,20

N-alkylation of indole,21 3-aryl coumarins,22 and flavones.23

The present work deals with TBA-HS mediated DKHDA reaction
to afford some novel benzopyrano[40,30:4,5]pyrano[2,3-c]pyrazoles
from substituted salicylaldehydes (3a–d) and 5-pyrazolones
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Figure 1. Characteristic NOE’s of 7i and 7j.

Table 2
Synthesis of chromeno[40 ,30:4,5]pyrano[2,3-c]pyrazoles

Entry Product Ar R R1 R2 Time
(h)

Yield
(%)

MPa

(�C)

1 7a Ph H Ph Me 9 82 190–
192

2 7b Ph H p-
MePh

Me 8 85 179–
181

3 7c Ph H m-
ClPh

Me 8 84 189–
192

4 7d Ph H Ph Ph 11 78 203–
206

5 7e p-
ClPh

H Ph Me 10 85 218–
220

6 7f p-
ClPh

H p-
MePh

Me 7 80 175–
176

7 7g p-
ClPh

H m-
ClPh

Me 8 88 180–
182

8 7h p-
ClPh

H Ph Ph 10 80 210–
213

9 7i Ph Me Ph Me 11 70 177–
179

10 7j Ph Me p-
MePh

Me 10 75 154–
156

11 7k Ph Me m-
ClPh

Me 8 74 187–
189

12 7l Ph Me Ph Ph 12 68 170–
174

13 7m p-
ClPh

Me Ph Me 10 79 180–
182

14 7n p-
ClPh

Me p-
MePh

Me 9 83 200–
203

15 7o p-
ClPh

Me m-
ClPh

Me 8 80 197–
200

16 7p p-
ClPh

Me Ph Ph 11 72 190–
192

a Uncorrected.

Scheme 2. Reagents and conditions: (i) TBA-H
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(4a–d). The products, thus obtained via this cascade sequence are
interesting substrates and may possess some bioprofiles. Substi-
tuted salicylaldehydes 3a–d were prepared9c,24 from aryldiazenyl
salicylaldehydes 2a–b and allyl or prenyl bromide in dry DMF in
the presence of anhydrous K2CO3 at room temperature (Scheme
1). Substrates 2a–b were prepared by a known coupling reaction.25

DKHDA reaction of the compound 3a/3c to 4a was used as a
model to optimize the condition. The experimental results are
summarized in Table 1.

As a first case, we examined the catalyst-free domino reaction
of substrates 3a/3c to 4a by refluxing the substrates in acetonitrile,
ethanol, and xylene for 24 h (entries 1, 2 and 3, respectively). A
trace amount of cyclized product was obtained when xylene was
used (entry 3) and no product formation was observed with the
other two solvents. When we employed TBA-HS as a catalyst, we
noticed an improvement in the yields from both the substrates
3a and 3c. In the presence of 10 mol % TBA-HS, the substrate 3a
gave 40% yield of the cyclized product under xylene reflux (entry
6), while the substrate 3c gave 65% yield under acetonitrile reflux
(entry 4). Catalyst loading of 25 mol % was found to be optimal to
afford the cycloadduct in higher yields (entries 7 and 9). The opti-
mized conditions26 were applied to obtain other domino products
7a–p (Table 2).

The spectroscopic data27 of all the compounds 7a–p are in good
agreement with their proposed cis-fused geometry. The 1H NMR
showed a doublet in d 4.2–4.8 ppm range (J = 4–5 Hz) which is
attributed to Hb proton and multiplets in d 2.2–2.8 ppm range
assignable to Ha. Furthermore, the nuclear Overhauser effect spec-
troscopy (NOESY) and the double quantum filtered correlation
spectroscopy (DQFCOSY) data support the proposed structures of
7i and 7j (Fig. 1).

A probable mechanism is presented in Scheme 2. The reaction
proceeds through simultaneous generation of two intermediates,
a Knoevenagel adduct 5 and Knoevenagel–Michael adduct28 6
(Scheme 2). They are the common products obtained in TBA-HS
mediated reaction. It proceeds with an attack of an acid catalyst
on pyrazolone (4a–d) generating a reactive tetrabutylammonium
pyrazolonate. It then reacts with aldehyde substrates (3a–d) to
form the intermediates, 5 and 6. The spectroscopic data29 of 6k
are in good agreement with its proposed structure. Under the influ-
ence of heat, light, or long time storage, it was converted into inter-
mediates 5k and 4c (Scheme 3). When compound 6k was
subsequently refluxed, it gave cycloadduct 7k. Thus, it was con-
cluded that the initially formed Michael adduct gets converted into
the Knoevenagel intermediate on subsequent reflux.

The stereochemistry of the reaction can be predicted by the
endo- and exo- orientations of the dienophile. There are four possi-
ble transition structures namely, exo-E-anti, endo-Z-anti, endo-E-
S (25 mol %), xylene or acetonitrile, reflux.



Scheme 3. Effect of light or heat on stability of compound 6k.

Scheme 4. The reduction of diazenyl group and formation of amino benzopyrane 9.
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syn, and exo-Z-syn.7h The 1H NMR study showed that the reaction
product is mainly of its cis-isomeric form even though the two
pathways (a and b) are possible (Scheme 2). Allyl moiety based
substrates required higher temperature compared to the one con-
taining prenyl moiety. These observations are well supported by
the fact that the HOMO–LUMO gap30 for diene and dienophile
interaction is relatively less in the case of prenyl moiety. Therefore,
it is assumed that the interaction of prenyl dienophile is more
favorable.7f

As part of our preliminary studies, we could isolate the amino-
chromene 9 by reducing 7n (Scheme 4). The formation of this novel
product 9 has been confirmed by spectroscopic data.31

In summary, we have described a one pot synthesis of novel
chromeno[40,30:4,5]pyrano[2,3-c]pyrazoles, by TBA-HS mediated
DKHDA reaction. The advantages of this methodology are the easy
work-up procedure, high stereoselectivity and isolation of the
product in high yield with excellent purity. Furthermore, TBA-HS
is a nontoxic, noncorrosive, commercially available, and inexpen-
sive catalyst.
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