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ABSTRACT: A catalytic ester transfer reaction of aromatic esters with aryl halides/arenols was developed. The present reaction can
transfer an ester functional group from certain aromatic esters to haloarenes. This ester transfer reaction involves two oxidative
additionsone from the C−C bond of the aromatic ester and one from the C−halogen bond of haloarenesonto a nickel catalyst.
The utilization of a Ni/dcypt catalyst capable of cleaving both chemical bonds was a key for the reaction progress. Furthermore,
naphthol-based aryl electrophiles were also applicable to the catalytic system via C−O bond activation.
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Development of novel substitution reactions of aromatic
cores is a continually important topic in organic

synthesis. Classically, C−N or C−Br bonds on arenes have
been constructed by an electrophilic aromatic substitution.
Cross-coupling-based strategies such as Buchwald−Hartwig
amination and Ullmann condensation have also been utilized
for this purpose.1 For the synthesis of arenecarboxylic acids
and related esters, the carbonylative reactions using CO have
found wide use (Figure 1A).2 However, this gaseous
manipulation is preferably avoided because of its cumbersome
reaction setup and toxicity. Several alternative methods using
safety CO surrogates have been developed to synthesize
aromatic esters while avoiding the handling of CO gas.3

Meanwhile, functional group metathesis reactions have been
emerging as a conceptually distinct synthetic strategy.4 In
2018, Morandi and Arndtsen independently reported a
functional group metathesis of aroyl chlorides and aryl iodides
catalyzed by a Pd-Xantphos complex (Figure 1B).5 These
methods used an oxidative addition and a reductive
elimination of two distinct chemical bonds (C−I and C−Cl)
as a reversible chemical process. Enlightened by these reports,
we turned our attention to use aromatic esters instead of
moisture-sensitive aroyl chlorides. Our campaign to study the
decarbonylative transformation of aromatic esters revealed that
the u se o f N i - o r Pd -dcyp t (dcyp t : 3 , 4 -b i s -

(dicyclohexylphosphino)thiophene) catalysts was effective to
formally cleave the C−C bond of aromatic esters through
oxidative additions of the C(acyl)−O bond followed by
decarbonylation.6,7 Moreover, the same catalysts also enable
the oxidative addition of aryl halides or arenols.8 Thus, there is
an opportunity to extend the functional group metathesis
strategy to the reaction of aromatic esters with aryl halides as
well as arenols. Such a reaction would also give aromatic esters
as chemically stable products compared with the correspond-
ing aroyl chlorides. We herein report our efforts toward the
development of an ester transfer reaction from aromatic esters
to haloarenes as well as arenols.
At the outset, we optimized reaction conditions by using 4-

bromoanisole (1A) and phenyl nicotinate (2a) as model
substrates (Table 1). In line with our hypothesis, under the
influence of Ni(OAc)2/dcypt catalyst with Zn and Na2CO3,
the reaction of 1A and 2a gave the ester transferred product 3A
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in 44% yield (Table 1, entry 1). A structurally related
t h i o p h e n e - b a s e d l i g a n d d c p p t ( 3 , 4 - b i s -
(dicyclopentylphosphino)thiophene), also produced 3A in a
slightly lower yield (Table 1, entry 2). Interestingly, although
dcype (1,2-bis(dicyclohexylphosphino)ethane) was known to
affect decarbonylative couplings,6 this was totally ineffective in

the present reaction (Table 1, entry 3). This is maybe due to
the lower stability of generating Ni/dcype complex than Ni/
dcypt. Xantphos, which is effective for Morandi’s as well as
Arndtsen’s transfer reaction,5 did not lead to the production of
3A (Table 1, entry 4). Other typical phosphine ligands such as
dppp and PPh3 did not work at all in the present reaction
(Table 1, entries 5 and 6). Although NHC-based ligands can
affect the decarbonylative reaction of aromatic esters,6 IPr did
not deliver 3A (Table 1, entry 7). Through the screening of
ligands, unfortunately, Ar−Br 4 as a possible coproduct was
not observed. In this study, Zn powder may act as a reductant
of Ni(II) to generate the active Ni(0) species. A similar effect
can be expected for Sn and Mn powder; however, they
decreased the reaction yield (Table 1, entries 8 and 9).9

Although the reaction does not seem to require the base, the
addition of Na2CO3 improved the reaction yield (Table 1,
entries 1, 10−12). Of note, we did not obtain 3A when
palladium catalysis was used instead of nickel (Table 1, entry
13). Further improvement was achieved by the addition of
DMAP, in which 3A was generated in 60% yield (Table 1,
entry 14). Using another pyridine base, 2,6-lutidine also
resulted in a slight improvement but not as much as when
using DMAP (Table 1, entry 15). Other nucleophilic nitrogen
bases, DBU and DABCO, did not increase the reaction yield
(Table 1, entries 16 and 17). The reaction conditions without
Zn did not generate 3A at all (Table 1, entry 18). Through the
above studies, we identified the optimized conditions as
Ni(OAc)2/dcypt/Zn/Na2CO3/DMAP catalysis.
With the optimized conditions, we next investigated the

substrate scope using 2a as an ester source (Scheme 1). First,
p-anisyl iodide (1A′) instead of bromide (1A) was subjected to
the optimized conditions; however, it was revealed that
iodoarenes were not suitable, resulting in lower product
yielding (16% yield). Electron-donating aryl bromides
generally reacted to give the corresponding aromatic esters.
m-Anisyl bromide (1B) reacted less efficiently than p-anisyl
bromide (1A). Several aryl bromides with alkoxy groups
including phenoxy were reacted to give the corresponding
aromatic esters in moderate yields (3C−3G). Less electron-
rich aryl bromides such as m- or p-alkylphenyl bromides also
underwent to the present reaction, albeit affording lower yields
of products 3H−3L when compared with the alkoxylated
arenes. Unfortunately, at this stage, o-substituted aryl bromides
showed poor reactivity, affording the corresponding product in
less than 20% yield (see the Supporting Information). Acetal
(3M) and fluoro (3N) groups were tolerated under the
reaction conditions. Triarylamine-based aromatic ester 3P was
successfully synthesized by the present method in 30% yield.
Furthermore, naphthalene ester 3Q was also produced.
A plausible mechanism of this reaction is illustrated in

Scheme 2. Ni/dcypt cleaves the C−Br bond of an aryl bromide
and the C−C bond of phenyl nicotinate (2a) to generate Ar−
Ni−Br (B) and Py−Ni(CO)−OPh (D) species, respectively.
Similarly to the Arndtsen’s work,5 these intermediates could
transmetalate to give Ar−Ni(CO)−OPh (C) and Py−Ni−Br
(E). Reductive elimination from C would give ester transferred
product 3. On the other hand, reductive elimination from E
could release bromopyridine 4 as coproduct. However, we did
not detect 4 through this study. Crude analysis informed us
that the reaction between 1A and 2a under the optimized
conditions generated 3-(4-anisyl)pyridine in 20% yield along
with a trace amount 3,3′-bipyiridine as byproducts. This result
would indicate that complex E reacts with B or E with the

Figure 1. Catalytic synthesis of aromatic carboxylates. (A)
Alkoxycarbonylation, (B) functional group transfer using acyl
chlorides, and (C) direct ester transfer.

Table 1. Optimization of Reaction Conditionsa

entry ligand M base additive 3A/%b

1 dcypt Zn Na2CO3 − 44
2 dcppt Zn Na2CO3 − 36
3 dcype Zn Na2CO3 − 0
4 Xantphos Zn Na2CO3 − 0
5 dppp Zn Na2CO3 − 0
6 PPh3 Zn Na2CO3 − 0
7c IPr·HCl Zn Na2CO3 − 0
8 dcypt Sn Na2CO3 − 17
9 dcypt Mn Na2CO3 − 34
10 dcypt Zn CaCO3 − 26
11 dcypt Zn NaOAc − 28
12 dcypt Zn none − 22
13d dcypt Zn Na2CO3 − 0
14 dcypt Zn Na2CO3 DMAP 60
15 dcypt Zn Na2CO3 lutidine 45
16 dcypt Zn Na2CO3 DBU 37
17 dcypt Zn Na2CO3 DABCO 33
18 dcypt − Na2CO3 DMAP 0

aConditions: 1A (0.20 mmol), 2a (0.20 mmol), Ni(OAc)2 (10 mol
%), ligand (bidentate, 20 mol %; monodentate, 40 mol %), M (0.60
equiv), base (1.5 equiv), additive (1.0 equiv), toluene (0.80 mL), 150
°C, 12 h. bGC yield. cNaOt-Bu (50 mol %) was added. dPd(OAc)2
(10 mol %) was used instead of Ni(OAc)2.
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action of Zn to give nickel(III)-diaryl species.10 From this
nickel species, reductive elimination occurs to give 3-
arylpyridines as well as Ni(I), which would be reduced by
Zn to regenerate Ni(0).11,12 Meanwhile, the role of DMAP in
this mechanism is unclear at this stage.13 As one of the possible
roles, we speculate that DMAP can form acid−base pair with
in situ generating ZnBr2, which might lead to catalyst
deactivation.14 This is consistent with that the addition of
ZnBr2 into the optimized conditions without DMAP resulted
in decreasing yield of 3A (see the Supporting Information for
details).
In addition to bromoarenes, chloroarenes were found to be

reactive in the present reaction (Scheme 3A). 2-Chloronaph-
thalene (5) participated in this reaction, giving 3Q in
acceptable yield (50% yield). Furthermore, the Ni/dcypt

Scheme 1. Substrate Scopea

aConditions: 1 (0.20 mmol), 2a (0.20 mmol), Ni(OAc)2 (10 mol %), dcypt (20 mol %), Zn powder (0.60 equiv), Na2CO3 (1.5 equiv), DMAP
(1.0 equiv), toluene (0.80 mL), 150 °C, 12 h. Numbers in parentheses show NMR yield. bp-Anisyl iodide (1A′) was used instead of bromide 1A.
cInseparable mixture with phenyl benzoate. Isolated yields were determined by 1H NMR ratio. d170 °C, 24 h.

Scheme 2. Proposed Mechanism Scheme 3. Ester Transfer using Aryl Chlorides and Arenols
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catalyst is known to oxidatively add into C−O bonds.15

Hypothesizing that C−O-based aryl electrophiles can partic-
ipate in the present system, we subjected several C−O aryl
electrophiles with o-tolyl ester 2b (Scheme 3B).16

Although the yields were moderate, we found that pivalates
and carbamates underwent the ester transfer reaction under
slightly modified conditions. With the success utilizing aryl
pivalates in the present system, we wondered that direct
esterification of Ar−OH would be possible. As expected,
simple arenol 8 could be transformed to aromatic esters 3R in
44% yield (Scheme 3C). In this case, 2b occupies dual roles;
one is an ester source, and the other is an activator of the Ar−
OH group via the in situ formation of ester 9. Subsequent
oxidative addition of 9 (C(aryl)−O) to Ni/dcypt, followed by
transmetalation between 10 and 11 produced 3R. In this
arenol-based reaction, we did not obtain the corresponding 3-
hydroxypyridine derivatives at all.
In summary, we have developed a Ni-catalyzed ester transfer

reaction between aryl halides and aromatic esters. As an
alternative to aryl halides, we successfully utilized phenol-based
aryl electrophiles to give ester-transferred product as well.
Although the yield and scope of the method have room for
improvement, the present result, particularly the utilization of
Ar−OH as a starting material, could find use in synthetic
chemistry as a way of creating valuable products from
inexpensive feedstocks. Further studies focusing on the
development of other ester transfer reactions and elucidation
of the mechanism are underway in our laboratory.
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