December 1992 SYNTHESIS 1295

New Synthesis of Amines and Amides Mediated by Additions of Benzotriazole to Enamines and Enamides and Transformations of the Adducts

Alan R. Katritzky,* Simona Jurczyk, Bogumila Rachwal, Stanislaw Rachwal, Irina Shcherbakova, Konstantina Yannakopoulou

Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611-2046, USA Received 10 February 1992; revised 20 April 1992

Adducts of type N-C-Bt can be obtained in which the nitrogen atom is derived from an N-vinyl non-basic heterocyclic NH compound or a secondary amide, or in which the central carbon is derived from a ketone by the addition of benzotriazole to an enamine or enamide. Thus, 9-vinylcarbazole, 1-vinylpyrrolidin-2-one and 1-(1-ethylprop-1-enyl)pyrrolidine afforded the corresponding N-(1-benzotriazolylalkyl)-substituted compounds which could be alkylated by various methods in good yield. The range of benzotriazole mediated syntheses of amines and amides is significantly extended in this way.

Following the initial discovery by Bruylants^{1,2} in 1924, and the independant work by Stevens,³ that α -aminonitriles **2a** are susceptible to nucleophilic substitution of the cyano group by an alkyl or an aryl from a Grignard reagent, aminonitriles **2a** have been extensively applied in organic synthesis. Recent applications have involved the development of preparative methods for unsymmetrical secondary amines,⁴ N_iN_i -dialkylallylamines,⁵ tetrahydropyridines,^{6,7} 4-anilinopiperidines,⁸ enamines,⁹ ketones^{9,10} and the synthesis of a wide variety of alkaloids.^{11–15}

Extensive work in our laboratory has shown that benzotriazolyl derivatives of this type, 2b, 16 behave similarly to the cyano derivatives 2a, while possessing significant advantages: serious limitations of the Bruylants reaction are toxicity of the reagent and possibility of an alternative attack of the nucleophile on the nitrile carbon atom.³

1-(α -Aminoalkyl)benzotriazoles of type **2b** (Scheme 1), prepared by the condensation of benzotriazole, an amine and an aldehyde under a variety of conditions (mainly depending on the nature of the amine), have become important intermediates for the synthesis of a wide range of compounds. ¹⁶ Similar condensation products can be prepared from amides (**2b**, R³ = COR), ¹⁷ thioamides (**2b**, R³ = CSR) ¹⁸ and from sulfonamides (**2b**, R³ = SO₂R). ¹⁹

Scheme 1

This paper presents an alternative route to compounds of type 2b by the addition of benzotriazole to enamines and enamides 3 and illustrates the synthetic utility of the compounds 2b formed in this manner. Transformations of type $3 \rightarrow 2b$ are analogous to the previously reported preparation of $1-(\alpha-alkoxyalkyl)$ benzotriazoles by addi-

tion of benzotriazole to vinyl ethers.²⁰ The new route $3 \rightarrow 2b$ significantly extends the types of nitrogen compounds from which derivatives 2b can be prepared as follows:

- (a) to almost non-basic secondary amines such as carbazole (which do not react in the manner $1 \rightarrow 2b$),
- (b) to ketones such as diethyl ketone (with the exception of some cycloalkanones, ketones generally do not undergo condensations of type $1 \rightarrow 2b^{21}$),
- (c) to N-substituted amides such as pyrrolidone (with the exception of formamides, N-substituted amides do not undergo the condensation $1 \rightarrow 2b^{22}$).

Analogous cyano derivatives, especially of categories (a) and (c), are also difficult in preparation. Thus, α -methyl-9-carbazoleacetonitrile was obtained in 8% yield by irradiation of a mixture of carbazole and acetonitrile, ²³ and α -methyl-2-oxo-1-pyrrolidineacetonitrile was prepared by alkylation of a sodium salt of 2-pyrrolidone with α -chloropropionitrile. ²⁴ We now report one example of the preparation of a compound of type **2b** from each of the categories (a)–(c) and their further reactions with nucleophiles.

9-Vinylcarbazole (4), reacted with benzotriazole to form the adduct 5 (Scheme 2). In refluxing chloroform in the presence of a catalytic amount of p-toluenesulfonic acid, the addition was rapid and was complete in a few minutes. Compound 5 successfully underwent a variety of transformations of the types previously reported for derivatives of structure 2 prepared by the earlier methods, although the conditions required were somewhat more stringent. Thus, 5 was reduced with sodium borohydride at 150 °C to give 9-ethylcarbazole (6) in almost quantitative yield. Reactions of 5 with the Grignard reagents, butylmagnesium bromide and benzylmagnesium chloride in benzene/diethyl ether gave 9-alkylcarbazoles 7 and 8, in 60 and 36% yields, respectively. Substitution of the benzotriazolyl moiety with thiophenol catalyzed by zinc bromide produced the thio derivative 9.

Benzotriazole adds rapidly to the pyrrolidine enamine of diethyl ketone, 10, affording the adduct 11 (Scheme 3). The ¹H NMR spectrum of an equimolar mixture of enamine 10 and benzotriazole taken 10 minutes after the compounds were dissolved in deuteriochloroform showed the presence of no starting materials. The equilibrium 11 ≠ 12 strongly favors the benzotriazol-2-yl adduct 11. The NMR spectra showed only signals for this form, ²⁵ but slight broadening suggested a minor contribution of 12 to the mixture. Compound 11 undergoes spontaneous decomposition in moist air to pentan-3-one, pyrrolidine and benzotriazole. Reactions with Grignard reagents proceeded readily at room temperature producing amines

Scheme 2

13 in good yields. This type of reaction should be of general synthetic application as a method of *N*-alkylation of secondary amines with the introduction of tertiary alkyl groups, a transformations which cannot be achieved with tertiary alkyl halides, and for which most other methods fail.

Table 1. Yields and Physical Data of the New Compounds Prepared

Com- pound		mp (°C) or bp (°C)	Molecular Formula ^a	MS m/z (%)
5	81	156–157	C ₂₀ H ₁₆ N ₄ (312.4)	312 (M ⁺ , 38), 268 (15), 241 (12), 194 (52), 186 (49), 167 (33), 146 (100)
7	60	138/0.18	C ₁₈ H ₂₁ N (251.4)	251 (M ⁺ , 28), 195 (14), 194 (100), 167 (16)
8	36	175/0.15	$C_{21}H_{19}N$ (285.4)	286 (5), 285 (M ⁺ , 20), 195 (21), 194 (100), 193 (5), 167
9	56	95-96	C ₂₀ H ₁₇ NS (303.4)	303 (M ⁺ , 2), 195 (16), 194 (100), 193 (6), 192 (5), 167 (8)
13a	58	90/2.8	$C_{13}H_{27}N$ (197.4)	197 (M ⁺ , 1), 168 (100), 140 (62), 124 (5), 112 (10)
13b	57	87/0.2	$C_{15}H_{23}N$ (217.4)	217 (M ⁺ , 15), 188 (100), 140 (37), 130 (15), 117 (21)
15	98	74–75	$C_{12}H_{14}N_4O$ (230.3)	230 (M ⁺ , 3), 119 (8), 112 (100)
16	91	119/0.22	C ₁₂ H ₁₅ NOS (221.3)	222 (M ⁺ +1, 22), 219 (14), 181 (16), 137 (13), 131.0 (12), 113 (6), 112 (100)
17	38	125/0.35	C ₁₂ H ₁₅ NO (189.3)	189 (M ⁺ , 100), 174 (82), 160 (39), 146 (20), 131 (10), 105 (62), 104 (47)
18	88	oil	C ₂₀ H ₂₃ NO (277.2)	277 (M ⁺ , 21), 186 (100), 170 (16), 160 (19), 118 (20), 91 (30)
19	79	oil	C ₁₈ H ₂₁ NO (267.4)	249 (14), 234 (8), 146 (22) 145 (64), 144 (100), 105 (31)

^a The microanalyses (5–16 and 19) or HRMS (17 and 18) data were in satisfactory agreement with the calculated values: $C \pm 0.43$, $H \pm 0.24$, $N \pm 0.11$; m/z + 0.0002 (M^+).

Rapid addition of benzotriazole to 1-vinylpyrrolidin-2-one (14) in chloroform in the presence of a catalytic amount of p-toluenesulfonic acid afforded adduct 15 (Scheme 4) in an almost quantitative yield. Substitution of the benzotriazolyl group of 15 by thiophenol proceeded smoothly in diethyl ether in the presence of zinc bromide producing the thioalkyl derivative 16 in a high

Scheme 4

Table 2. NMR Data of the New Compounds Prepared

Com-	¹H NMR (CDCl ₃ /TMS)	¹³ C NMR (CDCl ₃ /TMS)
pound	δ , J (Hz)	δ
5	2.62 (d, 3H, $J = 6.8$, H-2), 6.97 (d, 1H, $J = 8.3$), 7.14 (t, 1H,	17.8 (C-2), 64.9 (C-1), 109.5 (2 C), 109.6, 120.0, 120.4 (2 C),
	J = 8.3), 7.25 (m, 3H), 7.40 (m, 3H), 7.50 (d, 2H, $J = 8.1$), 8.01	120.7 (2 C), 123.8 (2 C), 124.3, 126.4 (2 C), 127.9, 132.7, 138.5
7	(d, 1H, J = 8.2), 8.06 (d, 1H, J = 7.8)	(2C), 146.5 (Bt)
,	0.72 (t, 3 H, J = 7.2 , H-6), 0.96 - 1.25 (m, 4 H, H-5, H-4), 1.58 (d, 3 H, J = 7.0 , H-1), 1.89 (m, 1 H, H-3), 2.22 (m, 1 H, H-3), 4.67 (m,	14.3 (C-6), 19.7 (C-1), 22.8 (C-5), 29.5 (C-4), 35.0 (C-3), 51.7
	1H, H-2, $7.14-7.45$ (m, $6H$), 8.08 (d, $2H, J=7.0$)	(C-2), 110.4 (2C), 118.9 (2C), 120.7 (2C), 123.6 (2C), 125.7 (2C), 140.2 (2C, carbazolyl)
8	1.66 (d, 3 H, $J = 7.0$, H-3), 3.23 (dd, 1 H, $J = 7.3$, 13.4, H-1), 3.38	18.6 (C-3), 41.2 (C-1), 53.2 (C-2), 110.2 (2C), 118.6 (2C), 120.2
	(dd, 1H, $J = 7.6$, 13.5, H-1), 4.91 (m, 1H, H-2), 7.19 (m, 11H),	(2C), 123.2 (2C), 125.3 (2C), 126.4, 128.3 (2C), 128.8 (2C),
	8.05 (d, 2H, $J = 7.8$, carbazolyl)	138.7, 139.6 (2°C), 126.1, 126.5 (2°C), 126.6 (2°C),
9	2.02 (d, 3H, J = 7.2, H-2), 6.14 (q, 1H, J = 7.2, H-1), 6.88-7.50	20.6 (C-2), 59.9 (C-1), 110.5 (2 C), 119.3 (2 C), 120.1 (2 C), 123.5
	(m, 11 H), 8.02 (d, 2 H, J = 7.8)	(2C), 125.3 (2C), 128.1 (Ph), 128.6 (2C, Ph), 133.0 (Ph), 133.8
10.	0.00// (11 1 7 7 7 7) 0.00// 0.77 7)	(2C, Ph), 139.4 (2C)
13a	0.83 (t, 6H, J = 7.5, Et), 0.90 (m, 3H, Bu), 1.18 (m, 4H, Bu), 1.32	8.9 (2C, Et), 14.1 (Bu), 23.8 (Bu), 24.1 (2 C, Et), 26.6 (Bu), 27.5
	(m, 2H, Bu), 1.47 (q, 4H, J = 7.5, Et), 1.68 (m, 4H, pyrrole), 2.74 (m, 4H, pyrrole)	(2C, pyrrole), 34.6 (Bu), 45.2 (2C, pyrrole), 58.1 (quaternary)
13b	0.83 (t, 6 H, J = 7.3, Et), 1.58 (m, 4 H, pyrrole), 1.98 (m, 4 H, Et),	9.5 (2C, Et) 22.2 (2C, Et) 26.7 (2C,
	2.52 (m, 4H, pyrrole), 7.23 (m, 1H, Ph), 7.35 (m, 4H, Ph)	8.5 (2C, Et), 23.3 (2C, Et), 26.7 (2C, pyrrolidine), 45.4 (2C, pyrrolidine), 62.6 (quaternary), 126.0 (Ph), 127.3 (2C, Ph),
	(=, -=, p, -==, , (m, 111, 1 m)	127.7 (2 C, Ph), 140.7 (Ph)
15	1.95 (m, 2H, pyr. CH_2N), 2.13 (d, 3H, $J = 6.9$, Me), 2.39 (m,	17.0 (Me), 17.7, 30.9, 41.8, 59.6 (NCHN), 110.5, 119.6, 124.4,
	2H), 3.12 (ddd, 1H, $J = 5.5$, 8.6, 14.0), 3.63 (ddd, 1H, $J = 5.9$,	127.8, 132.4, 145.8, 175.1 (C=O)
	8.2, 14.3), 7.00 (q, 1 H, $J = 6.9$, NCHN), 7.38 (1 H, ddd, $J = 1.2$,	
	6.9, 8.2), 7.50 (ddd, J = 1.1, 6.9, 8.1), 7.83 (ddd, 1H, J = 0.9, 1.0, 8.4), 8.05 (ddd, J = 0.4, 4.6, 4.1), 7.83 (ddd, 1H, J = 0.9, 1.0), 8.40 (ddd, J = 0.4, 4.6, 4.1), 7.83 (ddd, J = 0.9, 1.0), 8.41 (ddd, J = 0.9, 1.0), 8.41 (ddd, J = 0.9, 1.0), 8.41 (ddd, J = 0.9, 1.0), 8.42 (ddd, J = 0.9, 1.0), 8.43 (ddd,	
16	8.4), 8.05 (ddd, $J = 1.0, 1.1, 8.1$)	47 4 (CVV.) 40 7 24 0 44 4 47 7 7 7 7 7 7 7 7 7 7 7 7 7 7
10	1.48 (d, 3 H, $J = 6.9$, CH ₃), 1.71–1.95 (m, 2 H), 2.01–2.31 (m, 2 H, CH ₂), 3.25–3.58 (m, 2 H), 5.88 (q, 1 H, $J = 6.9$, NCHS), 7.21–	17.4 (CH ₃), 18.7, 31.0, 41.1 (CH ₂), 54.2 (CH), 127.3, 128.6
	7.41 (m, 5H) 7.21	(2C), 132.0 (2C), 132.8, 174.2 (C=O)
17	1.51 (d, 3 H, $J = 7.2$, CH ₃), 1.90 (m, 2 H), 2.40 (m, 2 H), 2.95 (m,	15.9 (CH ₃), 17.6, 31.1, 42.0, 48.6 (NCHPh), 126.7 (2C), 127.1,
	1H), 3.28 (m, 1H), 5.50 (q, 1H, $J = 7.2$, NCHPh), 7.30 (m, 5H)	128.2 (2 C), 140.0, 174.1 (C=O)
18	1.11 (d, 3H, $J = 6.6$, H-3), 1.77 (m, 2H), 2.63 (dd, 1H, $J = 8.5$.	16.1, 22.0, 31.4, 39.3, 45.1, 50.8, 90.9 (PhCH=), 121.9, 121.9,
	13.4, H-1), 2.76 (t, 2H, $J = 7.3$), 2.93 (dd, 1H, $J = 5.4$, 13.4, H-1),	126.0 (2 C), 128.1 (2 C), 128.3 (2 C), 129.0 (2 C), 139.4, 140.9,
	3.11 (m, 2H), 3.89 (m, 1H, H-2), 5.16 (s, 1H, PhCH=), 6.90 (m,	148.8
19	1H), 7.18 (m, 9H)	20.0 (0**) 20.0 (
17	1.31 (d, 3H, $J = 6.6$, CH ₃), 1.88 (m, 2H, H-3), 2.46 (dt, 1H, $J = 11.7, 7.1, \text{H-4}$), 2.58 (dt, 1H, $J = 11.6, 6.8, \text{H-4}$), 2.96 (m, 2H,	22.8 (CH ₃), 23.3 (C-3), 35.0 (C-2), 45.7 (C-4), 56.9 (PhCH),
	J = 11.7, $J = 11.6$, $J =$	125.3 (2 C), 125.6, 126.7 (2 C), 127.1 (2 C), 127.2 (2 C), 127.4,
	2H, $J = 7.1$)	135.7, 144.1, 200.0 (C-1)

yield. Treatment of adduct 15 with phenylzinc bromide replaced the benzotriazolyl residue by the phenyl group giving derivative 17. Organomagnesium reagents rapidly attacked the carbonyl group of 15 even under mild conditions (in diethyl ether), then the less reactive benzotriazolyl substituent was substituted by a benzyl or a phenyl group. The obtained 2-hydroxypyrrolidines were unstable however, and during the workup eliminated water to give enamine 18 or underwent the C-N bond cleavage to give amino-substituted ketone 19.

1-[1-(Carbazol-9-yl)ethyl]benzotriazole (5):

A solution of 9-vinylcarbazole (4.83 g, 25 mmol), benzotriazole (2.97 g, 25 mmol) and p-TsOH (0.10 g) in CHCl₃ (20 mL) was heated at reflux for 10 min. The mixture was poured into ice-water (50 mL) and extracted with CHCl₃. The extract was washed with 10% Na_2CO_3 followed by H_2O and dried (MgSO₄). Evaporation of the solvent under reduced pressure gave a glassy product which upon trituration with Et₂O and cooling overnight at 5°C in a fridge afforded the pure crystalline adduct (5.89 g, 76%), mp 147°C.

9-Ethylcarbazole (6):

A mixture of 5 (3.12 g, 10 mmol) and NaBH₄ (0.76 g, 20 mmol) was heated under N₂ in an oil bath at 150 °C for 7 h. The mixture was triturated with $\rm H_2O$ and extracted with CHCl₃. The organic phase

was washed with 10 % NaOH and dried (Na₂CO₃). Evaporation of the solvent afforded pure 6 (1.95 g, 95 %), mp 69-70 °C (Lit.²⁶ mp 68-70 °C).

9-(1-Methylpentyl)carbazole (7):

To a solution of the Grignard reagent prepared from Mg (0.17 g, 7 mmol), I_2 (0.25 g, 1 mmol), and BuBr (0.96 g, 7 mmol) in dry Et₂O (7 mL) was added dropwise a solution of **5** (1.56 g, 5 mmol) in dry benzene (20 mL). The mixture was refluxed for 2 h, and kept at r.t. overnight. The product was hydrolyzed with 10 % HCl (20 mL), and extracted with CHCl₃ (2 × 35 mL). The extract was washed with H₂O and dried (Na₂SO₄). Evaporation of the solvent gave a crude oily product, which was purified by column chromatography (silica gel, CH₂Cl₂/MeOH, 10:1) to give 0.76 g (60 %) of pure 7 as a light yellow oil.

9-(1-Methyl-2-phenylethyl)carbazole (8):

Adduct 5 (1.56 g, 5 mmol) was treated with a Grignard reagent prepared from Mg (0.17 g, 7 mmol), I_2 (0.25 g, 1 mmol), and BnCl (0.89 g, 7 mmol) under the conditions described above to give pure **8**, (0.52 g, 36%) as a light yellow oil.

9-[1-(Phenylthio)ethyl]carbazole (9):

To a solution of 5 (1.56 g, 5 mmol) and PhSH (2.0 mL, 19.5 mmol) in dry $\rm Et_2O$ (50 mL) stirred under $\rm N_2$ was added a solution of $\rm ZnBr_2$ (1.1 g, 5 mmol) in dry $\rm Et_2O$ (3 mL). The mixture was heated at reflux under $\rm N_2$ for 24 h and cooled to r.t. After addition of benzene

1298 Papers SYNTHESIS

(30 mL) the mixture was washed with 5 % aq NaOH (2×50 mL) and H₂O (2×50 mL). The organic layer was dried (Na₂SO₄) and the solvent was evaporated. The residue was recrystallized from benzene/hexane (1:1) to give 9 (0.84 g, 56%) as colorless prisms.

2-[1-Ethyl-1-(pyrrolidin-1-yl)propyl]benzotriazole (11):

Enamine 10 (2.78 g, 20 mmol) was added to a solution of benzotriazole (2.38 g, 20 mmol) in dry Et_2O (20 mL) and stirred under N_2 for 30 min. Evaporation of the ether gave pure 11 as a glassy matter.

1-(1,1-Diethylpentyl)pyrrolidine (13a):

To a suspension of dry benzotriazole (4.00 g, 34 mmol) in dry $\rm Et_2O$ (20 mL), stirred under $\rm N_2$ was added enamine 10 (5 mL, 28 mmol). The mixture became a clear solution. After 10 min, the Grignard reagent prepared from Mg turnings (2.67 g, 110 mmol), $\rm I_2$ (1.00 g, 4 mmol) and BuBr (10.8 mL) was added portionwise. The mixture was stirred at 25 °C for 14 h, then poured into ice-water (200 mL) and stirred with 10% $\rm Na_2CO_3$ (200 mL) for 2 h. Extraction with $\rm CHCl_3$ (5 × 50 mL), drying ($\rm Na_2CO_3$) and evaporation of the $\rm CHCl_3$ under reduced pressure gave crude 13a. Vacuum distillation 90 °C/2.8 Torr gave analytical sample of 13a (3.21 g, 58 %).

1-(1-Ethyl-1-phenylpropyl)pyrrolidine (13b):

Following a procedure analogous to that for 13a with the Grignard reagent from bromobenzene $8.42 \, \text{mL}$ (80 mmol), Mg turnings (2.19 g, 90 mmol) and I₂ (1.27 g, 5 mmol), amine 13b was obtained as colorless oil (3.49 g, 57%).

1-[1-(2-oxopyrrolidin-1-yl)ethyl]benzotriazole (15):

From 1-vinyl-2-pyrrolidin-2-one (14; 11.1 g, 100 mmol), benzotriazole (11.9 g, 100 mmol) and p-TsOH (0.20 g, 1 mmol), by the procedure described for 5 adduct 15 was obtained as white needles.

1-[1-(Phenylthio)ethyl]pyrrolidin-2-one (16):

To a solution of 15 (1.15 g, 5 mmol) and PhSH (2.0 mL, 19.5 mmol) in dry Et₂O (50 mL) under N₂ was added a solution of ZnBr₂ (1.1 g, 5 mmol) in dry Et₂O (3 mL). The mixture was heated at reflux for 6 h, and then cooled to r.t. After addition of Et₂O (30 mL) the mixture was washed with 5% NaOH (2 × 50 mL) and H₂O (2 × 50 mL). The ethereal solution was dried (Na₂SO₄) and the solvent evaporated. The crude product was purified by column chromatography (silica gel, CH₂Cl₂/MeOH, 10:1) to yield 1.01 g (91%) of a yellow oil.

1-(1-Phenylethyl)pyrrolidin-2-one (17):

A solution of ZnBr₂ (6.75 g, 30 mmol) in dry Et₂O (20 mL) was added dropwise to a solution of the Grignard reagent prepared from Mg (0.72 g, 30 mmol), I₂ (0.5 g, 2 mmol) and bromobenzene (4.72 g, 30 mmol) in dry Et₂O (25 mL). After stirring at r. t. under N₂ for 2 h, the mixture was heated to boiling. A solution of **15** (4.60 g, 20 mmol) in dry toluene (50 mL) was added dropwise to the refluxing solution and the ether was simultaneously distilled out. The mixture was stirred at reflux for 4 d, cooled to r. t., poured into ice-water (75 mL), acidified with 10 % HCl (20 mL), and extracted with benzene (2 × 75 mL). The organic layer was washed with 10 % NaOH (2 × 35 mL) followed by H₂O (2 × 35 mL) and dried. Evaporation of the solvent gave a crude oily product, which was purified by column chromatography (silica gel, hexane/EtOAc, 3: 2) to give **17** (1.43 g, 38 %).

2-Benzylidene-1-(1-methyl-2-phenylethyl)pyrrolidine (18):

Adduct 15 (4.60 g, 20 mmol) was treated with BnMgCl (60 mmol) in Et₂O (30 mL) by the procedure used to prepare 13. Chromatography of the crude product (silica gel, toluene) gave pure enamine 18 (4.88 g, 88 %) as colorless oil.

1-Phenyl-4-(1-phenylethyl)amino-1-butanone (19):

Adduct 15 (9.21 g, 40 mmol) was treated with PhMgBr (120 mmol) in Et₂O (100 mL) by the procedure used to prepare 13. Chromatography of the crude product (silica gel, CHCl₃) gave pure 19 (8.65 g, 79%) as a yellowish oil.

- (1) Bruylants, P. Bull. Soc. Chim. Belg. 1924, 33, 467.
- (2) Bruylants, P. Bull. Sci. Acad. R. Belg. 1925, 11, 261.
- (3) Stevens, T.S.; Covan, J. M.; Mac Kinnon, J. J. Chem. Soc. 1931, 2568.
- (4) Overman, L.E.; Burk, R.M. Tetrahedron Lett. 1984, 25, 1635.
- (5) Ahlbrecht, H.; Dollinger, H. Synthesis, 1985, 743.
- (6) Flann, C.; Malone, T.C.; Overman, L.E. J. Am. Chem. Soc. 1987, 109, 6097.
- (7) Grierson, D.S.; Harris, M.; Husson, H.P. J. Am. Chem. Soc. 1980, 102, 1064.
- (8) Kudzma, L.V.; Spencer, H.K.; Severnak, S.A. Tetrahedron Lett. 1988, 29, 6827.
- (9) Ahlbrecht, H.; Raab, W.; Vonderheid, C. Synthesis 1979, 127.
- (10) Stork, G.; Ozorio, A.A.; Leong, A.Y.W. Tetrahedron Lett. 1978, 5175.
- (11) Teng, T.F.; Lin, J.H.; Yang, T.K. Heterocycles 1990, 31, 1201.
- (12) Guerrier, L.; Royer, J.; Grierson, D.S.; Husson, H.P. J. Am. Chem. Soc. 1983, 105, 7754.
- (13) Bonin, M.; Romero, J.R.; Grierson, D.S.; Husson, H.P. Tetrahedron Lett. 1982, 23, 3369.
- (14) Royer, J.; Husson, H.P. Tetrahedron Lett. 1985, 26, 1515.
- (15) Marco, J. L. J. Chem. Res. (S) 1988, 51.
- (16) Katritzky, A.R.; Rachwal, S.; Hitchings, G.J. Tetrahedron 1991, 47, 2683.
- (17) Katritzky, A. R.; Drewniak, M. J. Chem. Soc., Perkin Trans. 1 1988, 2339.
- (18) Katritzky, A.R.; Drewniak, M. Tetrahedron Lett. 1988, 29, 1755.
- (19) Katritzky, A.R.; Hughes, C.V. Chem. Scr. 1989, 29, 27.
- (20) Katritzky, A.R.; Rachwal, S.; Rachwal, B. J. Chem. Soc., Perkin Trans. 1 1990, 1717.
- (21) Katritzky, A.R.; Najzarek, Z.; Dega-Szafran, Z. Synthesis 1989, 66.
- (22) Katritzky, A.R.; Zhao, X.; Bernard, M.K.; Malhotra, N. unpublished results
- (23) Yamasaki, K.; Saito, I.; Matsuura, T. Tetrahedron Lett. 1975,
- (24) Glozman, O.M.; Voronina, T.A.; Orlova, E.K.; Meshcheryakova, L.M.; Rakhmankulova, I.Kh.; Kazanskaya, A.A.; Smirnov, L.D.; Rostock, A.; Siegemund, H. Khim. Farm. Zh. 1989, 23, 1147; Chem. Abstr. 1990, 112, 151594.
- (25) Lindsay Smith, J. R.; Sadd, J. S. J. Chem. Soc., Perkin Trans. 1 1975, 1181.
- (26) Campaigne, E.; Lake, R.D. J. Org. Chem. 1959, 24, 478.