

Chf., λ_{Max}^{Chf} 5.77, 5.85 μ . Anal. C₂₆H₄₀O₅: C, 72.19; H, 9.32; OCH₃, 14.34. Found: C, 72.21; H, 9.05; OCH₃, 13.99. Thioethyl derivative (VI, RSH-HBr-HOAc), m. p. 67.2-68.5°, [α]²²D +100° Chf. Anal. C₂₇H₄₂O₄S: C, 70.08; H, 9.15; S, 6.93. Found: C, 70.24; H, 9.32; S, 6.76. Desulfuration of VI with Raney nickel and hydrolysis afforded 3α , 9α -oxido-11-ketocholanic acid,⁶ m. p. 174.9–175.6°, $[\alpha]^{25}$ D +88.1° Chf.; no depression in mixed m. p. Wolff-Kishner re-duction of III gave $\Delta^{9(11)}$ -cholenic acid, m. p. 139.4–140.8°, $[\alpha]^{21}$ D +40.2° Chf., methyl ester,⁷ m. p. 67.4–68.2°, $[\alpha]^{22}$ D +42.8° Chf.; Clemmensen reduction gave 11-ketocholanic acid, methyl ester,⁷ m. p. $89.4-90.5^{\circ}$, $[\alpha]^{20}D + 48.1^{\circ}$ An.⁴ In acetic acid over platinum the hemiketal absorbed two moles of hydrogen and afforded two triol esters (V), isolated as the monoacetates. Methyl 3α -acetoxy- 9α , 11 β -dihydroxycholanate, m. p. 166–167°, $[\alpha]^{20}$ D +55.1° Chf., λ_{Max}^{Chf} 2.86, 5.88µ. Anal. C₂₇H₄₄O₆: C, 69.79; H, 9.54. Found: C, 70.22; H, 9.81. The 3β-epimer, m. p. 171.2-172.4°, $[\alpha]^{21}D$ +33.6° Chf., λ_{Max}^{Chf} 2.86, 5.85µ. Found: C, 69.99; H, 9.75. Chromic acid oxidation of the triol monoacetates with chromic acid gave the 11-ketones: 3α , m. p. 149-150.4°, $[\alpha]^{2^{2}D}$ +83.4° Chf. Anal. C₂₇H₄₂O₆: C, 70.10; H, 9.15. Found: C, 70.25; H, 9.16; 3β , m. p. 134–135.5° and 143.6–144.6°, $[\alpha]^{21}D$ $+58.2^{\circ}$ Chf., λ_{Max}^{Chf} 2.87, 5.89–5.94 μ . Clemmensen reduction of methyl 3α -acetoxy- 9α -hydroxy-11-ketocholanate, followed by esterification and acetylation gave methyl 3α -acetoxy-11-keto-cholanate,⁸ m. p. 129.4-131.8°, $[\alpha]^{22}$ D +59.4 =

 5° , not depressed by an authentic sample. The 9,11-oxide I is at present available only from methyl $\Delta^{9(11)}$ -lithocholenate, obtainable in moderate yield from desoxycholic acid, but a way is now open for utilization of such an intermediate for the synthesis of cortisone and a satisfactory

(8) Lardon and Reichstein, ibid., 20, 586 (1943).

method of preparation from other sources is being sought.

Converse Memorial Laboratory Harvard University Cambridge 38, Mass. Received April 15, 1950

COMPOSITION OF SYNTHETIC LIQUID FUELS. I. PRODUCT DISTRIBUTION AND ANALYSIS OF C₅-C₈ PARAFFIN ISOMERS FROM COBALT CATA-LYST

Sir:

We wish to call attention to the following diagram which was unfortunately omitted from our recent paper entitled "Composition of Synthetic Liquid Fuels. I. Product Distribution and Analysis of C_5-C_8 Paraffin Isomers from Cobalt Catalyst," THIS JOURNAL, 72, 1212 (1950).

Fig. 1.—Part **a** is the distribution of hydrocarbon products from atmospheric pressure tests of cobalt catalysts at about 190°C. Part **b** is a plot of Herington's term β_n against *n*, where β_n is the probability that a hydrocarbon radical on the surface will appear as product of chain length *n* rather than grow to higher molecular weight.

These graphs are necessary for a complete understanding of the discussion presented in that paper.

CENTRAL EXPERIMENT STATION	
BUREAU OF MINES	R. A. FRIEDEL
PITTSBURGH, PENNSYLVANIA	R. B. Anderson
RECEIVED APRIL 10, 1950 ¹	

(1) Manuscript originally received January 12, 1949.

⁽⁶⁾ Turner, Mattox, Engel, McKenzie and Kendall, J. Biol. Chem., 166, 345 (1946).

⁽⁷⁾ Reich and Reichstein, Helv. Chim. Acta, 26, 562 (1943).