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ABSTRACT: A novel and selective synthesis of 2-indolyl-3-
oxoindolines or 2-(2-aminophenyl)quinolines through tunable
dimerizations of 2-alkynylanilines is presented. Mechanistically,
the formation of 2-indolyl-3-oxoindolines involves a Cu(OAc)2/
O2-promoted intramolecular cyclization of 2-alkynylaniline to give
the required indole and 3H-indol-3-one intermediates followed by
the indolylation of 3H-indol-3-one. On the other hand, the
formation of 2-(2-aminophenyl)quinolines is believed to go
through a Bi(OTf)3/MesCO2H-catalyzed intermolecular N-nucle-
ophilic addition between two 2-alkynylaniline molecules to give an
enamine intermediate followed by its intramolecular C-nucleophilic addition/annulation. Notable features of these new methods
include easily obtainable substrates, economical catalysts and oxidant, controllable selectivity, and high versatility toward diverse
products.

2,2-Disubstituted indolin-3-one constitutes the scaffold of
numerous natural products such as Austamdine, Cephalinone,
LipidGreen, Aristotelon, Isatisine A, and Halichrome A,1

fluorescence probes, and solar-cell materials.2 Among different
kinds of 2,2-disubstituted indolin-3-one derivatives, 2-indolyl-
3-oxoindolines are particularly attractive. This is because they
not only have unique structural features but also demonstrate
potent antiviral activities.3 To date, several reliable methods for
the preparation of 2-indolyl-3-oxoindolines have been reported
by Ramana, Guchhait, Jiang, Liu, and many others.4−6

In the past several years, we have developed some methods
for the synthesis of biologically interesting heterocyclic
compounds.7 In this regard, we recently disclosed the synthesis
of indolo[3,2-c]quinolines and 3-(2-aminophenyl)quinolines
via [RhCp*Cl2]2-catalyzed dimerization of 2-alkynylanilines
under aerobic/anaerobic conditions (Schemes 1a and 1b).7d In

continuation of our study, we have studied the reaction of 2-
alkynylanilines under the catalysis of some non-noble metal
catalysts. Through this study, we serendipitously developed an
unrevealed selective synthesis of 2-indolyl-3-oxo-indolines or
2-(2-aminophenyl)quinolines from 2-alkynylanilines upon
finely tuning the reaction conditions (Scheme 1c, 1d, and
1e). Herein, we report the results obtained in this regard.
Initially, 1a was treated with Cu(OAc)2 in HFIP at 80 °C

under air for 20 h. From this reaction, 2a was obtained in 42%
yield (Table 1, entry 1). To increase the yield, several solvents
were tried, but they were inferior to HFIP in mediating this
reaction (entries 2−6). Next, several other Cu(II) salts were
used as catalyst (entries 7−11). Among them, Cu(OAc)2·H2O
gave the best yield of 2a (entry 7). Under the catalysis of
Cu(OTf)2 or CuSO4, to our surprise, 2a was formed only in a
trace amount, while 3a was obtained in 39% and 21% yield
(entries 10 and 11). To facilitate the formation of 2a, m-CPBA
or TBHP was used as oxidant. In these cases, however, the
yield of 2a decreased (entries 12 and 13). When this reaction
was run under O2, gratifyingly, the yield of 2a was improved to
61% (entry 14).
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Scheme 1. Diverse Reactions of 2-(Phenylethynyl)aniline
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After the optimal conditions for the formation of 2a had
been established, we moved our attention to 3a. We realized
that the formation of 3a is synthetically and mechanistically
attractive due to the following reasons: (1) This is the first
example in which 2-indolyl-3-oxo-indoline and 2-(2-amino
phenyl)quinoline derivatives were selectively formed from the
same acyclic substrate under slightly varied reaction con-
ditions. (2) Functionalized quinolines like 3a are among the
most useful pharmacophores of clinical drugs and most
ubiquitous building blocks of natural products.8 (3) Literature
searching revealed that the synthesis of 2-(2-aminophenyl)-
quinolines has only been sporadically reported, which are
mostly associated with the dimerization of 2-ethynylanilines. In
addition, these limited literature methods are only viable to
terminal alkynes. In those cases, the more sterically handed and
less reactive internal alkynes chose to undergo intramolecular
cyclization to give indoles rather than dimerization.9 To
develop this intriguing reaction into a general and efficient
synthesis of 2-(2-aminophenyl)quinolines from internal
alkynes, several parameters possibly affecting its efficiency
were screened. First, different Brønsted acids such as
trifluoroacetic acid (TFA), 2,4,6-trimethylbenzoic acid (Mes-
CO2H), and 1-adamantane carboxylic acid (1-AdCO2H) were
used as additives (entries 15−17). It was thus found that the
yield of 3a could be improved to 55% in the presence of
MesCO2H. Next, the loading of catalyst was increased from 5
mol % to 10 mol %. Under this circumstance, the yield of 3a
increased to 60% (entry 18). Then, Bi(OTf)3, LiOTf, or
Bi(OAc)3 was tried as catalyst (entries 19−21). To our
pleasure, 3a was formed in 72% yield under the catalysis of

Bi(OTf)3 (entry 19). When this reaction was run under an
inert atmosphere (N2) instead of air, 4a, the 4-alkyl
counterpart of 3a, was selectively obtained in 64% yield
(entry 22). Interestingly, 4a has a different substitution pattern
compared with the quinoline product obtained from
[RhCp*Cl2]2-catalyzed dimerization of the same substrate
(Scheme 1e vs 1b),7 indicating that two different dimerization
pathways must have been involved.
With the optimal reaction conditions in hands, the substrate

generality for the synthesis of 2 was first explored. The results
included in Table 2 showed that 1 bearing a methyl, methoxy,
chloro, or bromo group as the R1 unit attached on different
sites of the connecting benzene ring readily underwent this
oxidative dimerization reaction to afford 2b−2f in moderate
yields. In addition, 1 bearing a phenyl unit attached with either
an electron-donating group (EDG) such as methyl, ethyl, tert-
butyl, and methoxy or an electron-withdrawing group (EWG)
including fluoro, chloro, or bromo on its para-, meta-, or ortho-
position as the R2 moiety took part in this reaction to give 2g−
2o. 1 bearing a cyclopropyl or 2-naphthyl group as the R2 unit
could afford 2p and 2q. With R1 as a 4-methyl group and R2 as
a 4-chlorophenyl or 3-chlorophenyl unit, the reactions could
also take place smoothly to give 2r and 2s. Attractively, the
tolerance of various functional groups enables structural
elaboration of the products. It is also worth noting that the
structure of 2o was established based on its single-crystal X-ray
diffraction analysis (see the Supporting Information).
Next, the substrate scope for the preparation of 3 was

studied. Thus, a range of 1 bearing various R1 units were
subjected to the optimal reaction conditions to give the desired

Table 1. Optimization Study for the Formation of 2a/3a/4aa

yield (%)b

entry catalyst additive solvent 2a 3a 4a

1 Cu(OAc)2 HFIP 42 ND ND
2 Cu(OAc)2 TFE 32 ND ND
3 Cu(OAc)2 MeOH trace ND ND
4 Cu(OAc)2 DCE 15 ND ND
5 Cu(OAc)2 THF trace ND ND
6 Cu(OAc)2 dioxane trace ND ND
7 Cu(OAc)2·H2O HFIP 53 ND ND
8 CuCl2·2H2O HFIP 22 ND ND
9 CuBr2 HFIP trace ND ND
10 Cu(OTf)2 HFIP trace 39 trace
11 CuSO4 HFIP trace 21 trace
12 Cu(OAc)2·H2O m-CPBA HFIP 28 ND ND
13 Cu(OAc)2·H2O TBHP HFIP 24 ND ND
14 Cu(OAc)2·H2O O2 HFIP 61 ND ND
15 Cu(OTf)2 TFA HFIP ND 36 trace
16 Cu(OTf)2 MesCO2H HFIP ND 55 trace
17 Cu(OTf)2 1-AdCO2H HFIP ND 41 trace
18c Cu(OTf)2 MesCO2H HFIP ND 60 trace
19c Bi(OTf)3 MesCO2H HFIP ND 72 trace
20c LiOTf MesCO2H HFIP ND 40 trace
21c Bi(OAc)3 MesCO2H HFIP ND 45 14
22c,d Bi(OTf)3 MesCO2H HFIP ND trace 64

aReaction conditions: 1a (0.3 mmol), catalyst (0.015 mmol), additive (0.3 mmol), solvent (2 mL), 80 °C, air, sealed tube, 20 h. bIsolated yield.
c0.03 mmol of catalyst. dUnder N2.
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products 3b−3e in moderate to good yields (Table 3). Then,
the suitability of 1 bearing diversely substituted alkynyl

moieties was also probed. It was thus found that the R2 unit
could be a phenyl unit bearing either an EDG or an EWG to
give 3f−3o. In general, substrates bearing an electron-deficient
R2 unit showed higher efficiency than those bearing an
electron-rich R2 moiety (3f−3i vs 3j−3o). Our further study
found that substrates bearing a thienyl moiety at the alkyne
terminus took part in this reaction readily to produce 3p. Apart
from aryl groups, this reaction was also suitable for substrate 1
bearing a cyclopropyl group as the R2 unit to give product 3q.
Furthermore, the desired products 3r and 3s were obtained
from substrates with different substituents attached on the
connecting benzene and the alkyne moiety. Last but not least,

the structure of 3d was confirmed based on its single-crystal X-
ray diffraction analysis (see the Supporting Information).
Third, the substrate scope for the formation of 4 was

explored. The results listed in Table 4 showed that under the

optimized conditions for the formation of 4a all the selected 2-
alkynylaniline substrates underwent the dimerization to give
4a−4n in reasonably good yields, thus setting up a general
synthesis of diversely substituted 2-(2-aminophenyl)quinoline
derivatives from the inactive internal alkynes.
Based on experimental outcomes and literature reports,5,6 a

reaction pathway leading to the formation of 2a is proposed in
Scheme 2. As a first step, complexation of Cu(II) with 1a

affords intermediate I, from which intermediate II is formed
through an intramolecular N-cyclization. Protonation of II
with HFIP as a proton source affords 2-phenylindole (III).
Meanwhile, II could also be trapped by O2 to give a peroxic
species IV. Next, protonation and decomposition of IV give 2-
phenylindolin-3-one (V). Under the reaction conditions, V
takes part in an oxidative dehydrogenation to give 2-phenyl-
3H-indol-3-one (VI). In the final stage of this cascade process,
III undergoes a C-nucleophilic addition onto VI to give 2a.
The mechanism as proposed in Scheme 2 is supported by

the following control experiments. First, 1a was treated with
Cu(OAc)2·H2O in HFIP at 80 °C under nitrogen for 20 h. As
a result, the proposed intermediate III was obtained in a yield
of 82%. Then, III was subjected to I2/KOH and then silica gel
under air to give VI (Scheme 3a).1f Next, III was treated with
VI under the promotion of Cu(OAc)2·H2O in HFIP at 80 °C
under N2 to give 2a in 83% yield (Scheme 3b).
In another aspect, reaction pathways leading to the

formation of 3a and 4a are proposed in Scheme 4. Initially,
the triple bond of 1a is activated by Bi(III) to form a π-
complex VII, which allows for the nucleophilic attack of the

Table 2. Substrate Scope for the Synthesis of 2a,b

aReaction conditions: 1 (0.3 mmol), Cu(OAc)2·H2O (0.015 mmol),
HFIP (2 mL), 80 °C, O2, sealed tube, 20 h. bIsolated yield.

Table 3. Substrate Scope for the Synthesis of 3a,b

aReaction conditions: 1 (0.3 mmol), Bi(OTf)3 (0.03 mmol),
MesCO2H (0.3 mmol), HFIP (2 mL), 80 °C, air, sealed tube, 20
h. bIsolated yield.

Table 4. Substrate Scope for the Synthesis of 4a,b

aReaction conditions: 1 (0.3 mmol), Bi(OTf)3 (0.03 mmol),
MesCO2H (0.3 mmol), HFIP (2 mL), 80 °C, N2, sealed tube, 20
h. bIsolated yield.

Scheme 2. Plausible Mechanism for the Formation of 2a
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NH2 group of another molecule of 1a to form intermediate
VIII. Next, intermediate IX is formed through protonation of
VIII with HFIP. IX undergoes an intramolecular C-
nucleophilic addition of the enamine unit onto the activated
triple bond to give X. Under N2, X undergoes a demetalation/
protonation/tautomerization cascade process to deliver 4a and
regenerate the Bi(III) catalyst. When the reaction is carried out
under air, on the other hand, intermediate X is believed to
undergo an oxidation and protonation/tautomerization to give
intermediate XI. Finally, XI is oxidized in situ by air to give 3a.
To demonstrate the usefulness of 3a as an intermediate in

organic synthesis, we performed the following transformations.
First, 3a was treated with NaNO2/HCl at 0 °C for 1 h and
then at 60 °C for 3 h to afford dibenzo[a,c]acridine 5 in a yield
of 64%. Upon treatment with LiAlH4, 5 could be transformed
into its debenzoylation counterpart 6 in 72% yield (Scheme
5a). These transformations are valuable since dibenzo[a,c]-

acridine derivatives possess remarkable biological activities and
electronic properties.10 Notwithstanding of their importance,
reliable methods for their synthesis are rare.11 As another
aspect, 3a was treated with diluted H2SO4, NaNO2/NaN3, and
1,2,4-trichlorobenzene sequentially to furnish a synthetically
and pharmaceutically important indazolo[2,3-a]quinoline
derivative 7 (Scheme 5b).12,13

Finally, a gram-scale reaction of 1a (6 mmol) was also tried
under the optimal conditions for the formation of 4a. It turned

out that under these conditions 4a could be successfully
furnished in 54% yield (Scheme 6).

To conclude, we have developed a selective and versatile
synthesis of 2-indolyl-3-oxo-indoline and 2-(2-aminophenyl)-
quinoline derivatives through controllable dimerization of 2-
alkynylanilines. To our knowledge, this should be the first
example in which 2-indolyl-3-oxo-indolines and 2-(2-
aminophenyl)quinolines were formed selectively from the
same acyclic substrates by finely turning the reaction
conditions. This is also the first report that 2-(2-aminophenyl)-
quinolines were formed via the dimerization of sterically
hindered and less reactive internal alkynes. In addition, the
usefulness of one of the 2-(2-aminophenyl)quinoline products
was showcased by its ready transformation into important
fused heterocycles such as dibenzo[a,c]acridine and indazolo-
[2,3-a]quinoline derivatives. With advantages including acces-
sible substrates, benign oxidant, inexpensive catalysts, control-
lable selectivity, and high versatility toward different kinds of
valuable products, these novel synthetic protocols might be
used in the preparation of related functional molecules.
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