Date: 07-04-15 14:20:37

Pages: 5

DOI: 10.1002/ejoc.201500189

Iron-Catalyzed α-Methylenation of Ketones with *N*,*N*-Dimethylacetamide: An Approach for α,β-Unsaturated Carbonyl Compounds

Yi-Ming Li,*^[a] Shao-Jie Lou,^[b] Qin-Hua Zhou,^[a] Lian-Wen Zhu,^[a] Long-Feng Zhu,^[a] and Lei Li^[a]

Keywords: Methylenation / CDC reaction / α , β -unsaturated carbonyls / Iron-catalysis / One-carbon source

In this study, we developed a general iron-catalyzed α methylenation of ketones by using *N*,*N*-dimethylacetamide as the one-carbon source. Various ketones, including aryl and alkyl ketones, enones, and dicarbonyl compounds were

Introduction

α,β-Unsaturated ketones are skeletons extensively found in various biologically active compounds.^[1] They are also widely utilized in organic synthesis because of their unique reactivities. As a broadly used Michael acceptor, α,β-unsaturated ketones are commonly employed in nucleophilic additions, Michael reactions, and Baylis–Hillman reactions.^[2] They also function as substrates in Heck reactions and Diels–Alder reactions with an α-methylene moiety.^[3] Among the synthetic methods reported for the construction of α,β-unsaturated ketone fragments, the α-methylenation of simple ketones is the most efficient one to yield α,β-unsaturated derivatives.^[4]

Several approcahes to synthesize α -methylene ketones have been developed. These approaches include amine salt catalysed/mediated α -methylenation with formaldehyde or paraformaldehyde^[5] and Mannich-type reaction with readily prepared Eschenmoser's salts followed by elimination^[6] (Scheme 1a). Much achievement has been accomplished with the catalytic system, but novel one-carbon sources have been less developed. Transition-metal-catalyzed crossdehydrogenative-coupling (CDC) reactions have emerged as powerful and efficient tools for C–C bond construction, because they obviate the need of pre-functional substrates.^[7] Environment-benign iron catalysts have received considerable attention because of their significant reactivity in CDC reactions.^[8] We recently developed an iron-catalyzed benz-

- [a] College of Biological, Chemical Sciences and Engineering, Jiaxing University,
 - No. 118, Jiahang Road, Jiaxing City, Zhejiang 314001, P. R. China
 - E-mail: lym4241986@163.com
- [b] Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry – Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201500189.

well tolerated to yield the corresponding α , β -unsaturated carbonyl compounds in the presence of an iron catalyst, peroxides, and *N*,*N*-dimethylacetamide under aerobic conditions.

ylic methylenation of 2-alkylazaarenes to produce 2-vinylazaarenes by using N-methyl amides as a novel one-carbon source.^[9] An iminium intermediate was generated from Nmethyl amides (DMA or DMF) in the presence of an iron catalyst and $K_2S_2O_8$. The in situ iminium cation further reacted with nucleophilic 2-alkylazaarenes and underwent subsequent elimination to yield the final α -methylenated product. Miura et al. recently reported a similar coppercatalyzed α -methylenation of benzylpyridines with N,Ndimethylacetamide (DMA) as the one-carbon source (Scheme 1b).^[10] Nevertheless, the scope of substrates is still limited and less explored. Ketones are nucleophiles widely used in various CDC reactions.^[11] However, the coupling of ketones and N-methyl amides is rare. Considering the importance of α , β -unsaturated carbonyl compounds, we envisioned to develop a direct and efficient approach to convert simple ketones to their α,β -unsaturated derivatives by

a. Aldol/Mannich process:

$$R^{1} + H = \frac{1. \text{ Formaldehyde or}}{Eschenmoser's salts} = R^{1} + (a)$$

$$R^{2} = 2. \text{ Amine salts} = R^{2}$$

b. Benzylic methylenation with N-methyl amides:

$$(Het) \xrightarrow{H}_{H} H \xrightarrow{H}_{H} N \xrightarrow{O}_{H^{4}} (TM)/[O] \xrightarrow{(Het)}_{R^{3}} (b)$$

This work: α-Methylenation of carbonyl compounds with *N*-methyl amides:

$$R^{1} \xrightarrow{H} R^{2} \xrightarrow{H} N \xrightarrow{V} \xrightarrow{FeCl_{3} \cdot 6H_{2}O(10 \text{ mol-}\%)}{110 \text{ °C/air}} R^{1} \xrightarrow{O} R^{1} \xrightarrow{O} (c)$$

Scheme 1. Novel one-carbon source for α -methylenation of ketones. [TM] = transition metal.

SHORT COMMUNICATION

using *N*-methyl amides as novel one-carbon sources (Scheme 1c).^[12]

Results and Discussion

We commenced our investigation with the use of simple acetophenone (1a) as the model substrate in the presence of an iron catalyst, a peroxide, and N,N-dimethylacetamide (Table 1). The α -methenylated compound 2a was obtained in 74% isolated yield by slightly modifying our previous conditions for the benzylic methylenation of 2-alkylazaarenes (Entry 1).^[9] We then explored various combinations of iron catalysts and oxidants. The results showed that FeCl₃·6H₂O/K₂S₂O₈ is the best catalytic system for the α methylenation of 1a (Entries 2-8). Control reactions revealed that no methylenation occurred in the absence of iron catalysts or peroxides (Entries 9-10). An attempt to obtain high-purity 99.99% FeCl₃ was also conducted to avoid metal impurities in the iron catalyst (Entry 11). α -Methylenation smoothly took place in N,N-dimethylformamide and gave a yield comparable to that with DMA (Entry 12).

Table 1. Optimization for the α -methylenation of 1a.^[a]

0 1a		[Fe]/[O] air	\rightarrow \bigcirc $2a$
Entry	[Fe]	[O]	Yield of 2a [%] ^[b]
1	FeCl ₃ ·6H ₂ O	$K_2S_2O_8$	77 (74 ^[c])
2	FeCl ₃ ·6H ₂ O	$Na_2S_2O_8$	67
3	FeCl ₃ ·6H ₂ O	$(NH_4)_2S_2O_8$	58
4	FeCl ₃ ·6H ₂ O	TBHP	43
5	FeCl ₃	$K_2S_2O_8$	73
6	FeCl ₂	$K_2S_2O_8$	70
7	Fe(NO ₃) ₃ ·9H ₂ O	$K_2S_2O_8$	n.d. ^[d]
8 ^[e]	FeCl ₃ ·6H ₂ O	$K_2S_2O_8$	n.d.
9	_	$K_2S_2O_8$	n.d.
10	FeCl ₃ ·6H ₂ O	_	n.d.
11	FeCl ₃ (99.99%)	$K_2S_2O_8$	74
12 ^[f]	FeCl ₃ ·6H ₂ O	$K_2S_2O_8$	75

[a] Reaction conditions: **1a** (0.2 mmol), [Fe] (0.02 mmol), [O] (0.4 mmol), DMA = N_iN -dimethylacetamide (1.0 mL), 110 °C, 4 h, under air (unless otherwise noted). [b] GC–MS yields. [c] Isolated yield. [d] n.d. = not detected. [e] Under argon. [f] DMF = N_iN -dimethylformamide as the one-carbon source.

Under optimized conditions, the scope of the α -methylenation protocol was explored with various ketones. Substituted aryl ketones were first investigated. Both electron-donating and electron-withdrawing substituents in phenyl methyl ketones were tolerated to produce the corresponding α,β -unsaturated derivatives in moderate to good yields (Table 2). Methylenation of halo-, carboxy-, methylsulfonyl-, cyano-, and nitro-substituted substrates smoothly took place under these conditions, which would provide opportunities for further derivatization of the final products (**2a**– **2m**). In addition, the scope of the substrates could be extended to a naphthyl ketone with high yield (**2n**). Interestingly, oxidable functional groups, e.g. hydroxy and alkynyl are compatible with the present oxidation system (**2o**, **2p**). Subsequently, sterically hindered α -substituted aryl ketones were investigated. Propiophenone smoothly underwent α -methylenation in 94% yield (**2q**). Notably, α -chloro aromatic ketones were also well tolerated with the chloro substituent remaining intact (**2r**-**2t**). Benzocyclic ketones, including 1-indanone and 4-chromanone, were also suitable substrates to furnish their α , β -unsaturated derivatives in good yields (**2u**-**2v**).

Table 2. α-Methylenation of aromatic ketones.^[a]

[a] Reaction conditions: 1 (0.5 mmol), FeCl₃·6H₂O (0.05 mmol), K₂S₂O₈ (1.0 mmol), DMA (2.0 mL), 110 °C, 4 h, under air, isolated yields.

Intriguingly, substituted *ortho*-hydroxyacetophenones 1w-1y underwent intramolecular cycloaddition after the first α -methylenation to afford 4-chromanones II, which then underwent a second α -methylenation to give the adducts 2v, 2x, 2y in good yields in the presence of 4.0 equiv. of oxidant (Figure 1). Thus, a novel and facile way was developed to construct α -methylenated chromanones from simple *ortho*-hydroxyacetophenones.

Pages: 5

Fe-Catalyzed α -Methylenation of Ketones with *N*,*N*-Dimethylacetamide

Figure 1. Two-fold α -methylenation of *ortho*-hydroxyacetophenones. Reaction conditions: 1 (0.5 mmol), FeCl₃·6H₂O (0.075 mmol), K₂S₂O₈ (2.0 mmol), DMA (2.0 mL), 110 °C, 4 h, under air, isolated yields.

Other ketones with various substituents were then explored (Table 3). Symmetric ketones such as dibenzyl ketone and cycloheptanone produced the monomethylenated products in moderate yields (**4a**, **4b**). Noteworthy, no α,α -dimethylation derivative was detected when starting from the substrates **4a** and **4b**, even when 4.0 equiv. of oxidant were used. Enones were also applicable under these conditions to afford dienones in moderate yields (**4c**, **4d**). Dicarbonyl compounds are good substrates because of their acidic α -hydrogen atoms (**4e**-**4g**).

Table 3. α-Methylenation of various ketones.^[a]

[a] Reaction conditions: **3** (0.5 mmol), FeCl₃·6H₂O (0.05 mmol), $K_2S_2O_8$ (1.0 mmol), DMA (2.0 mL), 110 °C, 4 h, under air, isolated yields.

When cyclohexenone (3h) was used under the standard conditions, the unexpected 2-methylphenol (5) was obtained. Thus, we propose that the initially α -methylenated cyclohexenone underwent a hydrogen shift to produce the

methylcyclohexadienone isomer, followed by dehydrogenative aromatization under the oxidative conditions to furnish 2-methylphenol (5) (Scheme 2).

Scheme 2. α-Methylenation and cascade aromatization of 3h.

Finally, a radical mechanism is proposed based on the previous report:^[8] The in situ generated enol **6** attacks the iminium species **8** to form the intermediate **9**, which then undergoes C–N bond cleavage to give the product **2a** (Figure 2).

Figure 2. Proposed mechanism.

Conclusions

We developed a facile iron-catalyzed α -methylenation of ketones with DMA as a novel one-carbon source. The present methodology features a broad substrate scope, good functional-group tolerance, and simple operation, which provides a novel way to prepare useful α , β -unsaturated carbonyl compounds.

Experimental Section

Typical Procedure: Compound 1 or 3 (0.5 mmol), FeCl₃·6H₂O (13.5 mg, 0.05 mmol), $K_2S_2O_8$ (270 mg, 1.0 mmol), and DMA (2.0 mL) were sequentially added to a 10 mL tube under air. The tube was sealed and the mixture stirred at 110 °C for 4 h. Upon completion of the reaction (monitored by TLC), the resulting mixture was diluted with Et₂O (15 mL) and washed with brine (3 × 10 mL). The combined organic layers were dried with Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (100–200 mesh) by using petroleum ether/EtOAc as the eluent to yield the desired product 2 or 4.

Supporting Information (see footnote on the first page of this article): General experimental procedures, characterization details and copies of spectra.

SHORT COMMUNICATION

Acknowledgments

The authors acknowledge the China Postdoctoral Science Foundation (no. 2014M560494) and the Postdoctoral Science Foundation of Zhejiang Province for financial support.

- a) J. R. Dimmock, D. W. Elias, M. A. Beazel, *Curr. Med. Chem.* **1999**, *6*, 1125–1149; b) S. Awasthi, S. K. Srivastava, F. Ahmad, H. Ahmad, G. A. S. Ansari, *Biochem. Biophys. Acta* **1993**, *1164*, 173–178; c) R. R. A. Kitson, A. Millemaggi, R. J. K. Taylor, *Angew. Chem. Int. Ed.* **2009**, *48*, 9426–9451; *Angew. Chem. Int. Ed. Engl.* **1996**, *35*, 1622–1656; *Angew. Chem. Int. Ed. Engl.* **1996**, *35*, 1622–1656; *Angew. Chem.* **1996**, *108*, 1732; e) M. Tokumasu, H. Ando, Y. Hiraga, S. Kojima, S. Ohkata, *J. Chem. Soc. Perkin Trans. 1* **1999**, 489–496.
- [2] a) B. E. Rossiter, N. M. Swingle, *Chem. Rev.* 1992, 92, 771–806;
 b) D. Basavaiah, A. J. Rao, T. Satyanarayana, *Chem. Rev.* 2003, 103, 811–891; c) V. Singh, S. Batra, *Tetrahedron* 2008, 64, 4511–4574; d) D. A. Evans, A. M. Ratz, B. E. Hu, G. S. Sheppard, *J. Am. Chem. Soc.* 1995, 117, 3448–3467.
- [3] a) H. B. Kagan, O. Riant, *Chem. Rev.* 1992, 92, 1007–1019; b)
 A. Erkkila, I. Majander, P. M. Pihko, *Chem. Rev.* 2007, 107, 5416–5470; c)
 A. B. Northrup, D. W. E. MacMillan, *J. Am. Chem. Soc.* 2002, 124, 2458–2460.
- [4] a) H. Nakahira, I. Ryu, M. Ikebe, Y. Oku, A. Ogawa, N. Kambe, N. Sonoda, S. Mura, *J. Org. Chem.* **1992**, *57*, 17–28;
 b) M. V. Riofski, J. P. John, M. M. Zheng, J. Kirshner, D. A. Colby, *J. Org. Chem.* **2011**, *76*, 3676–3683; c) M. Z. Cai, G. M. Zheng, G. D. Ding, *Green Chem.* **2009**, *11*, 1687–1693; d) J. W. Labadie, D. Tueting, J. K. Stille, *J. Org. Chem.* **1983**, *48*, 4634–4642.
- [5] a) A. Bugarin, K. D. Jones, B. T. Connell, *Chem. Commun.* 2010, 46, 1715–1717; b) J. L. Gras, *Tetrahedron Lett.* 1978, 19, 2111–2114; c) J. L. Gras, *Tetrahedron Lett.* 1978, 19, 2955–2958; d) A. Erkkilä, P. M. Pihko, *J. Org. Chem.* 2006, 71, 2538–2541; e) A. Erkkilä, P. M. Pihko, *Eur. J. Org. Chem.* 2007, 4205–4216.
- [6] a) F. W. Ng, H. Lin, S. J. Danishefsky, J. Am. Chem. Soc. 2002, 124, 9812–9824; b) M. T. Crimmins, M. G. Stanton, S. P. Allwein, J. Am. Chem. Soc. 2002, 124, 5958–5959; c) W. G. Dauben, T. Z. Wang, R. W. Stephens, Tetrahedron Lett. 1990, 31, 2393–2396; d) G. Kinast, L. F. Tietze, Angew. Chem. 1976, 88, 261–262.

- [7] a) C.-J. Li, Acc. Chem. Res. 2009, 42, 335–344; b) C. S. Yeug, V. M. Dong, Chem. Rev. 2011, 111, 1215–1292; c) C.-L. Sun, B.-J. Li, Z.-J. Shi, Chem. Rev. 2011, 111, 1293–1314; d) C. Liu, H. Zhang, W. Shi, A. Lei, Chem. Rev. 2011, 111, 1780–1824; e) S. A. Girard, T. Knauber, C.-J. Li, Angew. Chem. Int. Ed. 2013, 52, 2–29; f) from C–H to C–C bonds: C. Darcel, J.-B. Sortais, S. Quintero Duque, RSC Green Chem. Ser. 2015, 26, 67–92.
- For selected iron-catalyzed CDC reactions, see: a) Z. P. Li, L. [8] Gao, C.-J. Li, Angew. Chem. Int. Ed. 2007, 46, 6505-6507; Angew. Chem. 2007, 119, 6625; b) Y. H. Zhang, C.-J. Li, Eur. J. Org. Chem. 2007, 4654–4657; c) Z. Li, R. Yu, H. Li, Angew. Chem. Int. Ed. 2008, 47, 7497–7500; Angew. Chem. 2008, 120, 7607; d) Z. Li, H. Li, X. Guo, L. Cao, R. Yu, H. Li, S. Pan, Org. Lett. 2008, 10, 803-805; e) C.-X. Song, G.-X. Cai, T. R. Farrell, Z.-P. Jiang, H. Li, L.-B. Gan, Z.-J. Shi, Chem. Commun. 2009, 40, 6002-6004; f) M. Ohta, M. P. Quick, J. Yamaguchi, B. Wünsch, K. Itami, Chem. Asian J. 2009, 4, 1416-1419; g) C. M. Rao Volla, P. Vogel, Org. Lett. 2009, 11, 1701-1704; h) H. J. Li, Z. H. He, X. W. Guo, W. J. Li, X. H. Zhao, Z. P. Li, Org. Lett. 2009, 11, 4176–4179; i) S. G. Pan, J. H. Liu, H. R. Li, Z. Y. Wang, X. W. Guo, Z. P. Li, Org. Lett. 2010, 12, 1932-1935; j) W. Han, P. Mayer, A. R. Ofial, Adv. Synth. Catal. 2010, 352, 1667-1676; k) H. Richter, O. G. Mancheño, Eur. J. Org. Chem. 2010, 4460-4467; 1) H. Richter, O. G. Mancheño, Org. Lett. 2011, 13, 6066-6069.
- [9] a) S. J. Lou, D. Q. Xu, D. F. Shen, Y. F. Wang, Y. K. Liu, Z. Y. Xu, *Chem. Commun.* **2012**, *48*, 11993–11995; b) Y. Li, F. Guo, Z. Zha, Z. Wang, *Chem. Asian J.* **2013**, *8*, 534–537.
- [10] M. Itoh, K. Hirano, T. Satoh, M. Miura, Org. Lett. 2014, 16, 2050–2053.
- [11] a) Y. Shen, M. Li, S. Wang, T. Zhan, Z. Tan, C. C. Guo, *Chem. Commun.* 2009, 953–955; b) A. Sud, D. Sureshkumar, M. Klussmann, *Chem. Commun.* 2009, 3169–3171; c) K. Alagiri, P. Devadig, K. R. Prabhu, *Chem. Eur. J.* 2012, *18*, 5160–5164; d) J. Xie, Z. Z. Huang, *Angew. Chem. Int. Ed.* 2010, *49*, 10181–10185; *Angew. Chem.* 2010, *122*, 10379; e) L. Zhao, C. J. Li, *Angew. Chem. Int. Ed.* 2008, *47*, 7075–7078; *Angew. Chem.* 2008, *120*, 7183.
- [12] When we were preparing this manuscript, a similar coopercatalyzted α -methylenation of ketones was just published: J. Liu, H. Yi, X. Zhang, C. Liu, R. Liu, G. Zhang, A. Lei, *Chem. Commun.* **2014**, *50*, 7636–7638. Though iron catalysts were inefficient when the reaction was carried out under argon, we found the iron-catalyzed α -methylenation took place smoothly under aerobic conditions with more general ketones.

Received: February 9, 2015 Published Online: ■ Date: 07-04-15 14:20:37

Pages: 5

Fe-Catalyzed α -Methylenation of Ketones with *N*,*N*-Dimethylacetamide

33 examples 36–94% yields

A general and facile iron-catalyzed α methylenation of carbonyl compounds by using *N*-methyl amides as the one-carbon source was developed. Various carbonyl compounds (aryl- or alkyl-substituted, enones, 1,3-dicarbonyl compounds) were well tolerated to furnish the corresponding α , β unsaturated carbonyl compounds in the presence of an iron catalyst, peroxides, and *N*-methyl amides under aerobic conditions.

Iron Catalysis

ᆗ

Y.-M. Li,* S.-J. Lou, Q.-H. Zhou, L.-W. Zhu, L.-F. Zhu, L. Li 1–5

Iron-Catalyzed α -Methylenation of Ketones with *N*,*N*-Dimethylacetamide: An Approach for α , β -Unsaturated Carbonyl Compounds

Keywords: Methylenation / CDC reaction / α , β -unsaturated carbonyls / Iron-catalysis / One-carbon source