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Abstract: The effect of a-silyl substitution on the oxidation of alcohols by lead tetraacetate has been evaluated. Under typical 
conditions for converting alcohols to cyclic ethers, ct-hydroxysilanes are instead efficiently transformed into mixed acetyl-silyl 
acetals. © 1999 Elsevier Science Ltd. All rights reserved. 
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It is well known that treatment of monohydroxy alcohols such as la  with lead tetraacetate (LTA) I results 
in rapid equilibration with alkoxylead(IV) acetates 2a, which in non-polar solvents mainly evolve, under 
appropriate thermal or photochemical conditions, to alkoxy radicals 3a. Saturated radicals 3a with an accessible 
hydrogen atom at the & carbon then take Path A of Scheme 1: the & carbon hydrogen transfers to the oxygen to 
afford carbon radicals 4, which generally undergo fast oxidative cyclization to ethers 52 (though intermolecular 
trapping of carbon radicals 4 by carbon monoxide to afford &lactones 7 via intermediates 6 has recently been 
reported, 3 the readiness with which the oxidative cyclization occurs is well illustrated by taking R~ = H and 
R8 = (CH2)3CH=CH2, in which case cyclization to 8 pre-empts 1,5-exo trig intramolecular addition to the 
double bond). 4 
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Noting that for silylated alkoxy radicals 3b, obtained by starting from a-silyl substituted alcohols lb, 
Path A would have to compete with a low energy radical Brook rearrangement to ct-silyloxy carbon radicals 9 
(Path B in Scheme 1), 5 and that preference for Path B could make a-hydroxysilanes lb new precursors of these 
latter species, 6'7 we prepared 10 from decanal and phenyldimethylsilyllithium 8 and subjected it to standard 
LTA oxidation conditions (1 l0 tool% of LTA, refluxing benzene, Scheme 2). The exclusive product 15 (73% 
isolated yield), was initially assumed to have been formed by Path B via the a-silylalkoxy radical 12 and the 
a-silyloxy carbon radical 13, i.e. that in fact the Brook rearrangement to generate a-silyloxy carbon radicals was 
indeed faster than 1,5-hydrogen transfer. 
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Scheme 2 
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Accordingly we next decided to investigate wether a-silyloxy carbon radical intermediates of  type 9 could 
undergo other transformations, such as radical cyclization, if endowed with a suitable internal radical trap. 9:° 
To this end, we treated a-hydroxysilane 16 with 100 mol% of LTA in refluxing benzene, but the exclusive 
product was the mixed silyl-substituted acetal 17; no cyclized products such as 20 were formed (Scheme 3). We 
attributed this result to the Brook rearrangement of the hypothetical radical intermediate 18 being faster than 
both hydrogen transfer from the activated allylic &-carbon and 1,6-exo cyclization of  the alkoxy radical to the 
double bond, and to oxidation of  the resulting a-silyloxy carbon radical 19 being faster than its 1,5 addition to 
the double bond; this behaviour was taken to be in keeping with that of  the & carbon radical analogue 4 [R~ = H 
and R~ = (CH2)3CH=CH2].11 

Scheme 3 
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The reactions of other, differently substituted alkyl and aryl a-hydroxysilanes were similar to those of 10 
and 16 (Table 1)) 2 However, during these experiments we realized that it was not necessary to run the reaction 
in refltLxing benzene or to use excess LTA. The transformation of  all the a-hydroxysilanes used, including 10 
and 16, into the corresponding mixed silyl-substituted acetals took place at room temperature, almost 
instantaneously, and in essentially quantitative yield (as determined by IH NMR of the reaction mixtures) with 
just one equivalent of  LTA. This is in marked contrast to standard radical-mediated lead tetraacetate oxidation 
reactions, in which the starting monohydroxy alcohols are recovered in significant quantities even when longer 
reflux times and LTA:alcohol mole ratios of  up to 3:1 are used./3 It should also be noted that although alkoxy 
radicals can be obtained from alcohols by LTA treatment at temperatures as low as 40°(2 (as demonstrated by 
their transformation into 6-1actones), 3 the long reaction times that are required (1 day with a 1.5:1 LTA:alcohol 
mole ratio), appear to show that homolysis at that temperature is very slow. In view of this, the reaction 
path 10 --) 11 --) 12 --) 13 -)  15 (Scheme 2), requires that homolysis of the Pb-O bond in l l  be greatly 
favoured by the geminal silyl substituent. An alternative mechanism would be the elimination of the lead(II) and 
silicon species Pb(OAc)2 and AcOSiMe2Ph from the alkoxylead(IV) acetate 11 to give an intermediate aldehyde 
(14) which would then react to give the final acetal 15 (Path C in Scheme 2). 

It may be noted that the mixed acyl-silyl acetals obtained in this study, though rather unusual, 14 have 
been used to protect aldehyde groups, 15 and in reactions with silyl enol ethers and allyltrimethylsilane in the 
presence of a Lewis acid) 6 They have also been reduced by DIBALH, 17a and efficiently hydrolysed under 
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both acidic Is and basic 17 conditions to the corresponding aldehydes. In this respect, we noted that the aromatic 
acetals obtained are particularly prone to undergo hydrolysis; in fact, acetals 26 and 28 underwent complete 
conversion to the carbonyl derivatives on filtration through silica gel or alumina. 

Table 1 

2 S Product yield Product yield 
R SiMe2Ph SiMe2Ph 

"~.. 0S..J.~ iMe2Ph 73% a 

R = CH3(CH2) 8- ~ "OAc 84% b 
8 

10 15 

. ~  iMe2Ph 71% a 
R = cyclohexyl- ~ ~.v "OAc 93% b 

21 22 

iMe2Ph 
78% a 

R = (CHs)sC- " ~  OAc 92% b 
23 24 

R= 
M e O ~ " ~  M e O ~ j ~ S  io AMe: Ph 

MeO" ~ MeO" y 87%c 

MeO MeO 
25 26 

~ Si~2Ph 

27 28 

a) Yields after isolation by column chromatography. Reactions performed with LTA (110 mol%) in refluxing benzene at the 
100 mg scale. 

b) To a solution of the a-hydroxysilane (0.04-0.05 mmol)in 0.5 mL of C6D6 prepared in an NMR tube were added 1,4- 
dichlorobenzene (6 mg) and Pb(OAc)4 (100 mol%). The tube was shaken for about 2 rain (measured internal T -~ 35 °C) 19 
and immediately subjected to proton NMR spectroscopy, which showed complete transformation. Yield was estimated 
by integration of the well-defined NMR signal of the acetal proton of the product, using 1,4-dichlorobenzene as the 
internal standard• 

c) Standard LTA oxidation conditions, 100 mg scale. The tH NMR of the crude residue obtained by filtration of the reaction 
mixture and concentration under reduced pressure showed an 87:13 ratio of 26 versus the corresponding aldehyde. 
Filtration of this mixture through alumina or silica gel gave the aldehyde in quantitative yield. 

d) When the reaction was performed in refluxing benzene (100 mg scale), chromatography isolated piperonal and its 
monoacetoxy derivative at the isopropylidene group in 58% and 37% yield, respectively. 

Finally, to determine whether quaternary a-silylalcohols undergo the same type of transformation, we 
carried out the reaction on the bis-silyl-substituted hydroxy derivative 30, which was obtained from the 
ester 29. Oxidation of  30 with LTA afforded the desired acetal 31 in 94% yield (as judged by NMR), and 
treatment of the crude reaction mixture with silica gel resulted in clean hydrolysis to the acylsilane 32 
(Scheme 4). This sequence constitutes a synthetic pathway to acylsilanes from esters. 2° 

Scheme 4 
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In summary, placing a silyl group a to the hydroxyl of a monohydroxy alcohol radically changes its 
reaction with lead tetraacetate, which affords a high yield of the mixed silyl-substituted acetal instead of a 
cyclic ether. Furthermore, this reaction is much faster and cleaner, and takes place under much milder 
conditions, than one would expect from the behaviour of the unsubstituted alcohol. Although a radical-based 
mechanism based on fast Brook rearrangement of radicals 3b followed by oxidation of  the resulting 
intermediates 9 cannot be ruled out on the basis of current data, failure to obtain cyclic products such as 20, 
and the dramatic rate-accelerating effect of  the geminal silicon atom, point to an alternative ionic mechanism 
(Path C in Scheme 2). 
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