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Abstract—An intermolecular xanthate-mediated free radical nonchain addition reaction is introduced for the regioselective alkyl-
ation of 3,4-dihydro-2H-pyran. Additionally, we observed that the free radical nonchain reaction depends on the nature of the radi-
cal precursor.
� 2005 Elsevier Ltd. All rights reserved.
An ongoing project in our laboratory required the syn-
thesis of an optically pure acetamide 1 as the starting
material of a natural occurring compound. Accordingly,
as 1 is a derived compound from inexpensive commer-
cially available 3,4-dihydro-2H-pyran 2, we envisioned
the possibility of a regioselective coupling reaction
between compounds 2 and 3 (Scheme 1).

By inspection on Scheme 1, we can realize that, in
order to connect C5 and Ca in a direct way, a novel
coupling reaction needs to be developed. The well-
known Heck coupling reaction1 or similar coupling
reactions2 cannot be applied herein because there is
no halide atom present in the double bond of 2.
Apparently, a convenient way to accomplish the reac-
tion is through a free radical addition onto the olefinic
bond (e.g., halogen atom transfer) followed by a radi-
cal or ionic elimination reaction.3 Thus, we turned
our attention to a recent Zard and Miranda work,4

where a xanthate-mediated 5-endo radical cycliza-
tion occurred under free radical nonchain process lead-
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Scheme 1.
ing to the formation of isomeric unsaturated lactams
4–6 (Scheme 2).

In this presumably free radical nonchain reaction, the di-
lauroyl peroxide (DLP) was suggested to act as the radical
initiator and as oxidant. Therefore, the isomeric lactams
4–6 were obtained by an intramolecular 5-endo-trig radi-
cal addition followed by oxidation of radical B, which
after proton elimination afforded the isomeric lactams
4–6 (Scheme 2). If we take a look at the lactam 4, we
notice that it corresponds to a formal selective intra-
molecular alkylation at the alkenyl carbon of the enam-
ine. Based on this, we now considered the possibility
for obtaining the desired compound 1 by intermolecular
radical addition of radical E onto 2 followed by radical
oxidation and final proton elimination of the six-
membered ring oxocarbenium ion G (Scheme 3).

Accordingly, nonchiral xanthate 9 was selected as a free
radical model of study. Thus, this compound was pre-
pared as depicted in Scheme 4. Bromoacetyl bromide
11 and benzylamine 12 were allowed to react in the pres-
ence of triethyl amine to give 14 quantitatively. Amide
14 was finally treated with potassium O-ethyl xanthate
to afford 9 (Scheme 4).5

Xanthate 9 was submitted to different free radical reac-
tion conditions. Modest yields of the analogous
expected product 16 were observed with 10 equiv of
3,4-dihydro-2H-pyran 2, and 2 equiv of DLP in reflux-
ing 1,2-dichloroethane (Table 1, entry 3).6

Additionally, a direct xanthate reduction product 17
was obtained in low yield (Table 1). When peroxides,
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dicumyl peroxide (DCP), or dibenzyl peroxide (DBP)
were used, neither the coupling product 16 nor the
reduction product 17 was observed (entries 6–8).
Table 1. Radical addition/proton eliminationa,b

N
H

O

S
Ph

OEt

S

9

+
Peroxide

O

2

Solvent

Entry 2 (equiv) Peroxide (equiv)

1 2 DLP (0.5)
2 5 DLP (1)
3 10 DLP (1)
4 10 DLP (2)
5 10 DLP (2)
6 10 DCP (2)
7 10 DCP (2)
8 10 DBP (2)

NR = no reaction.
a All reactions were carried out in refluxing solvents.
b Dilauryl peroxide (DLP), dibenzyl peroxide (DBP), and dicumyl peroxide
Following the same route depicted in Scheme 4, opti-
cally pure xanthate (S)-10 was synthesized and allowed
to react under the condition reactions described in Table
1 (entry 4) to afford the expected product 1 along with
the corresponding xanthate reduction product 187 in
60% and 17% yield, respectively.
O
O

N
H

Ph
16

O

N
H

Ph+

17

Solvent 16 (Yield) 17 (Yield)

ClCH2CH2Cl Trace —
ClCH2CH2Cl 10 Trace
ClCH2CH2Cl 21 7
ClCH2CH2Cl 58 12
C6H6 Trace —
ClCH2CH2Cl NR —
C6H6 NR —
ClCH2CH2Cl NR —

(DCP).
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The formation of the reduction product 18 (and also 17)
might correspond to a disproportionation product, as it
would explain the formation of the olefinic double bond
of 16 and 1, however, the ratio of 16/17 or 1/18 should
be equimolar or close to that (Scheme 5).

Thus, like Zard and Miranda, we propose that the reac-
tion mechanism may occur through direct oxidation by
the peroxide of the incipient radical F into oxocarbe-
nium ion G, which then by proton elimination, the dou-
ble bond is recovered (see Scheme 3).4,8 In this regard,
we attempted trapping the oxocarbenium ion by using
an internal nucleophile with the expectation that cycliza-
tion might be competitive with proton elimination
(Scheme 6).

Accordingly, 3,4-dihydro-2H-pyran-2-methanol 19 was
allowed to react with xanthate 9 and 2 equiv of DLP
in refluxing ClCH2CH2Cl, resulting in the formation
of a rather complex reaction mixture. Unfortunately,
we could not accomplish the ring closure onto oxocarbe-
nium ion (compound 20), which would be the unambig-
uous proof for the existence of oxocarbenium ion as
the intermediate of this reaction (as well as the forma-
tion of the lactams, see Scheme 2).9 On the other
hand, a xanthic acid elimination (which should result
from xanthate-mediated free radical chain reaction) is
not supported because of an additional experiment
between compound 2 and xanthate 21 under standard
conditions afforded an inseparable mixture of products
22a and 22b (in a ratio of 48/62, respectively)10 resulted
from a xanthate-mediated free radical chain reaction
(Scheme 7).11

Until now, we have not been able to find an explanation
about the difference in reactivity among these two types
of carbon-centered radicals a to a carbonyl group (from
amides and esters), so a number of interesting questions
are raised. Thus, more laboratory quality time as well as
theoretic studies on this regard is in progress.

In conclusion, a novel intermolecular free radical non-
chain addition reaction onto 3,4-dihydro-2H-pyran is
reported. Although this reaction was developed for the
synthesis of a specific compound, we anticipate very
similar behavior for those with few variants into the
framework.
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35102, and Benemérita Universidad Autónoma de Pue-
bla (BUAP), for partial support (F.S.-P.). Authors also
thank Dr. Alejandro Cordero (from Zard�s laboratory),
for helpful discussion.
References and notes

1. Heck, R. F. Palladium Reagents in Organic Syntheses;
Academic Press: New York, 1985, p 179.

2. Heck, R. F. In Comprehensive Organic Synthesis; Trost, B.
M., Fleming, I., Eds.; Pergamon Press: New York, 1991;
Vol. 4, p 833.

3. For example, Halogen Atom Transfer (HAT) followed
by base-catalyzed E2-elimination. For application of
HAT reactions, see: Jasperse, C. P.; Curran, D.; Fevig,
T. L. Chem. Rev. 1991, 91, 1237–1286; A very interesting
example of radical addition–radical elimination in one
pot (vinylation reaction): Bertrant, F.; Quiclet-Sire, B.;
Zard, S. Z. Angew. Chem., Int. Ed. 1999, 38, 1943–
1946.

4. Miranda, L. D.; Zard, S. Z. Org. Lett. 2002, 4, 1135–
1138.

5. Synthesis of the free radical precursors: To a solution of
amine (1 equiv) and triethylamine (1.2 equiv) in dry THF
(approx 1 g/50 mL of THF) at 0 �C was added dropwise
bromoacetyl bromide (1.1 equiv) dissolved in dry THF
(approx 1 mL/20 mL). The reaction mixture was warmed
to room temperature and allowed to react for 2 h, and
then quenched with 50 mL of H2O. The reaction mixture
was extracted with ethyl acetate, washed with brine, dried
over NaSO4, and concentrated in vacuo to yield a colorless
oil. The crude mixture was dissolved in 40 mL of acetone
and cooled to 0 �C, and then potassium ethyl xanthate
(1.5 equiv) was added. The reaction mixture was allowed
to react for 4 h at room temperature and the solution was
concentrated under reduced pressure. The resulting vis-
cous oil was purified under chromatography with ethyl
acetate and hexane as the eluant.
S-(Benzylcarbamoyl)methyl O-ethyl carbonodithioate 9:
Mp = 94–95 �C; 1H NMR (400 MHz, CDCl3): d 1.38 (t,
3H, J = 7.2 Hz), 3.87 (s, 2H), 4.44 (d, 2H, J = 5.6 Hz),
4.62 (q, 2H, J = 7.2 Hz), 6.69 (br, 1H), 7.27 (m, 5H); 13C
NMR (75 MHz, CDCl3): d 13.6, 39.0, 43.8, 71.0, 127.5,
127.6, 128.6, 137.6, 166.8, 212.8; MS (EI): m/z = 148
(54%, M+�EtOCSS), 269 (12%, M+); (FAB-HRMS)
m/z = 270.0622 (calcd for C12H16NO2S2: 270.0616).



7694 J. Torres-Murro et al. / Tetrahedron Letters 46 (2005) 7691–7694
S-[(S)-1-Phenylethylcarbamoyl]methyl O-ethyl carbono-
dithioate 10: Mp = 59–60 �C; 1H NMR (400 MHz,
CDCl3): d 1.38 (t, 3H, J = 7.2 Hz), 1.47 (d, 3H, J =
7.2 Hz), 3.79 (d, 1H, J = 15.9 Hz), 3.85 (d, 1H,
J = 15.9 Hz), 4.61 (m, 2H), 5.11 (sept, 1H, J = 6.8 Hz),
6.58 (br d, 1H, J = 6.2 Hz), 7.28 (m, 5H); 13C NMR
(75 MHz, CDCl3): d 13.6, 21.6, 39.1, 49.1, 71.0, 126.0,
127.4, 128.6, 142.6, 165.9, 212.9; MS (EI): m/z = 162
(45%, M+�EtOCSS), 283 (8%, M+); (FAB-HRMS)
m/z = 283.0700 (calcd for C13H17NO2S2: 283.0701).

6. General procedure: 2 equiv of DLP dissolved in dichloro-
ethane (2 mL/100 mg) were added portionwise to a
solution of xanthate and 10 equiv of 3,4-dihydro-2H-
pyran dissolved in dichloroethane (5 mL/100 mg of xan-
thate) at reflux over 4 h (0.5 equiv/1 h). The reaction
mixture was cooled to room temperature and solvent
removed under reduced pressure. The resulting viscous oil
was purified under chromatography with ethyl acetate and
hexanes as the eluant.
N-Benzyl-2-(5,6-dihydro-4H-pyran-3-yl)acetamide 16:
Mp = 96–97 �C; 1H NMR (400 MHz, CDCl3): d 1.85
(m, 2H,), 1.99 (m, 2H), 2.83 (s, 2H), 3.91 (apparent t, 2H,
J = 5.1 Hz), 4.43 (d, 2H, J = 5.7 Hz), 6.10 (br, 1H), 6.37
(s, 1H), 7.27 (m, 5H); 13C NMR (75 MHz, CDCl3): d 22.1,
23.3, 41.3, 43.5, 65.3, 107.4, 127.4, 127.5, 128.7, 138.3,
142.8, 171.0; MS (EI): m/z = 231 (64%, M+); (FAB-
HRMS) m/z = 232.1330 [M+H+] (calcd for C14H17NO2:
232.1338).
(S)-2-(5,6-Dihydro-4H-pyran-3-yl)-N-(1-phenylethyl)acet-
amide 1: [a]D �27.5 (c 1, CHCl3); mp = 93–94 �C; 1H
NMR (400 MHz, CDCl3): d: 1.47 (d, 3H, J = 6.8 Hz), 1.85
(m, 2H), 1.95 (m, 2H), 2.77 (dd, 1H, J = 16.4, 3.2 Hz),
2.82 (dd, 1H, J = 16.2, 2.9 Hz), 3.92 (apparent t, 2H,
J = 5.6 Hz), 5.13 (sept, 1H, J = 6.8 Hz), 5.97 (d, 1H,
J = 6.8 Hz), 6.38 (s, 1H), 7.28 (m, 5H); 13C NMR
(75 MHz, CDCl3): d 21.8, 22.3, 23.3, 41.5, 48.5, 65.4,
107.5, 125.8, 127.2, 128.5, 142.6, 142.9, 169.9; MS (EI):
m/z = 245 (58%, M+); (FAB-HRMS) m/z = 246.1490
[M+H+] (calcd for C15H20NO2: 246.1494).

7. Top, S.; Jaouen, G. J. Org. Chem. 1981, 46, 78–82.
8. This radical oxidation has been observed even in the

presence of Bu3SnH. Guerrero, M. A.; Cruz-Almanza, R.;
Miranda, L. D. Tetrahedron 2003, 59, 4953–4958.

9. A similar strategy has been used by Suárez in the synthesis
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