Journal Pre-proof

A convergent approach toward fidaxomicin: syntheses of the fully glycosylated northern and southern fragments

Ryan Hollibaugh, Xueliang Yu, Jef K. De Brabander

PII: S0040-4020(20)30886-3

DOI: https://doi.org/10.1016/j.tet.2020.131673

Reference: TET 131673

To appear in: *Tetrahedron*

Received Date: 2 September 2020

Revised Date: 6 October 2020

Accepted Date: 7 October 2020

Please cite this article as: Hollibaugh R, Yu X, De Brabander JK, A convergent approach toward fidaxomicin: syntheses of the fully glycosylated northern and southern fragments, *Tetrahedron*, https://doi.org/10.1016/j.tet.2020.131673.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Elsevier Ltd. All rights reserved.

Graphical Abstract

A convergent approach toward fidaxomicin: Synthesis of the fully glycosylated northern and southern fragments Ryan Hollibaugh, Xueliang Yu, and Jef K. De Brabander* Leave this area blank for abstract info.

Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States

Fidaxomicin/Lipiarmycin A3/Tiacumicin A

Graphical Abstract

A convergent approach toward fidaxomicin: Synthesis of the fully glycosylated northern and southern fragments Ryan Hollibaugh, Xueliang Yu, and Jef K. De Brabander* Leave this area blank for abstract info.

Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States

Fidaxomicin/Lipiarmycin A3/Tiacumicin A

Tetrahedron journal homepage: www.elsevier.com

A convergent approach toward fidaxomicin: syntheses of the fully glycosylated northern and southern fragments

Ryan Hollibaugh, Xueliang Yu, and Jef K. De Brabander*

Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States

ARTICLE INFO

ABSTRACT

Article history: Received Received in revised form Accepted Available online

Dedicated to Prof. Tomas Hudlicky in honor of his 70^{th} birthday

Keywords: Lipiarmycin Tiacumicin Macrolide antibiotics Ring closing metathesis Efficient approaches that enable the synthesis of analogs of natural product antibiotics are needed to keep up with the emergence of multiply-resistant strains of pathogenic organisms. One promising candidate in this area is fidaxomicin, which boasts impressive in vitro antitubercular activity but has poor systemic bioavailability. We designed a flexible synthetic route to this target to enable the exploration of new chemical space and the future development of analogs with superior pharmacokinetics. We developed a robust approach to each of the key macrocyclic and sugar fragments, their union via stereoselective glycosylation, and a convergent late-stage macrolide formation with fully glycosylated fragments. Although we were able to demonstrate that the final Suzuki cross-coupling and ring-closing metathesis steps enabled macrocycle formation in the presence of the northern resorcylic rhamnoside and southern novioside sugars, these final steps were hampered by poor yields and the formation of the unwanted Z-macrocycle as the major stereoisomer.

2009 Elsevier Ltd. All rights reserved.

Tetrahedron

ournal Pre-proo

Fidaxomicin (1) is an FDA approved macrolide antibiotic¹ with modest *in vitro* efficacy against Gram-positive bacteria and notably potent activity against *Clostridium difficile* (MIC₅₀ = 31 μ g/mL)² and *Mycobacterium tuberculosis* (MIC₅₀ = 15 μ g/mL) including drug resistant strains (MIC₅₀ = 8–45 μ g/mL).³ A recently obtained cryo-EM structure of fidaxomicin bound to RNA-polymerase⁴ has provided insight on the binding mode and biochemically important structural features of fidaxomicin.

Despite its promising anti-tubercular activity, approved clinical use of fidaxomicin is limited to treatment of C. difficile associated colitis.⁵ Unfortunately, fidaxomicin has poor oral bioavailablity and is rapidly cleared following alternative dosing modes.6 These limitations preclude its use for the systemic treatment of tuberculosis infections. Thus, a fidaxomicin analog with improved bioavailability could represent a new class of antibiotics for the treatment of systemic bacterial infections, including tuberculosis and multidrug-resistant tuberculosis. Semisynthetic approaches have been severely hampered by the instability of the macrolide, which is readily available by fermentation,⁷ to standard acid mediated glycolysis methods.³ Several groups have reported the structure and bioactivity of biosynthetically prepared analogs.9 However, a robust medicinal chemistry program would enable access to a wider variety of structural modifications than is generally possible using bioengineering approaches. In this context, fidaxomicin has gained significant attention as a synthetic target in recent

syntheses of the natural product have been reported since 2015.^{12,13} Additionally, we and others have completed syntheses of the structurally related mangrolides A and D, which share the macrolactone core of fidaxomicin (see scheme 1).¹⁴ Here we report our approach to the synthesis of fully glycosylated northern and southern fragments of fidaxomicin, and explore their union via Suzuki cross-coupling and ring-closing metathesis.

2. Results and Discussion

Our synthesis was designed to be as convergent and modular as possible to expedite subsequent syntheses of natural product analogs. As outlined in Scheme 1, we envisioned unification of northern and southern fragments 2 and 3 by a sequential Suzuki cross coupling and ring closing metathesis (RCM) sequence. This strategy was adapted from our longstanding work on the mangrolide family.¹⁵ The Gademann group also utilized these disconnections in their synthesis of both fidaxomicin and the mangrolides.^{12c,14c,14d} However, where they appended the rhamnoside unit post macrolactone formation, we endeavored to pursue the unification of fully glycosylated northern and southern fragments. This would, in principle, allow us to reduce the number of linear manipulations at the end of the sequence. To that end we needed to develop a β -selective rhamnosylation of northern macrolide fragment 5 with a fully functionalized resorcyl rhamnoside 4. Southern fragment 3 on the other hand, would be

Scheme 1: Structures of fidaxomicin, mangrolide A, and mangrolide D and retrosynthetic strategy towards Fidaxomicin

accessible via the previously described Koenigs-Knorr glycosylation of southern macrolide fragment **6** with novioside **7**.^{13a} Our initial objective was to develop robust, scalable routes towards fragments **4-7** and explore their unification via stereoselective glycosylation.

Our forward synthesis began with the preparation of resorcylated D-rhamnoside donor **4** (Scheme 2A). In an adaption of the procedure reported by Gademann and coworkers for the corresponding anomeric methyl ether, the anomeric position of

D-mannose was derivatized as a benzyl ether, followed by masking the 3- and 4-hydroxyl groups as the butanediacetal **8** in 55% yield for the two steps.¹⁶ A Garegg-Samuelsson iodination/hydrogenolysis sequence removed the 6-hydroxyl group to provide rhamnoside **9** in good yield. Methylation of the remaining alcohol proceeded with excellent yield to give **10** and was followed by final cleavage of the butanediacetal under mild hydrolytic conditions to provide up to nine grams of key rhamnoside **11** in a single batch.

photochemical methods for the preparation of hindered salicylate and resorcylate esters and amides using dioxinones similar to **14a** and **14b**.¹⁷ In order to explore these approaches for the introduction of the homoorsellinate residue we prepared both **14a** and **14b** starting with trihydroxybenzoic acid derivatives **12a** and **12b** (Scheme 2B). Selectively etherification of the *para*-phenol under Mitsunobu conditions, followed by triflation of the remaining *ortho*-phenol under standard conditions efficiently provided **13a** and **13b**.^{17c,18} Subsequent Stille cross-coupling with tributyl(vinyl)tin proceeded in excellent yields, and the resultant styrenes could be selectively reduced in the presence of the benzyl ether using a NiCl₂/sodium borohydride system¹⁹ to provide **14a** or **14b** on multigram scale.

Sodium hydride promoted acylation of **11** with **14a** proceeded with moderate thermodynamic selectivity for the desired 4-acyl isomer **16** (31% yield of **15**, 52% yield of **16**, Scheme 2C).^{17a,20} Resubmission of **15** to the sodium hydride acylation conditions provided additional **16**. By contrast, photochemical acylation of **11** with **14b** proceeded in lower yield, and afforded a kinetic mixture of acylated products **15** and **16** in which the undesired regioisomer **15** dominated (37% and 20% isolated yield respectively).^{17b,c} Using the superior sodium hydride mediated acylation of rhamnoside **11** with **14a**, we prepared up to a gram of **16** in one batch. In preparation for glycosylation of the northern fragment (vide infra), intermediate **16** was sequentially debenzylated via hydrogenolysis, chlorinated using sulfuryl chloride, and carefully tris-acetylated to afford the fully functionalized rhamnoside **4** in good overall yield.

Our synthesis of northern macrolide fragment **5** initiates with a stereoselective synthesis of borylated homopropargyl alcohol **19** and tracks with that of previous reports.^{12a,13a} As shown in Scheme 3A, Sharpless epoxidation and silylation of 1-butene-3-ol yielded enantiomerically enriched **17** (38% yield for 2 steps).²¹ Epoxide opening with propynyl lithium occurred as expected to afford the desired alkyne **18** in high yield.^{12a} We found that regio-and stereoselective borylation of the alkyne was most efficient using conditions developed by the Carretero group,²² providing the needed secondary alcohol **19** with high yield and excellent selectivity on gram scale.

To prepare the dienoic acid 23, we adapted the hydrogen mediated C-C coupling method developed by the Krische group (Scheme 3B).²³ Known enyne **20**,²⁴ available in two steps from propargyl alcohol, was coupled with aldehyde 21 to provide the allylic alcohol with excellent regio- and stereoselectivity for the desired E-diene. The resulting crude alcohol was then oxidized to dienone 22 in 70% yield for the two step sequence. Activation of the N-methyl imidazole with methyl triflate was followed by potassium trimethylsilanolate mediated hydrolysis to generate the dienoic acid **23** in good yield (82%, 2 steps).²⁵ It is worth noting that this alternative synthesis of dienoic acid 23 (6 steps, E/Z>20:1, 49% overall yield) compares favorably to those previously reported for this or related dienoates.^{12a-c} Acid **23** was esterified with alcohol 19 using previously described Yamaguchi conditions to generate known bis-silyl ester 24.^{13a,14b} Conditions to selectively cleave the primary TBS group in the context of an intact macrocycle have been reported.^{8b,13a} Unfortunately, we were unable to identify conditions to effect a selective deprotection of the primary silvl ether on the borylated ester 24, and therefore pursued the synthesis of dienoic acid 28 according to a protocol adapted from Zhu and coworkers (Scheme 3C).^{12b}

Scheme 2. Synthesis of orsellinic rhamnoside 4. Reagents and conditions: (a) BnOH, HCl; (b) (MeO)₃CH, CSA, butanedione, MeOH; then Et₃N (55%, 2 steps); (c) I₂, PPh₃, imidazole, THF (84%); (d) H₂, Pd/C, MeOH, Et₃N (90%); (e) NaH, MeI, THF (>95%); (f) TFA, DCM, H₂O; Et₃N (69%); (g) BnOH, PPh₃, DIAD, THF; (h) pyridine, Tf₂O (13a: 61%, 2 steps; 13b: 65%, 2 steps); (i) Pd(PPh₃)₄, LiCl, dioxane, Et₃N, tributyl(vinyl)tin; (j) NiCl₂, NaBH₄, MeOH (14a: 66%, 2 steps; 14b: 58%, 2 steps); (k) 14b, 11, 300 nm UV light (15: 37%; 16: 20%); (l) 14a, 11, NaH, THF (15: 31%; 16: 52%); (m) NaH, THF (54%); (n) H₂, Pd(OH)₂, MeOH; (o) SO₂Cl₂, EtOAc; (p) Ac₂O, DMAP, EtOAc (66%, 3 steps).

event, ethyl 2-(hydroxymethyl)acrylate In the was dibrominated and protected as the THP ether, giving dibromide 25 in excellent yield for the two-step process (78% overall).^{26,27} Stereoselective elimination of the α -bromide with tetrabutylammonium fluoride in HMPA provided acryloyl bromide 26 in 85% yield and excellent stereoselectivity (>20:1 E/Z). Stille coupling of vinyl bromide 26 with tributyl(vinyl)tin yielded dienoate 27 in 93% yield.²⁸ Using this route, we were able to prepare multigram quantities of 27 in 62% overall yield over four steps from commercially available ethyl 2-(hydroxymethyl)acrylate. Hydrolysis of ester 27 afforded the dienoic acid 28 (>95%), which was esterified as before with alcohol 19. This time, the THP-protected primary alcohol could be selectively removed with ethanolic PPTS to yield the target northern fragment alcohol 5 in 45% yield (2 steps) with no observable degradation of the TBS or BPin functionalities.

Scheme 3. Synthesis of northern fragment borylated ester 5. Reagents and conditions: (a) Ti(OiPr)₄, D-DIPT, DCM, TBHP, 4Å MS; (b) TBSCl, imidazole (38%, 2 steps); (c) propyne, *n*BuLi, BF₃•OEt₂ (90%); (d) CuCl, PCy₃, NaO'Bu, B₂Pin₂, MeOH, PhMe (81%); (e) *rac*-BINAP, Rh(COD)₂OTf, 21, Ph₃CCOOH, H₂, DCE; then MnO₂, DCM (70%); (f) MeOTF, MeCN; then KOTMS, Et₂O (82%); (g) **19**, Et₃N, DMAP, 2,4,6-trichlorobenzoyl chloride, PhMe (60%); (h) Br₂, CHCl₃ (93%); (i) dihydropyran, PPTS, DCM (84%); (j) TBAF, HMPA (85%, >20:1 dr); (k) Pd₂(dba)₃, P(2-furyl)₃, tributyl(vinyl)tin, THF (93%); (i) LiOH, H₂O, THF, EtOH (>95%); (m) **19**, Et₃N, DMAP, 2,4,6-trichlorobenzoyl chloride, THF; (n) PPTS, EtOH (45%, 2 steps).

We next turned our focus to the preparation of southern fragment 6 (Scheme 4). Our work on mangrolide A disclosed a route to polyketide fragment 6 utilizing a 2,3-Wittig rearrangement²⁹ to establish the C10-C11 stereochemistry and a late stage bis-functionalization of an alkyne to prepare the required E-vinyl iodide.^{14b,15} A related rearrangement has subsequently been utilized by the Roulland group to elegantly set this same stereochemical diad.^{12d} As shown in scheme 4A, our route commenced with L-lactate-derived aldehyde 29. Wittig homologation of the aldehyde afforded Z-olefin 30 in 83% yield (Z/E > 20:1). Methanolysis (*p*TSOH) of the THP-ether was followed by alkylation with propargyl bromide **31** (KO^tBu, THF) to afford [2,3]-Wittig precursor 32 in 76% (2 steps). Deprotonation with nBuLi in THF induced a smooth rearrangement to the corresponding alcohol which was trapped in situ with methoxymethyl chloride to provide 33 in 88% yield and with excellent stereoselectivity. The relative stereochemistry was predicted to result from [2,3]-rearrangement occurring via cyclic TTS-A. The stereochemistry was unambiguously assigned via comparison of fragment 6 resulting from this route, to the identical material reported previously by us and others.^{12c,14a} Careful selective ozonolysis of the alkene in 33 (Me₂S work-up) was followed by homologation of the resultant aldehyde with stabilized vlide 34 to afford *E*-configured α , β -unsaturated ester 35 in 79% yield (2 steps). To set the stage for subsequent alkyne functionalization, ester 35 was reduced, followed by a TIPS deprotection, and TES protection sequence. The resultant terminal alkyne 36, obtained in 76% for this 3-step sequence, was subjected to a one-pot stannocupration/methylation/iodination to yield the vinyl iodide with simultaneous cleavage of the TES

primary alcohol gave aldehyde **37**. A diastereoselective Brown allylation was followed by TBS protection of the resultant alcohol to afford intermediate **38** in 65% yield and excellent stereoselectivity (>20:1 dr). A final boron trifluoride mediated cleavage of the methoxymethyl ether afforded target secondary alcohol **6** in 77% yield.

Scheme 4. Two alternative syntheses of southern fragment 6. Reagents and conditions: (a) *n*PrPPh₃Br, *n*BuLi, THF (83%); (b) *p*TsOH, MeOH; (c) **31**, 'BuOK, THF, (76%, 2 steps); (d) *n*BuLi, THF; then MOMCI (88%); (e) O₃, DCM; then Me₂S (93%); (f) **34**, toluene (85%); (g) DIBAL, DCM; (h) TBAF, THF; (i) TESOTf, lutidine, DCM (76%, 3 steps); (j) CuCN, (Bu₃Sn)₂, *n*BuLi, MeI; then I₂, THF (80%); (k) DMP, DCM (91%); (l) (–)-Ipc₂B-allyl, Et₂O; then H₂O₂, NaOH; (m) TBSOTf, lutidine, DCM (65%, 2 steps); (n) BF₃•OEt₂, Me₂S (77%); (o) [Ir(COD)CI]₂, (*R*)-CI-MeO-BIPHEP, Cs₂CO₃, *m*NO₂BzOH, allyl acetate, THF (57%, >20:1 dr).

During the course of our synthesis of mangrolide D, we developed an alternative approach to **6** utilizing an Oppolzer sultam mediated aldol reaction (Scheme 4B).^{12a,14a} For this work, we exploited primary alcohol **39** to explore a Krische-type iridium catalyzed allylation from the alcohol oxidation state to further streamline this synthetic sequence. Gratifyingly, allylic alcohol **39** directly provided homoallylic alcohol **40** with excellent stereoselectivity (>20:1 dr) using the reported conditions.³¹ A straightforward protection/deprotection sequence then revealed key intermediate **6**, which was identical to material produced according to Scheme 4A and previous syntheses.^{12c,14a}

Scheme 5. Synthesis of protected novioside 7 and fully glycosylated southern fragment 3. Reagents and conditions: (a) HCl, MeOH, acetone (75%); (b) TEMPO, KBr, NaHCO₃, NaOCl, EtOAc, H₂O (>95%); (c) MeI, K₂CO₃, DMF (66%); (d) MeMgBr, THF (>95%); (e) TFA, MeOH, H₂O; (f) TFA, MeOH, H₂O (70% yield of **44a** and **44b** after 3 cycles); (g) **44a** or **44b**, CDI, THF; (h) ([†]PrCO)₂O, Et₃N, DMAP, DCM (76% from **44a**, 82% from **44b** over 2 steps); (i) **7b**, HBr, AcOH, DCM; (j) **6**, HgBr₂, HgO, 4Å MS, DCM; then Et₃N (67%, 2 steps, >2:1 β:α).

Preparation of the southern protected novioside sugar 7 commenced with commercially available D-lyxose (Scheme 5). Treatment of this material with HCl in a mixture of methanol and

furanose, anomeric methyl ketal formation, and ketalization of the *cis*-diol to provide compound **41** in 75%.³² The primary alcohol was then oxidized to the carboxylic acid and alkylated to form the corresponding methyl ester (~65% overall).³³ Addition of excess methylmagnesium bromide afforded tertiary alcohol 42 (>95%). By this four-step sequence up to 9.5 g (41% overall yield) of material was prepared in a single batch with no purifications. This method compared favorably to the previous six-step approach from O-methyl mannose reported by Kaufmann.^{13a} From 42 onwards our route to 3 followed the sequence reported by Kaufmann et al.^{13a} with some minor modifications. Isomerization of 42 to the α - and β -pyranoses, 44a and 44b respectively, was performed in a mixture of trifluoroacetic acid and methanol. All four possible isomers of deprotected material were individually isolated and characterized along with recovered starting material 42 in the indicated quantities. In two subsequent iterations, furanose isomers 43a and 43b and recovered 42 were combined and resubmitted to the reaction conditions to generate a similar distribution of products. The total combined yield of isolated 44a and 44b was 70%. We next took advantage of an improved acylation protocol reported by Kaufmann^{8b} to install the cyclic carbonate and the isobutyrate, which provided noviosides 7a and 7b from 44a and 44b respectively (~76-82% yield). Glycosylation of 6 with unstable glycosyl bromide 45 was performed using a slight modification of the previously reported method.13a Thus treatment of 7b with HBr in acetic acid afforded the unstable glycosyl bromide 45, which was isolated but not purified.³⁵ A Helferich type Koenigs-Knorr glycosylation of 6 with crude 45 provided the desired β -anomer 3 as the major product and with better than 2:1stereoselectivity.36

Scheme 6. Synthesis of fully glycosylated northern fragment 2, cross-coupling with fully glycosylated southern fragment 5, and exploration of the final steps. Reagents and conditions: (a) 4, HBr, AcOH, DCM; then 5, Ag₂CO₃, 4Å MS, DCM (35% + 44% recovered 5, $>3:1 \beta:\alpha$); (b) 46, K₂CO₃, MeOH (2: 35%; 47: 34%); (c) 47, K₂CO₃, MeOH (48%); (d) TIOEt, Pd(PPh₃)₄, THF, H₂O (38%); (e) Grubbs II, PhMe; (f) NaH, ethylene glycol, THF; (g) HF•Et₃N, THF.

Glycosylation of the northern fragment **5** was best performed with the crude glycosyl bromide derived from acetate **4** (HBr, HOAc, DCM) and mediated by silver carbonate to yield the desired β -anomer **46** in 35% isolated yield (α/β of crude mixture >3:1) along with recovered alcohol **5** (44%). This approach differs from previously reported methods for the installation of this challenging β -mannose type glycosidic bond in the fidaxomicin literature.³⁷ Methanolysis of the phenolic acetates (K₂CO₃, MeOH) provided target fragment **2** (32%) along with an equal amount of monoacetate **47** (34%). The reaction time had to be kept short to avoid degradation of the sensitive pinacol ester. Purified **47** could be resubmitted to the same reaction conditions

sought to explore macrolide formation using this fully glycosylated northern fragment 2. Gratifyingly, Suzuki coupling of this material with glycosylated southern fragment 3 using conditions described for coupling of a non-glycosylated northern fragment (cf. 24) provided the desired hindered diene 48, albeit with lower efficiency (38% versus published 88% for coupling of 3 with 24).^{13a}

All that remained was a penultimate ring closing olefin metathesis (RCM) and removal of the carbonate and silvl protecting groups. The ring closing metathesis of a monoglycosylated (at C_{11}),^{13a} or a non-glycosylated^{12b} seco-macrolide diene was reported to yield separable mixtures of E/Zmacrocycles with the desired natural E-isomer dominating (~2:1), and the unwanted Z-isomer recyclable after separation and resubjecting to the RCM conditions. Unfortunately, similar conditions with fully glycosylated seco-macrolide diene 48 led to an inseparable 1:2 mixture of double bond isomers with the unnatural Z-isomer dominating as determined by ¹H NMR of the crude reaction product. Exploration of other RCM catalysts did not provide a satisfying solution. These results underscore the unpredictable influence of peripheral protecting groups and functionality on double bond geometry in the context of ring closing metathesis leading to larger ring systems.^{38,39}

While these results were a setback, we hoped to be able to separate the E/Z isomers at a later stage. At this point, we had only small amounts of crude RCM product mixtures available and subsequent reactions were performed on sub-milligram scale with product mixtures characterized primarily by crude NMR and mass spectrometry, but in insufficient quantities to support a more rigorous structural assignment. Nevertheless, the crude RCM mixture was subjected to carbonate cleavage and fluoridemediated silyl ether cleavage as described.^{8b,13a} Analysis of the crude reaction product by TLC and HPLC revealed three separable products. Each of these three products was isolated in low yield (<15%) by preparative RP-HPLC and independently characterized by ¹H NMR and HRMS. Each consisted of an inseparable 2:1 Z/E mixture of olefin isomers and had a mass (m/z) consistent with that of authentic fidaxomicin. One product coeluted with commercial fidaxomicin in a co-injection experiment, and comparison of the ¹H NMR of this material with that of authentic fidaxomicin supported its assignment as a 2:1 mixture of 4,5-Z-fidaxomicin and fidaxomicin. The remaining products appear to be constitutional isomers of fidaxomicin (same m/z), presumably isobutyrate migration products in the novioside sugar.⁴⁰ However, none of these materials was obtained in sufficient quantity to support a more rigorous structural assignment.

3. Conclusion

We have established robust synthetic routes to key intermediates 2-7 en route to fidaxomicin. In particular, the hydrogenative C-C coupling route (scheme 3B) to dienoate 23 represents a favorable route towards this compound. The 2,3-Wittig rearrangement is a less contemporaneous, yet highly efficient approach to install the stereodiad embedded within the southern polyketide fragment **6**. The catalytic Krische-type allylation from the alcohol oxidation stage represents and efficient alternative to classical reagent controlled allylations to install the homoallylic alcohol of fragment **6** with high diastereoselectivity. The preparation of novioside **7** from D-Lyxose represents a substantial improvement in both step count and efficiency over previous approaches. Koenigs-Knorr glycosylations towards both **2** and **3** were efficient and selective

Finally, though we demonstrated that the cross-coupling and RCM of fully glycosylated fragments was possible, the yields were adversely impacted because the sugar decoration in the northern fragment reversed the E/Z-selectivity of the RCM macrocyclization, and these isomers were unfortunately no longer separable.

Conflicts of interest

The authors declare no conflict of interest.

Acknowledgments

This work was supported by the NIH (grant GM111329) and the Robert A. Welch Foundation (grant I-1422). J. K. De Brabander holds the Julie and Louis Beecherl, Jr., Chair in Medical Science. HRMS data were obtained from the Shimadzu Center for Advanced Analytical Chemistry (SCAAC) at UT Arlington.

Appendix A. Supplementary data

Supplementary data related to this article can be found at https:///doi.org/

References

- 1. (a) Erb, W.; Zhu, J. Nat. Prod. Rep. 2013, 30, 161-174. (b)
- McAlpine, J. B. J. Antibiot. 2017, 70, 492-494.
 Goldstein, E. J. C.; Babakhani, F.; Citron, D.M. Clin. Infect. Dis. 2012, 55, S143-S148.
- Kurabachew, K.; Lu, S. H. J.; Krastel, P.; Schmitt, E. K.; Suresh, B. L.; Goh, A.; Knox, J. E.; Ma, N. L.; Jiricek, J.; Beer, D.; Cynamon, M.; Petersen, F.; Dartois, V.; Keller, T.; Dick, T.; Sambandamurthy, V. K. J. Antimicrob. Chemother. 2008, 62, 713-719.
- Lin, W.; Das, K.; Degen, D.; Mazumder, A.; Duchi, D.; Wang, D.; Ebright, Y. W.; Ebright, R. Y.; Sineva, E.; Gigliotti, M.; Srivastava, A.; Mandal, S.; Jiang, Y.; Liu, Y.; Yin, R.; Zhang, Z.; Eng, E. T.; Thomas, D.; Donadio, S.; Zhang, H.; Zhang, C.; Kapanidis, A. N.; Ebright, R. H. *Mol. Cell* **2018**, *70*, 60-71.
- Venugopal, A. A.; Johnson, S. *Clin. Infect. Dis.* 2012, *54*, 568.
 (a) Australian Therapeutic Goods Administration, Australian Public Assessment Report for Fidaxomicin, 2013, https://www.tga.gov.au/node/781 (b) Shue, Y. K.; Sears, P. S.; Shangle, S.; Walsh, R. B.; Lee, C.; Gorbach, S. L.; Okumu, F.; Preston, R. A. *Antimicrob. Agents Chemother.* 2008, *52*, 1391-1395. (c) Sears, P.; Crook, D. W.; Louie, T. J.; Miller, M. A.; Weiss, K. *Clin. Infect. Dis.* 2012, *55*, S116-S120.
- A. Malcangi, G. Trione, Tiacumicin Production. US 8728796B2, 2014.
- (a) Jamison, M. Ph.D. Dissertation, University of Texas Southwestern Medical Center, 2013. (b) Kaufmann, E. B. Ph.D. Dissertation, University of Basel, 2017. (c) Hattori, H.; Kaufmann, E.; Miyatake-Ondozabal, H.; Berg, R.; Gademann, K. J. Org. Chem. 2018, 83, 7180-7205.
- (a) Xiao, Y.; Li, S.; Niu, S.; Ma, L.; Zhang, G.; Zhang, H.; Zhang, G.; Ju, J.; Zhang, C. J. Am. Chem. Soc. 2011, 33, 1092-1105. (b) Niu, S.; Hu, T.; Li, S.; Xiao, Y.; Ma, L.; Zhang, G.; Zhang, H.; Yang, X.; Ju, J.; Zhang, C. ChemBioChem 2011, 12, 1740-1748.
 (c) J. E. Hochlowski, M. Jackson, J.B. McAlpine, R. R. Rasmussen, Bromotiacumicin compounds, US5767096A, 1998.
 (d) Zhang, H.; Tian, X.; Pu, X.; Zhang, Q.; Zhang, W.; Zhang, C. J. Nat. Prod. 2018, 81, 1219-1224. (d) Dorst, A.; Shchelik, I.S.; Schäfle, D.; Sander, P.; Gademann, K. Helv. Chim. Acta 2020, Early View, https://doi.org/10.1002/hlca.202000130.
- For selected reviews, see: (a) Roulland, E. Synthesis 2018, 50, 4189-4200. (b) Dorst, A.; Gademann, K. Helv. Chim. Acta 2020, 103, e2000038.
- For selected examples of syntheses of other complex antibiotics, see: (a) Wright, P. M.; Seiple I. B.; Myers, A. G. Angew. Chem., Int. Ed. 2014, 53, 8840-8869. (b) Seiple, I. B.; Zhang, Z.; Jakubec, P.; Langlois-Mercier, A.; Wright, P. M.; Hog, D. T.; Yabu, K.;

Condakes, M. L., Szczyphiski, F. T., Oreen, W. D., Myers, A. C. *Nature* **2016**, *533*, 338-345. (c) Charest, M.; Lerner, C. D.; Brubaker, J. D.; Siegel, D. R.; Myers, A. G. *Science* **2005**, *308*, 395-398.

- (a) Glaus, F.; Altmann, K.-H. Angew. Chem., Int. Ed. 2015, 54, 1937-1940. (b) Erb, W.; Grassot, J.-M.; Linder, D.; Neuville, L.; Zhu, J. Angew. Chem., Int. Ed. 2015, 54, 1929-32. (c) Miyatake-Ondozabal, H.; Kaufmann, E.; Gademann, K. Angew. Chem., Int. Ed. 2015, 54, 1933-1936. (d) Jeanne-Julien, L.; Masson, G.; Astier, E.; Genta-Jouve, G.; Servajean, V.; Beau, J. M.; Norsikian, S.; Roulland, E. Org. Lett. 2017, 19, 4006-4009.
- (a) Kaufmann, E.; Hattori, H.; Miyatake-Ondozabal, H.; Gademann, K. Org. Lett. 2015, 17, 3514-3517. (b) Norsikian, S.; Tresse, C.; François-Eude, M.; Jeanne-Julien, L.; Masson, G.; Servajean, V.; Genta-Jouve, G.; Beau, J. M.; Roulland, E. Angew. Chem., Int. Ed. 2020, 59, 6612-6616.
- (a) Gong, J.; Li, W.; Fu, P.; Macmillan, J.; De Brabander, J. K. Org. Lett. 2019, 21, 2957-2961. (b) Yu, X. Ph.D. Dissertation, University of Texas Southwestern Medical Center, 2018. (c) Hattori, H.; Roesslein, J.; Caspers, P.; Zerbe, K.; Miyatake-Ondozabal, H.; Ritz, D.; Rueedi, G.; Gademann, K. Angew. Chem., Int. Ed. 2018, 57, 11020-11024. (d) Hattori, H.; Hoff, L. V.; Gademann, K. Org. Lett. 2019, 21, 3456-3459.
- J. De Brabander, Small molecule compounds selective against gram-negative bacterial infections, US 20150329582, 2015 (Filed May 13, 2014).
- 16. Our route differs from that of Gademann (ref. 13a) in that the deoxygenation sequence was carried out subsequent to masking of the *cis*-diol.
- (a) Bhattacharjee, A.; De Brabander, J. K. *Tetrahedron Lett.* 2000, 41, 8069-8073. (b) Soltani, O.; De Brabander, J. K. *Angew. Chem., Int. Ed.* 2005, 44, 1696-1699. (c) García-Fortanet, J.; Debergh, J. R.; De Brabander, J. K. *Org. Lett.* 2005, 7, 685-688.
- Gaddam, J.; Reddy, G. S.; Marumudi, K.; Kunwar, A. C.; Yadav, J. S.; Mohapatra, D. K. Org. Biomol. Chem. 2019, 17, 5601-5614.
- (a) Kumar Dey, S.; Ataur Rahman, M.; Alkhazim Alghamdi, A.; Reddy, B. V. S.; Yadav, J. S. *Eur. J. Org. Chem.* **2016**, 2016, 1684-1687. (b) Satoh, T.; Nanba, K.; Suzuki, S. *Chem. Pharm. Bull.* **1971**, 19, 817-820.
- 20. For a more detailed discussion of factors controlling thermodynamic equilibria in this system, see reference 8b.
- Martin, V. S.; Woodard, S. S.; Katsuki, T.; Yamada, Y.; Ikeda, M.; Sharpless, K. B. J. Am. Chem. Soc. 1981, 103, 6237-6240.
- (a) Moure, A. L.; Arrayás, R. G.; Cárdenas, D. J.; Alonso, I.; Carretero, J. C. J. Am. Chem. Soc. 2012, 134, 7219-7222.
- 23. Komanduri, V.; Krische, M. J. J. Am. Chem. Soc. 2006, 128, 16448-16449.
- 24. Nishimura, A.; Tamai, E.; Ohashi, M.; Ogoshi, S. *Chem. Eur. J.* **2014**, *20*, 6613-6617.
- 25. Evans, D. A.; Song, H.; Fandrick, K. R. Org. Lett. 2006, 8, 3351-3354.
- Ben Ayed, T.; Amri, H.; & Gaied, M. E. M. *Tetrahedron* 1991, 41, 9621-9628.
- Miyashita, M.; Yoshikoshi, A.; & Grieco, P. A. J. Org. Chem. 1977, 42, 3772-3774.
- Friest, J. A.; Broussy, S.; Chung, W. J.; Berkowitz, D. Angew. Chem., Int. Ed. 2011, 50, 8895-8899.
- 29. Nakai, T.; Mikami, K. Chem. Rev. 1986, 86, 885-902.
- Lipshutz, B. H.; Ellsworth, E. L.; Dimock, S. H.; Reuter, D. C. Tetrahedron Lett. 1989, 30, 2065-2068.
- (a) Kim, I. S.; Nagi, M. Y.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 14891-14899. (b) Thorat, R. G.; Harned, A. M. Chem. Commun. 2018, 54, 241-243.
- N. A. Petasis, X. Yao, J. C. Raber, Nitrogen-containing heterocycles, US 6927294B1, 2005.
- Bosch, M. P.; Campos, F.; Niubo, I.; Rosell, G.; Diaz, J. L.; Brea, J.; Loza, M. I.; Guerrero, A. J. Med. Chem. 2004, 47, 4041-4053.
- Frank, S. A.; Chen, H.; Kunz, R. K.; Schnaderbeck, M. J.; Roush, W. R. Org. Lett. 2000, 2, 2691-2694.
- 35. We used purified **7b** for this transformation, but Gademann has demonstrated that a mixture of **7a** and **7b** is also effective (ref. 13a).
- 36. Stereoselectivity was estimated on the basis of crude NMR integration. The reported yield is of isolated β -3. Gademann reported an isolated yield of 48% of β -3 and 15% of α -3 (a 3:1 ratio).

nyurogen oond uncered grycosyration, and Gademann reported the activation of an N-phenyl trifluoroacetamide.

- Martí-Centelles, V.; Pandey, M. D.; Burguete, M. I.; Luis, S. V. Chem. Rev. 2015, 115, 8736-8834.
- Wu, Y.; Liao, X.; Wang, R.; Xie, X.; Brabander, J. K. De J. Am. Chem. Soc. 2002, 124, 3245-3253.
- 40. Such acyl migration products have been documented for natural fidaxomicin-related metabolites. See ref. 1a.

HIGHLIGHTS

Efficient stereoselective synthesis of the key polyketide fragments of Fidaxomicin

Efficient stereoselective synthesis of Fidaxomicin's resorcylic rhamnoside and novioside sugar fragments

Efficient and selective glycosylation of the polyketide fragments with the sugar fragments

Krische hydrogenative C-C coupling towards Fidaxomicin's branched dienoic acid fragment

[2,3]-Wittig rearrangement tactic to arrive at a polyketide stereodiad fragment embedded within Fidaxomicin's southern polyketide fragment

<text>

Declaration of interests

 \boxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: