LETTERS

A Direct Access to 7-Aminoindoles via Iridium-Catalyzed Mild C–H Amidation of *N*-Pivaloylindoles with Organic Azides

Youyoung Kim,^{†,‡} Juhyeon Park,^{†,‡} and Sukbok Chang^{*,‡,†}

[†]Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea

[‡]Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 305-701, Korea

Supporting Information

ABSTRACT: Ir(III)-catalyzed regioselective direct C-7 amidation of indoles in reaction with organic azides has been developed. While its efficiency was varied by the choice of *N*-directing groups, *N*-pivaloylindoles were most effective in undergoing the desired amidation at room temperature over a broad range of substrates. The reaction was scalable, and deprotection of the chelation group was also facile.

T he privileged indole structure is widely present in natural and synthetic products.¹ In particular, 7-aminoindoles are a key scaffold found in numerous biologically relevant compounds to display a broad spectrum of bioactivities, serving as antitumor agents, anion receptors, glucokinase activators, or nuclear hormone receptors (Scheme 1a).² As a result, the development of efficient synthetic routes to 7-aminoindoles is highly desirable. In this context, two synthetic strategies can be

Scheme 1. Bioactive 7-Aminoindoles

b) This work: Ir-Catalyzed C-7 Amidation of Indoles with Organic Azides

exclusively at the C-7 position

conceived: (i) a ring-generating route to indoles from aminoinstalled acyclic starting materials³ and (ii) direct regioselective C–H functionalization^{4,5} (amination in this case) of indoles using transition metal catalysts.^{6,7} Although the latter route has distinct merits, owing to the inherent electronic property of the indoles, electrophilic metalation takes place mainly at the C-3 position of an indole skeleton. In addition, direct activation of C2–H bonds has also been known under certain catalytic conditions.

Regioselective C-H functionalization at the C-7 position of indoles has been proven to operate only when proper Ndirecting groups are employed in combination with suitable catalytic systems. For instance, Hartwig et al. reported Ircatalyzed C-7 borylation of N-silylindoles.8 In addition, Ma9 and Shi¹⁰ independently showed that C-7 alkenylation and arylation of indoles could be feasible with properly installed Ndirecting groups by the action of Rh and Pd catalysis, respectively. Our group reported a direct C-7 amination of indolines with organic azides.¹¹ Initially obtained 7-aminoindolines can be readily oxidized to afford 7-aminoindoles as end products. Although structural diversity to allow both aminoindolines and aminoindoles can be achieved through this indirect approach, we were curious if a direct C-7 amination of indoles would be plausible. Herein, we report the development of an Ir-catalyzed C7-H amination of N-pivaloylindoles with organic azides (Scheme 1b). The reaction proceeds with excellent regioselectivity over a broad range of indoles and azides, thus offering a straightforward and efficient way of accessing 7-aminoindoles.

We commenced our study to examine the amidation conditions in a model reaction of *N*-pivaloylindole (1a) with *p*-toluenesulfonyl azide (2a, Table 1).¹² Inspired by Ma's

Received: March 8, 2016

Table 1. Optimization of the Reaction Conditions^a

Ĺ	H OF + Ts-N ₃	catalyst / additive solvent temp, 12 h		TS ^{-NH} O	4
	1a 2a			3a	
entry	catalyst (mol %)	additive	temp (°C)	solvent	yield (%) ^b
1	[IrCp*Cl ₂] ₂ (5)/AgNTf ₂ (20)	_	50	1,2-DCE	<1
2	[IrCp*Cl ₂] ₂ (5)/AgNTf ₂ (20)	NaOAc	50	1,2-DCE	60
3		₆ NaOAc	50	1,2-DCE	n.r.
4	$[\operatorname{Ru}(p\text{-cymene})\operatorname{Cl}_2]_2 (5) /\operatorname{AgSbF}_6 (20)$	NaOAc	50	1,2-DCE	n.r.
5	$\begin{bmatrix} IrCp*Cl_2 \end{bmatrix}_2 (5) / AgNTf_2 \\ (20) \end{bmatrix}$	KOAc	50	1,2-DCE	20
6	$\begin{bmatrix} IrCp*Cl_2 \end{bmatrix}_2 (5)/AgNTf_2 \\ (20) \end{bmatrix}$	AgOAc	50	1,2-DCE	77
7	$\begin{bmatrix} IrCp*Cl_2 \end{bmatrix}_2 (5) / AgNTf_2 \\ (20) \end{bmatrix}$	AcOH	50	1,2-DCE	27
8	$[IrCp*Cl_2]_2$ (5)	AgOAc	50	1,2-DCE	n.r.
9	IrCp*(OAc) ₂ (10)/ NaNTf ₂ (20)	_	50	1,2-DCE	44
10	IrCp*(OAc) ₂ (10)/ AgNTf ₂ (20)	_	50	1,2-DCE	90
11	$IrCp^*(OAc)_2$ (10)	-	50	1,2-DCE	n.r.
12	$AgNTf_{2}(20)$	-	50	1,2-DCE	n.r.
13	$\frac{\text{IrCp}^{*}(\text{OAc})_{2}(5)}{\text{AgNTf}_{2}(10)}$	_	25	1,2-DCE	94
14	$\frac{\text{IrCp}^{*}(\text{OAc})_{2} (5)}{\text{AgNTf}_{2} (10)}$	_	25	THF	29
15	$IrCp*(OAc)_2 (5)/AgNTf_2 (10)$	-	25	toluene	90
16	$\frac{1}{\text{AgNTf}_{2}} \frac{(5)}{(5)}$	-	25	MeCN	n.r.
17	$\operatorname{IrCp}^{*}(\operatorname{OAc})_{2}(5)/$ AgNTf ₂ (10)	_	25	EtOAc	74
18	$IrCp*(OAc)_{2} (5)/$	-	25	MeOH	n.r.

^{*a*}**1a** (0.20 mmol), **2a** (0.22 mmol), catalyst, and additive (30 mol %) in solvent (0.5 mL) for 12 h. ^{*b*}Yields were based on ¹H NMR analysis of the crude mixture (CH₂Br₂: internal standard). n.r. = no reaction.

elegant approach,⁹ we initially introduced a N-pivaloyl group to see whether it indeed can guide the desired C-7 selectivity in our case. When a cationic Ir species generated in situ from $[IrCp*Cl_2]_2$ and AgNTf₂ was employed, the desired product 3a was formed only in trace amount at 50 °C (entry 1). On the basis of our previous observation that acetate additives can promote the C-H bond activation,¹³ we decided to examine the additive effects. We were pleased to see that the amidation took place more efficiently (60% crude yield of 3a), leading to exclusive amidation at the C-7 position in the presence of NaOAc (30 mol %, entry 2). Importantly, no other isomeric amidated compounds were observed. However, this amidation was not operative with Rh or Ru catalyst systems (entries 3 and 4). Among various acetate additives screened, silver acetate was most effective (entries 5-7). However, the presence of AgNTf₂ turned out to be essential for reaction progress even when silver acetate was employed (entry 8).

When a pregenerated iridium acetate complex, $IrCp^*(OAc)_2$, was used as a catalyst in the presence of NaNTf₂, the desired product was obtained in moderate yield (entry 9). The use of AgNTf₂ in place of NaNTf₂ significantly improved the product yield (entry 10). Not surprisingly, the aminated product **3a** was not formed in the absence of either $IrCp^*(OAc)_2$ or $AgNTf_2$ (entries 11–12). Pleasingly, excellent product yield was obtained at room temperature and even with reduced catalyst loading (entry 13). The use of solvents other than 1,2-dichloroethane (1,2-DCE) resulted in decreased product yields (entries 14–18).

With the optimized conditions in hand, we next investigated the scope of indoles in reaction with p-toluenesulfonyl azide (Scheme 2). The structure of product 3a obtained from N-

Scheme 2. Substrate Scope of Indoles^a

 a1 (0.20 mmol) and 2a (0.22 mmol) in 1,2-DCE (0.5 mL); isolated yields. $^b\mathrm{At}$ 80 °C.

pivaloylindole was unambiguously confirmed by an X-ray crystallographic analysis. We were pleased to observe that the amidation took place smoothly irrespective of the position and electronic nature of substituents, thus giving rise to the corresponding C-7 amidated products in high efficiency and regioselectivity. Indeed, substrates bearing methyl (3b and 3h), alkoxy (3c, 3i, 3j, and 3m), fluoro (3d and 3n), bromo (3e and 3k), and chloro (3f and 3l) groups at the C4-, 5-, and 6-position of indoles were all facile for the present amidation. However, an indole substrate bearing a nitro group at the 5-position was amidated in moderate efficiency (3g).

Next, the scope of indoles substituted at the nitrogencontaining cyclic moiety (e.g., at the 2- or 3-position) was examined. Various functional groups positioned at C-3 did not much diminish the amidation efficiency, as demonstrated by the facile product formation of 3o-3r. In particular, amidated

Organic Letters

indoles bearing chloro, silyl-protected alcohol, or ketone groups would be potentially valuable for further synthetic transformations. In contrast, the amidation did not take place when 2-substituted indoles were subjected to the current conditions (**3s** and **3t**) although the exact reason is not clear at the present stage. Amidation of 9-acetyl-2,3,4,9-tetrahydro-1*H*-carbazole proceeded smoothly, leading to **3u** in 76% yield.

Finally, the influence of *N*-directing groups on the amidation efficiency was briefly examined. When sterically less hindered *N*-acetyl, isobutyryl, or cyclohexanecarbonyl groups were installed, lower product yields were obtained (3v-3x) compared to *N*-pivaloylindole (3a).¹⁴ Even lower amidation efficiency was observed with *N*-benzoylindole (3y). However, a reaction of *N*-(1-adamantanecarbonyl)indole took place almost quantitatively under the same mild conditions (3z), thus strongly suggesting that a steric factor critically affects the reaction efficiency.

The scope of organic azides was subsequently investigated in the amidation of *N*-pivaloylindole (Scheme 3). All arenesul-

^{*a*}**1a** (0.20 mmol) and **2** (0.22 mmol) in 1,2-DCE (0.5 mL); isolated yields. ^{*b*}At 50 °C.

fonyl azides examined were smoothly reacted with 1a to result in excellent product yields irrespective of the substituents' electronic property (4a-4e). Moreover, alkanesulfonyl azides were also highly facile under the standard mild amidation conditions (4f-4h). Thiophenesulfonyl azide was observed to work as an effective amidating reagent (4i). In addition, amidation reactions of 1a with 1-naphthalenesulfonyl azide and 2-phenylethene-1-sulfonyl azides occurred efficiently to furnish the corresponding aminoindoles in high yields (4j-4k). On the other hand, aryl azides, which were proven by us to be an efficient aminating source in the Rh-catalyzed amination of benzamides,¹⁵ displayed only moderate efficiency under the present iridium catalyst system (4l).

A notable aspect of the present procedure is that 7aminoindoles of high bioactivity can be directly accessed under mild conditions (Scheme 4). As a preliminary demonstration, the amidation of N-pivaloylindole (1a) and its congener substituted with a chloro group (1f) was carried out

Scheme 4. Synthesis of Biorelevant Compounds

successfully on a gram scale to give the corresponding 7amidoindoles in high yields (**4b** and **4m**, respectively). Pleasingly, the *N*-pivaloyl group of amidated indoles was easily removed also under mild conditions (Et₃N/MeOH at room temperature), thus affording 7-aminoindoles **5a** (ER-67836) and **5b** (ER-68394), both of which were revealed to display antitumor activity.^{2a-c}

A plausible mechanism of the present C-7 amidation is depicted in Scheme 5 based on our previous mechanistic

Scheme 5. Proposed Mechanistic Pathway

investigations in the related C–H amination reactions.^{12d,13b} A cationic Ir(III) species, *in situ* generated by treating IrCp*- $(OAc)_2$ with AgNTf₂, will undergo a directed C7–H bond activation of *N*-pivaloylindole via the chelation assistance of a carbonyl oxygen atom to give rise to a six-membered iridacycle (I). A subsequent coordination of organic azide to the iridium metal center and then insertion of an imido group into the Ir–C bond are believed to occur with concomitant release of a N₂ molecule leading to an iridium amido intermediate (III). Finally, a protodemetalation of III will deliver the 7-aminoindole product with the regeneration of the active iridium catalyst.

In conclusion, we have developed the Ir-catalyzed direct C– H amidation of *N*-pivalolylindoles at the C-7 position by using organic azides under mild conditions. A broad range of indoles were efficiently amidated with excellent regioselectivity. The procedure is convenient to perform on a gram scale and the *N*pivaloyl directing group can readily be removed, thus offering a straightforward route to biologically relevant 7-aminoindole compounds.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.or-glett.6b00662.

Experimental procedure and characterization of new compounds (1 H, 13 C NMR spectra; crystallographic data) (PDF)

Crystallographic data for 3a (CIF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: sbchang@kaist.ac.kr.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This research was supported by the Institute for Basic Science (IBS-R010-D1).

REFERENCES

(1) (a) Sundberg, R. J. The Chemistry of Indoles; Academic Press: New York, 1970. (b) Thomson, R. H. The Chemistry of Natural Products; Blackie and Son: Glasgow, 1985. (c) Zi, W.; Zuo, Z.; Ma, D. Acc. Chem. Res. **2015**, 48, 702.

(2) (a) Owa, T.; Yoshino, H.; Okauchi, T.; Yoshimatsu, K.; Ozawa, Y.; Sugi, N. H.; Nagasu, T.; Koyanagi, N.; Kitoh, K. J. Med. Chem. **1999**, 42, 3789. (b) Owa, T.; Yokoi, A.; Yamazaki, K.; Yoshimatsu, K.; Yamori, T.; Nagasu, T. J. Med. Chem. **2002**, 45, 4913. (c) Mohan, R.; Banerjee, M.; Ray, A.; Manna, T.; Wilson, L.; Owa, T.; Bhattacharyya, B.; Panda, D. Biochemistry **2006**, 45, 5440. (d) Dydio, P.; Zielinski, T.; Jurczak, J. Chem. Commun. **2009**, 4560. (e) Bell, M. G.; Gavardinas, K.; Gernert, D. L.; Grese, T. A.; Jadhav, P. K.; Lander, P. A.; Steinberg, M. I. Preparation of indole-derived modulators of steroid hormone nuclear receptors. WO2004067529A1, 2004. (f) Yasuma, T.; Ujikawa, O.; Itoh, M.; Aoki, K. Preparation of indole compounds as glucokinase activators for treating diabetes, obesity and the like. US20080096877A1, 2008.

(3) For selected reviews, see: (a) Vicente, R. Org. Biomol. Chem. 2011, 9, 6469. (b) Taber, D. F.; Tirunahari, P. K. Tetrahedron 2011, 67, 7195.

(4) Selected reviews on C-H activations: (a) Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507. (b) Fagnou, K.; Lautens, M. Chem. Rev. 2003, 103, 169. (c) Bergman, R. G. Nature 2007, 446, 391. (d) Seregin, I. V.; Gevorgyan, V. Chem. Soc. Rev. 2007, 36, 1173. (e) Li, C.-J. Acc. Chem. Res. 2009, 42, 335. (f) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624. (g) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Commun. 2010, 46, 677. (h) Daugulis, O. Top. Curr. Chem. 2009, 292, 57. (i) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215. (j) McMurray, L.; O'Hara, F.; Gaunt, M. J. Chem. Soc. Rev. 2011, 40, 1885. (k) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068. (1) White, M. C. Science 2012, 335, 807. (m) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879. (n) Song, G.; Wang, F.; Li, X. Chem. Soc. Rev. 2012, 41, 3651. (o) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788. (p) Hartwig, J. F. Acc. Chem. Res. 2012, 45, 864. (q) Neufeldt, S. R.; Sanford, M. S. Acc. Chem. Res. 2012, 45, 936. (r) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem., Int. Ed. 2012, 51, 8960. (s) Kuhl, N.; Hopkinson, M. N.; Wencel-Delord, J.; Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 10236. (t) Rouquet, G.;

Chatani, N. Angew. Chem., Int. Ed. 2013, 52, 11726. (u) Pan, S.; Shibata, T. ACS Catal. 2013, 3, 704. (v) Kuhl, N.; Schröder, N.; Glorius, F. Adv. Synth. Catal. 2014, 356, 1443. (w) Li, B.-J.; Yang, S.-D.; Shi, Z.-J. Synlett 2008, 2008, 949. (x) Hirano, L.; Miura, M. Synlett 2011, 2011, 294. (y) Li, B.-J.; Shi, Z.-J. Chem. Soc. Rev. 2012, 41, 5588. (z) Kakiuchi, F.; Kochi, T. Synthesis 2008, 2008, 3013.

(5) Selected reviews on C-H aminations: (a) Collet, F.; Dodd, R. H.; Dauban, P. Chem. Commun. 2009, 5061. (b) Collet, F.; Lescot, C.; Dauban, P. Chem. Soc. Rev. 2011, 40, 1926. (c) Ramirez, T. A.; Zhao, B.; Shi, Y. Chem. Soc. Rev. 2012, 41, 931. (d) Jeffrey, J. L.; Sarpong, R. Chem. Sci. 2013, 4, 4092. (e) Shin, K.; Kim, H.; Chang, S. Acc. Chem. Res. 2015, 48, 1040. (f) Kim, H.; Chang, S. ACS Catal. 2016, 6, 2341. (6) For selected examples of transition-metal-catalyzed C-C bond formation of indoles at the C-2 or C-3 position, see: (a) Phipps, R. J.; Grimster, N. P.; Gaunt, M. J. J. Am. Chem. Soc. 2008, 130, 8172. (b) Schipper, D. J.; Hutchinson, M.; Fagnou, K. J. Am. Chem. Soc. 2010, 132, 6910. (c) Wu, W.; Su, W. J. Am. Chem. Soc. 2011, 133, 11924. (d) Ding, Z.; Yoshikai, N. Angew. Chem., Int. Ed. 2012, 51, 4698. (e) Pan, S.; Ryu, N.; Shibata, T. J. Am. Chem. Soc. 2012, 134, 17474. (f) Ikemoto, H.; Yoshino, T.; Sakata, K.; Matsunaga, S.; Kanai, M. J. Am. Chem. Soc. 2014, 136, 5424. (g) Alford, J. S.; Davies, H. M. L. J. Am. Chem. Soc. 2014, 136, 10266. (h) Nishino, M.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed. 2012, 51, 6993.

(7) For selected examples of transition-metal-catalyzed C-N bond formation of indoles at the C-2 or C-3 position, see: (a) Shuai, Q.; Deng, G.; Chua, Z.; Bohle, D. S.; Li, C.-J. Adv. Synth. Catal. 2010, 352, 632. (b) Liu, X.-Y.; Gao, P.; Shen, Y.-W.; Liang, Y.-M. Org. Lett. 2011, 13, 4196. (c) Shi, J.; Zhou, B.; Yang, Y.; Li, Y. Org. Biomol. Chem. 2012, 10, 8953. (d) Sun, B.; Yoshino, T.; Matsunaga, S.; Kanai, M. Adv. Synth. Catal. 2014, 356, 1491. (e) Shang, M.; Sun, S.-Z.; Dai, H.-X.; Yu, J.-Q. J. Am. Chem. Soc. 2014, 136, 3354.

(8) Robbins, D. W.; Boebel, T. A.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 4068.

(9) Xu, L.; Zhang, C.; He, Y.; Tan, L.; Ma, D. Angew. Chem., Int. Ed. 2016, 55, 321.

(10) Yang, Y.; Qiu, X.; Zhao, Y.; Mu, Y.; Shi, Z. J. Am. Chem. Soc. 2016, 138, 495.

(11) (a) Shin, K.; Chang, S. J. Org. Chem. 2014, 79, 12197. (b) Hou, W.; Yang, Y. X.; Ai, W.; Wu, Y. X.; Wang, X.; Zhou, B.; Li, Y. C. Eur. J. Org. Chem. 2015, 2015, 395. (c) Pan, C.; Abdukader, A.; Han, J.; Cheng, Y.; Zhu, C. Chem. - Eur. J. 2014, 20, 3606.

(12) (a) Kim, J. Y.; Park, S. H.; Ryu, J.; Cho, S. H.; Kim, S. H.; Chang, S. J. Am. Chem. Soc. 2012, 134, 9110. (b) Kim, J.; Kim, J.; Chang, S. Chem. - Eur. J. 2013, 19, 7328. (c) Kim, J.; Chang, S. Angew. Chem., Int. Ed. 2014, 53, 2203. (d) Park, S. H.; Kwak, J.; Shin, K.; Ryu, J.; Park, Y.; Chang, S. J. Am. Chem. Soc. 2014, 136, 2492. (e) Lee, D.; Kim, Y.; Chang, S. J. Org. Chem. 2013, 78, 11102.

(13) (a) Kang, T.; Kim, Y.; Lee, D.; Wang, Z.; Chang, S. J. Am. Chem. Soc. 2014, 136, 4141. (b) Hwang, H.; Kim, J.; Jeong, J.; Chang, S. J. Am. Chem. Soc. 2014, 136, 10770. (c) Kang, T.; Kim, H.; Kim, J. G.; Chang, S. Chem. Commun. 2014, 50, 12073. (d) Kim, H.; Park, J.; Kim, J. G.; Chang, S. Org. Lett. 2014, 16, 5466. (e) Ackermann, L. Chem. Rev. 2011, 111, 1315. (f) Ackermann, L. Acc. Chem. Res. 2014, 47, 281. (14) The main reason for lower yields of C-7 amidated products in indole substrates containing less hindered N-acetyl, N-isobutyryl, and N-cyclohexanecarbonyl groups is mainly due to the lower reactivity of those compounds when compared to N-pivaloylindole.

(15) Ryu, J.; Shin, K.; Park, S. H.; Kim, J. Y.; Chang, S. Angew. Chem., Int. Ed. 2012, 51, 9904.