pubs.acs.org/joc

Direct Synthesis of Pyrrolo[1,2- α]quinoxalines *via* Iron-Catalyzed Transfer Hydrogenation between 1-(2-Nitrophenyl)pyrroles and Alcohols

Simin Chun, Jiwon Ahn, Ramachandra Reddy Putta, Seok Beom Lee, Dong-Chan Oh, and Suckchang Hong*

R#

R

NO₂

NH₂

reduction

Abstract: Herein, we describe hove hove hove hove and transfer hydrogenation between alcohols and 1-(2-nitrophenyl)pyrroles for the synthesis of pyrrolo[1,2- α]quinoxalines. The tricarbonyl (η^4 -cyclopentadienone) iron complex catalyzed the oxidation of alcohols and the reduction of nitroarenes, and the corresponding aldehydes and aniline were generated *in situ*. The resulting Pictet–Spengler-type annulation/oxidation completed the quinoxaline structure formation. The protocol tolerated various kinds of functional groups and provided 29 samples of 4-substituted pyrrolo[1,2- α]quinoxalines. The developed method was also applied for the synthesis of additional polyheterocycles.

INTRODUCTION

The transfer hydrogenation strategy has become an attractive tool in organic synthesis. Based on this strategy, the borrowing hydrogen process has provided a convenient method for new bond formation between nucleophiles and alcohol substrates.¹ In the borrowing hydrogen process, this bond formation usually proceeds in the following sequence (Figure 1 top): (i) the dehydrogenation of alcohol generates a more reactive carbonyl intermediate, (ii) the more reactive intermediate can undergo further transformations with a nucleophile to give an unsaturated intermediate, and (iii) the unsaturated intermediate will be hydrogenated to produce alkylated products. The catalyst mediates the hydrogen transfer from the alcohol to the unsaturated bond during the process. According to this strategy, bench-stable and inexpensive alcohol can be applied as an alkylating reagent, and only water is liberated as a stoichiometric byproduct during the intermediate reaction. Thus, the borrowing hydrogen reaction is an atom-efficient and environmentally benign method. Many kinds of transition metals have been employed as catalysts in C-C or C-N bond formations by the borrowing hydrogen strategy. In addition to considerable commonly used precious metal catalysts, progress has also been made recently with base metal catalysts,^{1a} such as Fe,³ Co,⁴ Mn,⁵ Ni,⁶ and Cu.⁷ Among those, iron is the most abundant transition metal with low price and toxicity; thus, it has received significant attention as a catalyst in transfer hydrogenation.

The representative catalyst, tricarbonyl (η^4 -cyclopentadienone) iron complex, was originally described by Knölker in 1999.⁸ Several pioneering studies by Casey and Guan revealed General borrowing hydrogen process

Fe

Transfer

Hydrogen

OH

oxidation

`R

R

Figure 1. New bond formation through transfer hydrogenation and the representative iron catalyst.

Received: September 4, 2020

Article

- Simple alcohol substrates

- No additional redox reagents

29 samples

34-99 % yield

- Only H₂O as byproduct

-> R

- Neutral condition

annulation

oxidation

its catalytic activity for hydrogen transfer from alcohol to carbonyl compound.9 Subsequently, Feringa and Barta discovered that this iron complex could mediate the transfer hydrogenation from alcohol to imine during the reductive amination process,^{10a} and it has been widely applied in C-N bond formation using alcohol through the borrowing hydrogen strategy.¹⁰ Although C-N bond formation was successfully achieved using Knölker's complex, previous borrowing hydrogen studies have applied nucleophilic amines directly. We envisioned the feasibility of nitroarene as a pronucleophile to form C-N bonds with alcohol based on the transfer hydrogenation mechanism. In our strategy, nucleophilic amine and electrophilic aldehyde can be generated in situ from nitroarene and alcohol, respectively, through transfer hydrogenation processes. Followed by the condensation of these two intermediates, a new C-N bond was constructed (Figure 1 bottom). To the best of our knowledge, this iron complex has not been explored for the reduction of nitro groups via the transfer hydrogenation reaction, and no study on C–N bond formation by directly employing nitroarene has been reported.

Pyrrolo[1,2- α]quinoxalines are important components found in many biologically active molecules.¹¹ In addition to their various biological activities, their fluorescence and photophysical properties have generated interest in the synthesis of biomarkers, dyes, and materials.¹² Therefore, much attention has been devoted to the synthesis of pyrrolo[1,2- α]quinoxaline derivatives until now. The most common method is the Pictet–Spengler-type condensation of aldehydes with 1-(2-aminophenyl)pyrroles which is usually obtained by the reduction of 1-(2-nitrophenyl)pyrroles.¹³

Although the one-pot synthesis of pyrrolo $[1,2-\alpha]$ quinoxalines from 1-(2-nitrophenyl)pyrroles provides a shortcut synthetic route, only a few examples have been reported (Scheme 1). In 2012, iron-mediated reduction of nitroarene and alcohol oxidation followed by cyclization to pyrrolo [1,2a]quinoxaline was reported by Pereira.¹⁴ Sanz's group developed a molybdenum-catalyzed redox reaction between nitroarenes and 1,2-diol substrates.¹⁵ Recently, an activated carbon/water catalytic system between 1-(2-nitrophenyl)pyrroles and arylamines was also reported by Wang. Although these one-pot approaches provided a shortcut synthesis of pyrrolo $[1,2-\alpha]$ quinoxaline and employed benchstable alcohols or amines, they still suffer from several drawbacks, such as excess amounts of metal and alcohol, strong acidic conditions, limitation of substrate scope, and the generation of additional stoichiometric byproducts. Considering the limitations of the previous procedures, a simpler, milder, affordable, and environmentally friendly system for the synthesis of pyrrolo[1,2-*a*]quinoxalines is still desirable. As part of our process for developing a synthetic method for the Nheterocycle, we examined the direct pyrrolo $[1,2-\alpha]$ quinoxaline synthesis between a simple alcohol and 1-(2-nitrophenyl)pyrrole using Knölker's complex (Scheme 1 bottom).

RESULTS AND DISCUSSION

In the beginning, we selected commercially or readily available 1-(2-nitrophenyl) pyrrole (1a) and benzyl alcohol (2a) as model substrates for testing our initial hypothesis. A standard Knölker complex (Fe I) and trimethylamine *N*-oxide (TMAO), which was used to activate Fe I and liberate a vacant site *in situ*, were applied in cyclopentyl methyl ether (CPME) at 140 °C under Ar for 40 h. As shown in Table 1,

Scheme 1. Synthesis of Pyrrolo[1,2- α]quinoxaline from 1-(2-Nitrophenyl)pyrrole

Previous work

pubs.acs.org/joc

Table 1. Optimization of the Reaction Conditions^a

	+ D ₂	OH Fe Ph	IMS TMS TMS TMS C C C C C C C C C C C C C		Ph 3a	Ph
entry	solvent	T (°C)	time (h)	3aa (%) ^b	3aa' (%) ^b	gas
1	CPME	140	40	5	0	Ar
2	CPME	150	40	27	0	Ar
3	CPME	160	40	21	27	Ar
4	CPME	160	40	33	44	air
5	CPME	160	24	93 (90)	0	O ₂
6	toluene	160	24	66 (68)	31 (24)	O ₂
7	xylene	160	24	40	0	O ₂
8 ^c	CPME	160	24	79	0	O ₂
9 ^d	CPME	160	24	74	9	O ₂
10 ^e	CPME	160	24	0	0	O ₂
11 ^f	CPME	160	40	(96)	0	O ₂

^{*a*}Reaction condition: **1a** (0.3 mmol), **2a** (0.9 mmol), **Fe I** (6 mol %), TMAO (12 mol %), and molecular sieve (50 mg) in solvent (0.3 mL). The reaction vessel was recharged with gas and sealed. ^{*b*}NMR yield using dimethyl sulfone as the internal standard. Isolated yield in parentheses. ^{*c*}**2a** (0.6 mmol). ^{*d*}Without a molecular sieve. ^{*e*}Without **Fe I** and TMAO. ^{*f*}I mmol scale reaction of **1a** and **Fe I** (15 mol %) and TMAO (30 mol %) were used.

only trace amounts of the desired product (3aa) were obtained in the first trial (5%, entry 1). However, this result showed that it was possible to reduce the nitro group by transfer hydrogenation using the iron complex Fe I. Next, the reaction

temperature was increased to achieve a higher conversion (entries 2-3). Even when 1a was consumed completely at 160 °C, the desired product 3aa was formed along with an unoxidized product 3aa'. To improve selectivity for 3aa, the reaction vessel was charged with air and O_2 gas (entries 4–5). We hypothesized that O_2 may help the final oxidation from 3aa' to 3aa, which was not favored under Ar. The reaction proceeded quickly and reached full conversion within 24 h with O₂ gas, and quinoxaline product 3aa was obtained selectively in high yield (90% isolated yield, entry 5). To examine the solvent effect, we employed different types of solvents. However, low selectivity between 3aa and 3aa' was observed in toluene, and low conversion was observed in xylene (entries 6-7). At this time, we detected that a small amount of 3aa' was converted to 3aa in silica gel during column chromatography. Additionally, we reduced the amount of alcohol 2a in the reaction; however, lower conversion was observed, and nitroarene 1a remained in the mixture (entry 8). We speculate that at least 3 equivalents of alcohol are required to reduce 1 equivalent of nitroarene. The reaction without the molecular sieve was slow and not completed in 24 h, indicating that the reaction was retarded by water which is generated in situ (entry 9). To demonstrate the crucial role of the iron complex in the transfer hydrogenation process, a control experiment was also performed in the absence of Fe I (entry 10). As we expected, no products were formed and most of 1a and 2a were remained. Various types of iron complexes have also been explored to estimate their activity. Among the explored iron complexes, Fe I showed the best efficiency in the reaction system, and the results of each complex are included in the Supporting Information. These results also suggested that TMAO is essential to activate Fe I. We carried out 1 mmol scale reaction to demonstrate the practical utility of the method, and 3aa was obtained in high yield (96% isolated yield, entry 11).

After optimization of the reaction conditions, a wide range of alcohol 2 was employed for annulation with 1a to explore the reaction scope (Table 2). Benzylic alcohols containing various substituents reacted with 1a to the corresponding quinoxaline products 3ab-3ap. In general, benzylic alcohols containing electron-donating groups, such as methyl, t-butyl, and methoxy groups, were less reactive than those with electron-withdrawing groups. All of the methoxy benzyl alcohols resulted in low yields even with longer reaction times (3ad, 3ag, and 3aj). In the case of more electronenriched 4-(dimethylamino) benzyl alcohol, no desired product was obtained. These electronic effects of benzyl alcohol suggest that the annulation process shows more influence on the product formation than the transfer hydrogenation process. Although electron-rich benzylic alcohols can act as strong reductants in the transfer hydrogenation process, they can act as less-active electrophiles in the annulation process. The steric effect of substituents did not directly influence the formation of the product (3ab-3aj). The electron density of benzylic carbon according to the position of the substituent showed more influence than the steric effect. The electron-donating methoxy group on ortho- and paraposition gave the desired products 3ad and 3aj in poor yields. In contrast with the methoxy group, benzyl alcohols containing ortho- and para-fluorine afforded the annulated product in higher yield than that of meta-fluoro benzyl alcohol (3ac, 3ai vs 3af). Various heteroaromatic groups and naphthalene could also be employed at the 4-position of the pyrrolo[1,2-

^{*a*}Reaction condition: **1a** (0.3 mmol), **2** (0.9 mmol), **Fe I** (6 mol %), TMAO (12 mol %), molecular sieve (50 mg), and CPME (0.3 mL) at 160 °C for 24 h under O_2 in sealed tubes. ^{*b*}Isolated yield. ^{*c*}Reaction time: 40 h.

 α]quinoxalines (3aq-3at). For further expansion of the alcohol scope, allylic, propargylic, and aliphatic alcohols were also investigated. Cinnamyl alcohol reacted with 1a, and the desired product 3au was obtained in good yield. However, in the case of geraniol, partial hydrogenation of olefin occurred, and the messy reaction mixture was observed in TLC. Comparing reactions with cinnamyl alcohol and geraniol, highly conjugated olefin of 3au was inactive in hydrogenation, but it could be assumed that nonconjugated olefin in geraniol can be affected by hydrogenation under the reaction condition. In addition, 3-phenylpropargyl alcohol and aliphatic alcohols could participate in the reaction, even if the products 3av-3ax were obtained in low yields.

Next, we employed various types of 2-pyrrole nitroarenes for further extension of the substrate scope (Table 3). In the case of 1-(2-nitrophenyl) pyrroles, electron-withdrawing substituents on benzene (chloro and trifluoromethyl groups, 3da-3ea/3ha) generally afforded the corresponding products in higher yields than electron-donating substituents (methyl and methoxy groups, 3ba-3ca/3fa-3ga). Interestingly, the position of the substituent played a crucial role in the reaction, regardless of the electron density. The 4-substituted 1-(2nitrophenyl) pyrroles were more reactive than the 5- or 6substituted analogues (3ba-3ea vs 3fa-3ia). Additionally, 3nitro-2-(1H-pyrrol-1-yl)pyridine could also be applied in the

^{*a*}Reaction condition: 1 (0.3 mmol), **2a** (0.9 mmol), **Fe I** (6 mol %), TMAO (12 mol %), molecular sieve (50 mg), and CPME (0.3 mL) at 160 °C for 24 h under O_2 in sealed tubes. ^{*b*}Isolated yield. ^{*c*}The reaction proceeded at 170 °C for 40 h.

reaction and yielded annulated product **3ja**. In addition to the 2-position of pyrrole, we hypothesized that the 3-position of pyrrole can also participate in the annulation. Accordingly, 2- (2-nitrophenyl)-pyrrole substrates were also subjected to the reaction conditions. Although longer reaction times and higher temperatures were required, pyrrolo[3,2-c]quinoline products **3ka** and **3la** were obtained in moderate yields.

We also attempted the annulation using a secondary alcohol to synthesize a dihydropyrrolo $[1,2-\alpha]$ quinoxaline structure (Scheme 2). Although the desired product 5 could not be

obtained, both 2-(1H-pyrrol-1-yl)aniline 1a' and ketone 4' were observed in the reaction mixture. This result confirmed our hypothesis that nitroarene is reduced as a hydrogen acceptor and that alcohol is oxidized as a hydrogen donor in the transfer hydrogenation mechanism. Notably, almost 3 equivalents of alcohol were consumed to reduce one nitro functionality.

NMR yield using dimethyl sulfone as the internal standard.

pubs.acs.org/joc

Article

Further control experiments were performed to evaluate the mechanism of hydrogen transfer (Scheme 3). As shown in

Scheme 3. Mechanistic Studies

Scheme 3a, when 2-(1H-pyrrol-1-yl)aniline 1a' was directly treated with benzyl alcohol 2a under the standard reaction conditions, only negligible product formation occurred in the absence of the nitro functionality. Similarly, the nitro reduction did not occur in the absence of alcohol when benzaldehyde 2a' was used instead of benzyl alcohol 2a (Scheme 3b). These results indicated that both the hydrogen acceptor nitro group and the hydrogen donor alcohol are required for the balance of hydrogen transfer. When prereduced 1a' was reacted with preoxidized 2a' under the standard conditions, 3aa was obtained regardless of the presence of Fe I. Therefore, the iron complex was determined to be a hydrogen mediator between the nitro and alcohol groups but was not involved in the final oxidation of intermediate 3aa' to form 3aa. According to the results in Table 1, O2 gas could accelerate this final oxidation process.

Based on the abovementioned results, a plausible mechanism of hydrogen transfer and the cyclization process are depicted in Scheme 4. Iron-mediated oxidation of alcohol 2a leads to aldehydes 2a' and $[Fe]-H_2$, which reduce nitrobenzene 1a to aniline 1a'. For the balance of hydrogen, [Fe] transfers six hydrogens from 3 equivalent of alcohols to one nitro group. After the hydrogen transfer process, condensation between aniline 1a' and aldehyde 2a' forms imine intermediate 6, followed by a nucleophilic attack of pyrrole that produces cyclized intermediate 3aa'. The imine intermediate 6 was directly observed in the NMR spectrum of the crude reaction mixture (see details in the Supporting Information). The final oxidative aromatization occurs with the assistance of O_2 gas. Thus, a total of 4 equiv of H₂O are generated as a byproduct, including the reduction of the nitro group and the condensation step. In addition, 3 equivalents of alcohol are required as a hydrogen donor to reduce the nitro functionality. Although the 16-electron iron complex [Fe] has been proposed as an active species in the mechanism, the possibility that another active species can be generated under O2 gas could not be ruled out.

CONCLUSIONS

In conclusion, we described the iron-catalyzed synthesis of pyrrolo $[1,2-\alpha]$ quinoxalines by the economical transfer hydrogenative coupling of 1-(2-nitrophenyl)pyrroles and alcohols. The developed transfer hydrogenation process allows for reduction of nitroarene and oxidation of alcohol in the presence of the tricarbonyl (η^4 -cyclopentadienone) iron complex. It is the first discovery that this iron catalyst has potential to reduce nitro functionality via hydrogen transfer. Iron is an earth-abundant and low-toxicity metal, and only water is liberated as the reaction byproduct. Additionally, alcohol is readily available and used in the reaction both as a reductant and coupling reagent; thus, any external redox reagent is not required. Therefore, this methodology provides an ecofriendly alternative for the synthesis of pyrrolo 1,2- α]quinoxalines. Further expansion of the iron-catalyzed transfer hydrogenation strategy to access other types of Nheterocycles is currently investigated by our research group.

EXPERIMENTAL SECTION

General Information. All commercially available reagents and solvents (purchased from Sigma-Aldrich, TCI, Alfa-Aesar, and Acros) were used without further purification unless otherwise noted. All reactions were carried out in an oven-dried round-bottom flask or sealed tube purchased from Fishcer Scientific (Fisherbrand disposable borosilicate glass tubes with threaded end and Qorpak Green Thermoset Cap with F217 and PTFE Liner). Reactions were monitored by thin layer chromatography on a silica gel 60 F254 plate (Merck, Darmstadt, Germany) using UV illumination at 254 and 365 nm (VL-4.LC, Vilber Lourmat, Eberhardzell, Germany). Column chromatography was performed on silica gel (230-400 mesh; Zeochem, Lake Zurich, Switzerland), using hexane and EtOAc as eluents. Nuclear magnetic resonance (¹H NMR, ¹³C NMR, and ¹⁹F NMR) spectra were measured on a JEOL JNM-ECZ400s [400 MHz (¹H), 100 MHz (¹³C), and 376 MHz (¹⁹F)] spectrometer. The chemical shifts are given in parts per million (ppm) on the delta (δ) scale. The solvent peak was used as a reference value, for ¹H NMR: $CDCl_3 = 7.26$ ppm; for ¹³C NMR: $CDCl_3 = 77.16$ ppm. Coupling constants (J) are expressed in hertz (Hz). All high-resolution mass spectra (HR-MS) were acquired using a fast atom bombardment (FAB) ionization method on a JMS-700 MStation mass spectrometer (JEOL, Tokyo, Japan). Melting points were measured on a Büchi B-540 melting point apparatus. Starting compounds 1a-1j were

pubs.acs.org/joc

synthesized through known procedures and characterization data were consistent with the literature. $^{\rm 13f}$

Synthesis of 2-(2-nitrophenyl)-1H-pyrrole (1k).¹⁵ 1-Bromo-2nitrobenzene (2 mmol, 404 mg), cesium carbonate (4 mmol, 1.3 g), and pyrrole (4 mmol, 0.28 mL) were added to anhydrous acetonitrile (20 mL) and the mixture was refluxed at 92 °C in an oil bath. After 12 h, pyrrole (4 mmol, 0.28 mL) was added to the reaction mixture. After 1 day, the reaction mixture was cooled to room temperature, diluted with water (25 mL), and extracted with EtOAc (15 mL) three times. The organic layer was dried over anhydrous MgSO4 and concentrated. After purification by flash column chromatography (hexane/EtOAc = 50:1 to 10:1), 1k was obtained as a red solid (189 mg, 50% yield); mp 44–46 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.91 (s, 1H), 7.72 (dd, J = 8.6, 1.2 Hz, 2H), 7.52-7.61 (m, 4H), 7.33-7.37 (m, 2H), 6.91–6.93 (m, 2H), 6.48–6.50 (m, 2H), 6.31–6.33 (m, 2H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃): δ 148.1, 132.4, 130.8, 127.2, 127.0, 126.3, 124.5, 120.6, 111.0, 110.1; HRMS (FAB) m/z: calcd for C₁₀H₈N₂O₂ [M]⁺, 188.0586; found, 188.0588.

Synthesis of 1-Methyl-2-(2-nitrophenyl)-1H-pyrrole (11).¹⁵ 1-Iodo-2-nitrobenzene (20 mmol), lithium hydroxide (80 mmol, 1.92 g), and 1-methyl pyrrole (60 mmol, 5.3 mL) were added to anhydrous DMSO (11 mL) and the mixture was refluxed at 100 °C in an oil bath. After 2 h, 1-methyl pyrrole was added (60 mmol, 5.3 mL) to the reaction mixture and stirred for overnight at 110 °C. The reaction mixture was cooled to room temperature, diluted with water (100 mL), and extracted with EtOAc (30 mL) three times. The organic layer was dried over anhydrous MgSO4 and concentrated. After purification by flash column chromatography (hexane/EtOAc = 50:1to 10:1), 11 was obtained as a red solid (3.64 g, 90% yield); mp 58-60 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.94 (d, J = 7.9 Hz, 1H), 7.62 (dd, J = 7.3, 6.1 Hz, 1H), 7.46-7.53 (m, 2H), 6.76 (t, J = 2.4 Hz, 1H), 6.21 (t, J = 3.1 Hz, 1H), 6.15 (q, J = 1.8 Hz, 1H), 3.45 (s, 3H); $^{13}\text{C}\{1\text{H}\}$ NMR (100 MHz, CDCl₃): δ 150.0, 133.5, 132.4, 128.8, 128.4, 128.0, 124.2, 123.8, 109.7, 108.2, 34.4; HRMS (FAB) m/z: calcd for $C_{11}H_{11}N_2O_2$ [M + H]⁺, 203.0821; found, 203.0816.

Synthesis of Pyrrolo[1,2-a]quinoxalines. Optimized Condition. To a mixture of 1-(2-nitrophenyl)-1H-pyrrole 1a (0.3 mmol, 56.4 mg), iron catalyst (0.018 mmol), trimethylamine N-oxide (0.036 mmol, 2.7 mg), and 50 mg molecular sieve (4 Å, powder), benzyl alcohol 2a (0.9 mmol, 93 μ L) and solvent (0.3 mL) were added in O2-charged borosilicate glass tubes. The reaction tube was sealed and stirred at 160 °C in a heating block. After stirring for 24 h, the reaction mixture was cooled to room temperature, diluted with DCM (1 mL), and filtered. Then, the reaction mixture was concentrated in vacuo. The crude reaction mixture was analyzed using dimethyl sulfone (0.03 mmol) as an internal standard. In the case of entry 5 in Table 1, the residue was purified by flash column chromatography on silica gel, using hexane/EtOAc (50:1) as the eluent. After purification, 3aa was obtained as a pale-yellow solid (66 mg, 90%). In the case of entry 6 in Table 1, 3aa (50 mg, 68%) and 3aa' (18 mg, 24%) were obtained.

For 1 mmol Scale Reaction (Entry 11 in Table 1). To a mixture of 1-(2-nitrophenyl)-1H-pyrrole 1a (1.0 mmol, 188.2 mg), Fe I (0.15 mmol), trimethylamine N-oxide (0.3 mmol, 22.5 mg), and 300 mg molecular sieve (4 Å, powder), benzyl alcohol 2a (3.0 mmol, 309 μ L) and CPME (1 mL) were added in an O₂-charged Ace pressure tube. The reaction tube was sealed and stirred at 160 °C in an oil bath. After stirring for 40 h, the reaction mixture was cooled to room temperature, diluted with DCM (3 mL), and filtered. Then, the reaction mixture was concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel, using hexane/EtOAc (50:1) as the eluent. After purification, **3aa** was obtained as a pale-yellow solid (181 mg, 96%).

4-Phenylpyrrolo[$\overline{1}$,2-a]quinoxaline (**3aa**). Pale-yellow solid; mp 85–86 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.05 (dd, J = 8.0, 1.6 Hz, 1H), 8.01 (dd, J = 7.8, 1.8 Hz, 3H), 7.88 (d, J = 8.3 Hz, 1H), 7.44–7.58 (m, 5H), 7.00 (t, J = 2.1 Hz, 1H), 6.90 (t, J = 3.4 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 154.6, 138.6, 136.4, 130.4, 129.9, 128.7, 127.6, 127.3, 125.5, 125.4, 114.7, 114.1, 113.8, 108.8;

HRMS (FAB) m/z: calcd for $C_{17}H_{13}N_2 [M + H]^+$, 245.1079; found, 245.1075.

4-Phenyl-4,5-dihydropyrrolo[1,2-a]quinoxaline (**3aa**'). Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 7.48 (dd, J = 8.0, 1.6 Hz, 2H), 7.34–7.41 (m, 4H), 7.20 (t, J = 2.1 Hz, 1H), 6.98 (td, J = 7.6, 1.4 Hz, 1H), 6.86 (td, J = 7.7, 1.2 Hz, 1H), 6.76 (dd, J = 7.8, 1.4 Hz, 1H), 6.25 (t, J = 3.2 Hz, 1H), 5.58 (t, J = 1.6 Hz, 1H), 5.55 (s, 1H), 4.17 (s, 1H); ¹³C{1H} NMR (100 MHz, CDCl₃): δ 141.5, 136.3, 130.1, 128.8, 128.5, 128.4, 128.0, 125.6, 124.8, 119.5, 115.5, 114.9, 114.5, 110.3, 106.0, 56.3; HRMS (FAB) m/z: calcd for C₁₇H₁₄N₂ [M]⁺, 246.1157; found, 246.1161.

General Procedure of Pyrrolo[1,2- α]quinoxalines. To a mixture of 2-pyrrole nitroarene 1 (0.3 mmol), Fe I (0.018 mmol, 7.5 mg), trimethylamine N-oxide (0.036 mmol, 2.7 mg), and 50 mg molecular sieve (4 Å, powder), alcohol 2 (0.9 mmol) and CPME (0.3 mL) were added in O₂-charged borosilicate glass tubes. The reaction tube was sealed and stirred at 160 °C in a heating block. After stirring for 24 h, the reaction mixture was cooled to room temperature, diluted with DCM (1 mL), and filtered. Then, the reaction mixture was concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel, using hexane/EtOAc (50:1) as the eluent.

4-(o-Tolyl)pyrrolo[1,2-a]quinoxaline (**3ab**). Following the general procedure, 1-(2-nitrophenyl)-1H-pyrrole **1a** (0.3 mmol, 56.4 mg) and 2-methylbenzyl alcohol **2b** (0.9 mmol, 110 mg) were used as the starting material. After column chromatography (hexane/EtOAc = 50:1), **3ab** was obtained as a pale-yellow solid (34 mg, 44% yield for 24 h; 62 mg, 80% yield for 40 h); mp 105–106 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.04 (d, *J* = 8.0 Hz, 1H), 7.99 (s, 1H), 7.91 (d, *J* = 7.4 Hz, 1H), 7.46–7.57 (m, 3H), 7.30–7.40 (m, 3H), 6.84–6.86 (m, 1H), 6.58 (d, *J* = 2.8 Hz, 1H), 2.34 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.8, 137.6, 136.6, 136.2, 130.9, 130.3, 129.1, 129.0, 127.6, 127.4, 126.4, 125.8, 125.4, 114.6, 114.0, 113.8, 108.8, 19.9; HRMS (FAB) *m*/*z*: calcd for C₁₈H₁₅N₂ [M + H]⁺, 259.1235; found, 259.1239.

4-(2-Fluorophenyl)pyrrolo[1,2-a]quinoxaline (**3ac**). Following the general procedure, 1-(2-nitrophenyl)-1*H*-pyrrole **1a** (0.3 mmol, 56.4 mg) and 2-fluorobenzyl alcohol **2c** (0.9 mmol, 97 μL) were used as the starting material. After column chromatography (hexane/EtOAc = 50:1), **3ac** was obtained as a white solid (65 mg, 83% yield for 24 h; 72 mg, 91% yield for 40 h); mp 124–127 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.05 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.98 (q, *J* = 1.3 Hz, 1H), 7.89 (dd, *J* = 8.2, 1.3 Hz, 1H), 7.74 (td, *J* = 7.4, 1.6 Hz, 1H), 7.45–7.56 (m, 3H), 7.31–7.34 (m, 1H), 7.24–7.28 (m, 1H), 6.88 (dd, *J* = 3.9, 2.8 Hz, 1H), 6.75–6.76 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 161.5 (d, ¹*J*_{C-F} = 11.5 Hz), 131.2 (d, ⁵*J*_{C-F} = 11.5 Hz), 130.4, 128.0, 127.4, 126.3 (d, ⁴*J*_{C-F} = 3.8 Hz), 126.2 (d, ⁴*J*_{C-F} = 3.8 Hz), 116.5 (d, ³*J*_{C-F} = 21.1 Hz), 116.3 (d, ³*J*_{C-F} = 21.1 Hz), 114.7, 114.1 (d, ²*J*_{C-F} = 33.6 Hz), 113.8 (d, ²*J*_{C-F} = 3.6 Hz), 108.6 (d, ⁷*J*_{C-F} = 3.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -112.99 pm; HRMS (FAB) m/z: calcd for C₁₇H₁₂FN₂ [M + H]⁺, 263.0985; found, 263.0992.

4-(2-Methoxyphenyl)pyrrolo[1,2-a]quinoxaline (**3ad**). Following the general procedure, 1-(2-nitrophenyl)-1*H*-pyrrole **1a** (0.3 mmol, 56.4 mg) and 2-methoxylbenzyl alcohol **2d** (0.9 mmol, 124 mg) were used as the starting material. After column chromatography (hexane/ EtOAc = 10:1), **3ad** was obtained as a yellow liquid (35 mg, 42% yield for 40 h); ¹H NMR (400 MHz, CDCl₃): δ 8.06 (dd, *J* = 8.0, 1.8 Hz, 1H), 7.93 (q, *J* = 1.4 Hz, 1H), 7.86 (dd, *J* = 8.3, 1.5 Hz, 1H), 7.54 (dd, *J* = 7.4, 1.8 Hz, 1H), 7.42–7.52 (m, 3H), 7.05–7.13 (m, 2H), 6.82 (q, *J* = 2.2 Hz, 1H), 6.60 (q, *J* = 1.8 Hz, 1H), 3.77 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 157.4, 153.6, 136.3, 130.6, 130.3, 127.5, 126.6, 125.2, 120.8, 114.1, 113.8, 113.7, 111.6, 108.6, 55.7; HRMS (FAB) *m*/*z*: calcd for C₁₈H₁₅N₂O [M + H]⁺, 275.1184; found, 275.1183.

4-(m-Tolyl)pyrrolo[1,2-a]quinoxaline (**3ae**). Following the general procedure, 1-(2-nitrophenyl)-1H-pyrrole **1a** (0.3 mmol, 56.4 mg) and 3-methylbenzyl alcohol **2e** (0.9 mmol, 110 mg) were used as the

pubs.acs.org/joc

starting material. After column chromatography (hexane/EtOAc = 50:1), **3ae** was obtained as a pale-yellow solid (30 mg, 38% yield for 24 h; 62 mg, 80% yield for 40 h); mp 86–87 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.06 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.98 (q, *J* = 1.4 Hz, 1H), 7.87 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.79–7.82 (m, 2H), 7.41–7.53 (m, 3H), 7.34 (d, *J* = 7.3 Hz, 1H), 7.00 (dd, *J* = 3.9, 1.1 Hz, 1H), 6.89 (q, *J* = 2.3 Hz, 1H), 2.48 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 154.7, 138.5, 136.4, 130.7, 130.3, 129.3, 128.5, 127.5, 127.3, 125.8, 125.6, 125.4, 114.7, 114.0, 113.7, 108.9, 21.7; HRMS (FAB) *m/z*: calcd for C₁₈H₁₅N₂ [M + H]⁺, 259.1235; found, 259.1241.

4-(3-Fluorophenyl)pyrrolo[1,2-a]quinoxaline (3af). Following the general procedure, 1-(2-nitrophenyl)-1H-pyrrole 1a (0.3 mmol, 56.4 mg) and 3-fluorobenzyl alcohol 2f (0.9 mmol, 102 μ L) were used as the starting material. After column chromatography (hexane/EtOAc = 50:1), **3af** was obtained as a white solid (50 mg, 63% yield for 24 h; 75 mg, 95% yield for 40 h); mp 103–105 °C; ¹H NMR (400 MHz, $CDCl_3$): δ 8.04 (dd, J = 8.0, 1.6 Hz, 1H), 8.01 (q, J = 1.3 Hz, 1H), 7.88 (dd, J = 8.2, 1.3 Hz, 1H), 7.81 (dt, J = 7.7, 1.2 Hz, 1H), 7.73 (ddd, J = 9.8, 2.4, 1.6 Hz, 1H), 7.45–7.56 (m, 3H), 7.23 (tdd, J = 8.4, 2.6, 0.9 Hz, 1H), 7.00 (dd, J = 4.0, 1.3 Hz, 1H), 6.91 (dd, J = 4.1, 2.8 Hz, 1H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃): δ 164.2 (d, ${}^{1}J_{C-F}$ = 245.3 Hz), 161.7 (d, ${}^{1}J_{C-F}$ = 245.3 Hz), 153.0 (d, ${}^{6}J_{C-F}$ = 2.9 Hz), 153.0 (d, ${}^{6}J_{C-F}$ = 2.9 Hz), 140.7 (d, ${}^{5}J_{C-F}$ = 7.7 Hz), 140.6 (d, ${}^{5}J_{C-F}$ = 7.7 Hz), 136.1, 130.4, 130.3 (d, ${}^{4}J_{C-F}$ = 8.6 Hz), 130.2 (d, ${}^{4}J_{C-F}$ = 8.6 Hz), 127.9, 127.2, 125.5, 125.1, 124.4 (d, ${}^{7}J_{C-F} = 2.9$ Hz), 124.4 (d, ${}^{7}J_{C-F} = 2.9 \text{ Hz}$, 116.9 (d, ${}^{3}J_{C-F} = 21 \text{ Hz}$), 116.7 (d, ${}^{3}J_{C-F} = 21 \text{ Hz}$), 115.9 (d, ${}^{2}J_{C-F}$ = 23 Hz), 115.7 (d, ${}^{2}J_{C-F}$ = 23 Hz), 114.9, 114.2, 113.7, 108.6; ${}^{19}F$ NMR (376 MHz, CDCl₃): δ –112.47 ppm; HRMS (FAB) m/z: calcd for C₁₇H₁₂FN₂ [M + H]⁺, 263.0985; found, 263.0983.

4-(3-Methoxyphenyl)pyrrolo[1,2-a]quinoxaline (**3ag**). Following the general procedure, 1-(2-nitrophenyl)-1*H*-pyrrole **1a** (0.3 mmol, 56.4 mg) and 3-methoxylbenzyl alcohol **2g** (0.9 mmol, 112 μL) were used as the starting material. After column chromatography (hexane/ EtOAc = 10:1), **3ag** was obtained as a pale-yellow solid (51 mg, 62% yield for 40 h); mp 129–131 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.05 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.99 (t, *J* = 1.4 Hz, 1H), 7.87 (d, *J* = 8.3 Hz, 1H), 7.44–7.60 (m, 5H), 7.08 (dd, *J* = 7.8, 2.3 Hz, 1H), 7.02 (q, *J* = 1.7 Hz, 1H), 6.89 (t, *J* = 3.2 Hz, 1H), 3.91 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.9, 154.3, 139.9, 136.3, 130.4, 129.7, 127.6, 127.3, 125.5, 125.4, 121.2, 116.0, 114.7, 114.1, 113.8, 113.7, 108.9, 55.5; HRMS (FAB) *m/z*: calcd for C₁₈H₁₅N₂O [M + H]⁺, 275.1184; found, 275.1183.

4-(*p*-*Tolyl*)*pyrrolo*[1,2-*a*]*quinoxaline* (**3***ah*). Following the general procedure, 1-(2-nitrophenyl)-1H-pyrrole **1a** (0.3 mmol, 56.4 mg) and 4-methylbenzyl alcohol **2h** (0.9 mmol, 110 mg) were used as the starting material. After column chromatography (hexane/EtOAc = 50:1), **3ah** was obtained as a pale-yellow solid (51 mg, 66% yield for 24 h; 56 mg, 72% yield for 40 h); mp 80–82 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.04 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.99 (q, *J* = 1.2 Hz, 1H), 7.87–7.92 (m, 3H), 7.48 (tdd, *J* = 15.3, 7.4, 1.2 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.00 (q, *J* = 1.6 Hz, 1H), 6.89 (q, *J* = 2.2 Hz, 1H), 2.46 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 154.5, 140.0, 136.4, 135.8, 130.3, 129.4, 128.7, 127.4, 127.3, 125.5, 125.4, 114.6, 114.0, 113.7, 108.8, 21.6; HRMS (FAB) *m*/*z*: calcd for C₁₈H₁₅N₂ [M + H]⁺, 259.1235; found, 259.1238.

4-(4-Fluorophenyl)pyrrolo[1,2-a]quinoxaline (**3***ai*). Following the general procedure, 1-(2-nitrophenyl)-1H-pyrrole **1a** (0.3 mmol, 56.4 mg) and 4-fluorobenzyl alcohol **2i** (0.9 mmol, 98 μL) were used as the starting material. After column chromatography (hexane/EtOAc = 50:1), **3ai** was obtained as a white solid (72 mg, 91% yield); mp 155–157 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.99–8.04 (m, 4H), 7.89 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.51–7.55 (m, 1H), 7.45–7.49 (m, 1H), 7.21–7.26 (m, 2H), 6.97 (q, *J* = 1.6 Hz, 1H), 6.91 (t, *J* = 3.4 Hz, 1H); ¹³C{1H} NMR (100 MHz, CDCl₃): δ 165.2 (d, ¹*J*_{C-F} = 247.3 Hz), 162.7 (d, ¹*J*_{C-F} = 247.3 Hz), 153.4, 136.3, 134.7 (d, ⁴*J*_{C-F} = 3.8 Hz), 130.7 (d, ³*J*_{C-F} = 6.6 Hz), 130.3, 127.7, 127.2, 125.5, 125.3, 115.9 (d, ²*J*_{C-F} = 22.0 Hz), 115.6 (d, ²*J*_{C-F} = 22.0 Hz), 114.9, 114.2, 113.8, 108.7; ¹⁹F NMR (376

MHz, CDCl₃): δ –110.98 ppm; HRMS (FAB) *m/z*: calcd for C₁₇H₁₂FN₂ [M + H]⁺, 263.0985; found, 263.0986.

4-(4-Methoxyphenyl)pyrrolo[1,2-a]quinoxaline (**3***aj*). Following the general procedure, 1-(2-nitrophenyl)-1H-pyrrole **1a** (0.3 mmol, 56.4 mg) and 4-methoxylbenzyl alcohol **2***j* (0.9 mmol, 124 mg) were used as the starting material. After column chromatography (hexane/ EtOAc = 10:1), **3a***j* was obtained as a pale-yellow solid (31 mg, 38% yield for 40 h); mp 112–114 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.97–8.04 (m, 4H), 7.86 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.43–7.51 (m, 2H), 7.07 (dt, *J* = 9.3, 2.5 Hz, 2H), 7.01 (dd, *J* = 4.1, 0.9 Hz, 1H), 6.89 (dd, *J* = 3.7, 2.7 Hz, 1H), 3.90 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 161.1, 153.9, 136.4, 131.2, 130.2, 130.1, 127.2, 127.1, 125.4, 125.3, 114.6, 114.0, 113.9, 113.6, 108.7, 55.5; HRMS (FAB) *m/z*: calcd for C₁₈H₁₅N₂O [M + H]⁺, 275.1184; found, 275.1184.

4-(4-(tert-Butyl)phenyl)pyrrolo[1,2-a]quinoxaline (**3ak**). Following the general procedure, 1-(2-nitrophenyl)-1*H*-pyrrole **1a** (0.3 mmol, 56.4 mg) and 4-*tert*-butylbenzyl alcohol **2k** (0.9 mmol, 148 mg) were used as the starting material. After column chromatography (hexane/EtOAc = 50:1), **3ak** was obtained as a yellow liquid (47 mg, 52% yield for 40 h); ¹H NMR (400 MHz, CDCl₃): δ 8.03–8.06 (m, 1H), 7.99 (t, *J* = 1.5 Hz, 1H), 7.95–7.97 (m, 2H), 7.87 (d, *J* = 7.7 Hz, 1H), 7.56–7.58 (m, 2H), 7.49–7.52 (m, 1H), 7.44–7.47 (m, 1H), 7.04 (q, *J* = 1.8 Hz, 1H), 6.90 (t, *J* = 3.4 Hz, 1H), 1.40 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 154.5, 153.2, 136.5, 135.8, 130.3, 128.4, 127.4, 127.3, 125.7, 125.5, 125.4, 114.6, 114.0, 113.7, 108.9, 35.0, 31.4; HRMS (FAB) *m*/*z*: calcd for C₂₁H₂₁N₂ [M + H]⁺, 301.1705; found, 301.1706.

4-(4-Chlorophenyl)pyrrolo[1,2-a]quinoxaline (**3a***l*). Following the general procedure, 1-(2-nitrophenyl)-1H-pyrrole **1a** (0.3 mmol, 56.4 mg) and 4-chlorobenzyl alcohol **2l** (0.9 mmol, 128 mg) were used as the starting material. After column chromatography (hexane/EtOAc = 50:1), **3al** was obtained as a pale-yellow solid (76 mg, 90% yield); mp 176–178 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.03 (d, *J* = 8.0 Hz, 2H), 7.96 (d, *J* = 8.5 Hz, 2H), 7.89 (d, *J* = 8.0 Hz, 1H), 7.45–7.56 (m, 4H), 6.96 (d, *J* = 4.1 Hz, 1H), 6.91–6.92 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.3, 137.1, 136.3, 136.0, 130.4, 130.1, 129.0, 127.9, 127.3, 125.6, 125.3, 114.9, 114.3, 113.8, 108.6; HRMS (FAB) *m/z*: calcd for C₁₇H₁₂ClN₂ [M + H]⁺, 279.0689; found, 279.0695.

4-(4-Bromophenyl)pyrrolo[1,2-a]quinoxaline (**3am**). Following the general procedure, 1-(2-nitrophenyl)-1*H*-pyrrole **1a** (0.3 mmol, 56.4 mg) and 4-bromobenzyl alcohol **2m** (0.9 mmol, 168 mg) were used as the starting material. After column chromatography (hexane/ EtOAc = 50:1), **3am** was obtained as a white solid (90 mg, 93% yield); mp 160–162 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.02–8.04 (m, 2H), 7.89–7.91 (m, 3H), 7.67–7.69 (m, 2H), 7.54 (t, *J* = 7.7 Hz, 1H), 7.45–7.49 (m, 1H), 6.96 (dd, *J* = 4.1, 1.1 Hz, 1H), 6.92 (dd, *J* = 3.8, 2.4 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.2, 137.5, 136.2, 131.9, 130.4, 130.3, 127.8, 127.2, 125.5, 125.1, 124.3, 114.9, 114.2, 113.8, 108.6; HRMS (FAB) *m/z*: calcd for C₁₇H₁₂BrN₂ [M + H]⁺, 323.0184; found, 323.0189.

4-(4-lodophenyl)pyrrolo[1,2-a]quinoxaline (**3an**). Following the general procedure, 1-(2-nitrophenyl)-1*H*-pyrrole **1a** (0.3 mmol, 56.4 mg) and 4-iodobenzyl alcohol **2n** (0.9 mmol, 210 mg) were used as the starting material. After column chromatography (hexane/EtOAc = 50:1), **3an** was obtained as a pale-yellow solid (97 mg, 88% yield); mp 129–130 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.03–8.04 (m, 1H), 8.01–8.02 (m, 2H), 7.87–7.90 (m, 3H), 7.75 (dt, *J* = 8.7, 2.1 Hz, 2H), 7.52–7.56 (m, 1H), 7.47 (td, *J* = 7.7, 1.4 Hz, 1H), 6.96 (dd, *J* = 4.1, 1.4 Hz, 1H), 6.91 (dd, *J* = 4.1, 2.7 Hz, 1H); ¹³C{1H} NMR (100 MHz, CDCl₃): δ 153.3, 138.0, 137.8, 136.2, 130.4, 130.3, 127.8, 127.2, 125.5, 125.0, 114.9, 114.2, 113.7, 108.5, 96.3; HRMS (FAB) *m/z*: calcd for C₁₇H₁₂IN₂ [M + H]⁺, 371.0045; found, 371.0051.

4-(4-(Trifluoromethyl)phenyl)pyrrolo[1,2-a]quinoxaline (**3ao**). Following the general procedure, 1-(2-nitrophenyl)-1*H*-pyrrole **1a** (0.3 mmol, 56.4 mg) and 4-(trifluoromethyl)benzyl alcohol **2o** (0.9 mmol, 158 mg) were used as the starting material. After column chromatography (hexane/EtOAc = 100:1), **3ao** was obtained as a yellow solid (77 mg, 82% yield for 24 h); mp 150–153 °C; ¹H NMR pubs.acs.org/joc

Article

(400 MHz, CDCl₃): δ 8.13 (d, J = 8.0 Hz, 2H), 8.02–8.06 (m, 2H), 7.90 (dd, J = 8.1, 0.8 Hz, 1H), 7.81 (d, J = 8.0 Hz, 2H), 7.54–7.58 (m, 1H), 7.48 (td, J = 7.5, 1.1 Hz, 1H), 6.96–6.97 (m, 1H), 6.93 (dd, J = 4.0, 2.6 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.0, 142.0, 136.2, 132.3 (q, ² J_{C-F} = 33.5 Hz), 131.9 (q, ² J_{C-F} = 33.5 Hz), 131.6 (q, ² J_{C-F} = 33.5 Hz), 131.3 (q, ² J_{C-F} = 33.5 Hz), 130.5, 129.1, 128.1, 127.3, 125.8 (q, ³ J_{C-F} = 3.8 Hz), 125.7 (q, ³ J_{C-F} = 3.8 Hz), 125.8 (q, ³

4-(*Pyrrolo*[1,2-*a*]*quinoxalin-4-yl*)*benzonitrile* (**3***ap*). Following the general procedure, 1-(2-nitrophenyl)-1*H*-pyrrole **1a** (0.3 mmol, 56.4 mg) and 4-cyanobenzyl alcohol **2p** (0.9 mmol, 120 mg) were used as the starting material. After column chromatography (hexane/ EtOAc = 50:1), **3ap** was obtained as a yellow solid (47 mg, 58% yield for 24 h; 66 mg, 81% yield for 40 h); mp 227–229 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.14 (d, *J* = 8.6 Hz, 2H), 8.03–8.05 (m, 2H), 7.92 (d, *J* = 8.6 Hz, 1H), 7.85 (d, *J* = 8.6 Hz, 2H), 7.58 (t, *J* = 7.0 Hz, 1H), 7.50 (t, *J* = 7.6 Hz, 1H), 6.94–6.95 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 152.3, 142.8, 136.1, 132.6, 130.6, 129.5, 128.4, 127.3, 125.7, 124.9, 118.8, 115.3, 114.5, 113.9, 113.5, 108.4; HRMS (FAB) *m/z*: calcd for C₁₈H₁₂N₃ [M + H]⁺, 270.1031; found, 270.1032.

4-(Naphthalen-2-yl)pyrrolo[1,2-a]quinoxaline (**3aq**). Following the general procedure, 1-(2-nitrophenyl)-1*H*-pyrrole **1a** (0.3 mmol, 56.4 mg) and 2-naphtalenemethanol **2q** (0.9 mmol, 142 mg) were used as the starting material. After column chromatography (hexane/ EtOAc = 100:1), **3aq** was obtained as a yellow solid (88 mg, 99%); mp 107–109 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.54 (s, 1H), 8.10–8.17 (m, 2H), 7.93–8.04 (m, 4H), 7.87 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.46–7.60 (m, 4H), 7.09 (dd, *J* = 4.0, 1.3 Hz, 1H), 6.91 (dd, *J* = 3.9, 2.8 Hz, 1H);¹³C{¹H} NMR (100 MHz, CDCl₃): δ 154.5, 136.5, 136.0, 134.2, 133.3, 130.4, 128.9, 128.5, 128.5, 127.9, 127.7, 127.3, 127.0, 126.5, 126.2, 125.7, 125.5, 114.8, 114.2, 113.8, 108.9; HRMS (FAB) *m/z*: calcd for C₂₁H₁₅N₂ [M + H]⁺, 295.1235; found, 295.1237.

4-(*Pyridin-3-yl*)*pyrrolo*[1,2-*a*]*quinoxaline* (**3***ar*). Following the general procedure, 1-(2-nitrophenyl)-1*H*-pyrrole **1a** (0.3 mmol, 56.4 mg) and 3-pyridinemethanol **2r** (0.9 mmol, 98 mg) were used as the starting material. After column chromatography (hexane/EtOAc = 10:1), **3ar** was obtained as a yellow solid (63 mg, 85% yield for 40 h); mp 153–155 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.25 (s, 1H), 8.76 (d, *J* = 4.9 Hz, 1H), 8.30 (d, *J* = 7.9 Hz, 1H), 8.02 (d, *J* = 7.9 Hz, 2H), 7.86 (d, *J* = 7.9 Hz, 1H), 7.44–7.54 (m, 3H), 6.97 (t, *J* = 2.1 Hz, 1H), 6.90 (t, *J* = 3.1 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 151.6, 150.8, 149.6, 136.2, 134.4, 130.4, 128.1, 127.2, 125.6, 125.2, 123.6, 115.1, 114.4, 113.8, 108.4; HRMS (FAB) *m/z*: calcd for C₁₆H₁₂N₃ [M + H]⁺, 246.1031; found, 246.1036.

4-(*Furan-2-yl*)*pyrrolo*[1,2-*a*]*quinoxaline* (**3***a***s**). Following the general procedure, 1-(2-nitrophenyl)-1*H*-pyrrole **1a** (0.3 mmol, 56.4 mg) and furfuryl alcohol **2s** (0.9 mmol, 78 μL) were used as the starting material. After column chromatography (hexane/EtOAc = 50:1), **3as** was obtained as a yellow solid (60 mg, 86% yield); mp 99–100 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.01 (dd, *J* = 7.7, 1.5 Hz, 1H), 7.95 (q, *J* = 1.2 Hz, 1H), 7.82 (dd, *J* = 7.7, 1.5 Hz, 1H), 7.72 (d, *J* = 1.8 Hz, 1H), 7.40–7.48 (m, 4H), 6.92 (q, *J* = 2.2 Hz, 1H), 6.64 (q, *J* = 1.6 Hz, 1H); ¹³C{1H} NMR (100 MHz, CDCl₃): δ 152.4, 144.6, 143.5, 135.8, 130.1, 127.5, 127.2, 125.4, 123.2, 114.6, 114.2, 113.7, 112.9, 112.1, 108.5; HRMS (FAB) *m*/*z*: calcd for C₁₅H₁₁N₂O [M + H]⁺, 235.0871; found, 235.0875.

4-(Thiophen-2-yl)pyrrolo[1,2-a]quinoxaline (**3at**). Following the general procedure, 1-(2-nitrophenyl)-1*H*-pyrrole **1a** (0.3 mmol, 56.4 mg) and 2-thiophenemethanol **2t** (0.9 mmol, 85 μ L) were used as the starting material. After column chromatography (hexane/EtOAc = 50:1), **3at** was obtained as a yellow solid (54 mg, 72% yield for 40 h); mp 116–118 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.97–8.01 (m, 3H), 7.86–7.88 (m, 1H), 7.44–7.56 (m, 3H), 7.29 (t, *J* = 2.5 Hz, 1H), 7.23 (q, *J* = 2.9 Hz, 1H), 6.94 (q, *J* = 2.2 Hz, 1H); ¹³C{¹H}

NMR (100 MHz, CDCl₃): δ 147.4, 142.5, 135.9, 130.0, 128.8, 128.3, 127.9, 127.5, 127.1, 125.4, 124.1, 114.8, 114.2, 113.6, 107.9; HRMS (FAB) $\mathit{m/z}$: calcd for $C_{15}H_{11}N_2S~[M~+~H]^+$, 251.0643; found, 251.0639.

(*E*)-4-Styrylpyrrolo[1,2-a]quinoxaline (**3au**). Following the general procedure, 1-(2-nitrophenyl)-1*H*-pyrrole **1a** (0.3 mmol, 56.4 mg) and cinnamyl alcohol **2u** (0.9 mmol, 121 mg) were used as the starting material. After column chromatography (hexane/EtOAc = 50:1), **3au** was obtained as a yellow solid (71 mg, 88% yield); mp 128–129 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.08 (d, *J* = 15.6 Hz, 1H), 8.00 (d, *J* = 6.9 Hz, 1H), 7.97–7.97 (m, 1H), 7.86 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.70–7.72 (m, 2H), 7.41–7.55 (m, 5H), 7.36 (t, *J* = 7.3 Hz, 1H), 7.12 (d, *J* = 3.2 Hz, 1H), 6.93 (dd, *J* = 3.7, 2.7 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 149.9, 136.6, 136.5, 136.3, 129.9, 129.1, 128.9, 127.8, 127.4, 127.2, 126.2, 125.5, 123.3, 114.6, 113.9, 113.8, 106.0; HRMS (FAB) *m/z*: calcd for C₁₉H₁₅N₂ [M + H]⁺, 271.1235; found, 271.1230.

4-(Phenylethynyl)pyrrolo[1,2-a]quinoxaline (**3av**). Following the general procedure, 1-(2-nitrophenyl)-1*H*-pyrrole **1a** (0.3 mmol, 56.4 mg) and 3-phenyl-2-propyn-1-ol **2v** (0.9 mmol, 110 μL) were used as the starting material. After column chromatography (hexane/EtOAc = 50:1), **3av** was obtained as a yellow liquid (39 mg, 48% yield); ¹H NMR (400 MHz, CDCl₃): δ 8.01 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.95 (q, *J* = 1.2 Hz, 1H), 7.85 (dd, *J* = 8.2, 0.9 Hz, 1H), 7.71–7.73 (m, 2H), 7.39–7.56 (m, 5H), 7.15 (dd, *J* = 3.9, 1.1 Hz, 1H), 6.93 (q, *J* = 2.3 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 138.7, 136.0, 132.4, 130.1, 129.6, 128.5, 128.2, 127.3, 127.1, 125.5, 121.7, 114.6, 114.1, 113.7, 107.7, 93.2, 85.8; HRMS (FAB) *m*/*z*: calcd for C₁₉H₁₃N₂ [M + H]⁺, 269.1079; found, 269.1078.

4-Phenethylpyrrolo[1,2-a]quinoxaline (**3aw**). Following the general procedure, 1-(2-nitrophenyl)-1*H*-pyrrole **1a** (0.3 mmol, 56.4 mg) and 3-phenyl-1-propanol **1w** (0.9 mmol, 122 μL) were used as the starting material. After column chromatography (hexane/EtOAc = 50:1), **3aw** was obtained as a thick brown liquid (45 mg, 56% yield); ¹H NMR (400 MHz, CDCl₃): δ 7.91–7.96 (m, 2H), 7.84 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.49 (td, *J* = 7.7, 1.5 Hz, 1H), 7.44 (td, *J* = 7.4, 1.5 Hz, 1H), 7.29–7.35 (m, 4H), 7.19–7.23 (m, 1H), 6.90 (dd, *J* = 3.9, 1.1 Hz, 1H), 6.84 (dd, *J* = 3.7, 2.7 Hz, 1H), 3.29–3.35 (m, 2H), 3.20–3.26 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 156.4, 141.9, 136.1, 129.6, 128.6, 127.4, 127.2, 126.2, 126.0, 125.3, 125.0, 114.4, 113.8, 113.7, 106.3, 37.7, 34.3; HRMS (FAB) *m/z*: calcd for C₁₉H₁₆N₂ [M + H]⁺, 273.1392; found, 273.1398.

4-Cyclohexylpyrrolo[1,2-a]quinoxaline (**3a**x). Following the general procedure, 1-(2-nitrophenyl)-1*H*-pyrrole **1a** (0.3 mmol, 56.4 mg) and cyclohexanemethanol **2x** (0.9 mmol, 110 μL) were used as the starting material. After column chromatography (hexane/EtOAc = 50:1), **3ax** was obtained as a yellow solid (47 mg, 58% yield for 24 h; 66 mg, 81% yield for 40 h); mp 75–77 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.92 (t, *J* = 8.0 Hz, 2H), 7.81–7.83 (m, 1H), 7.39–7.47 (m, 2H), 6.93 (d, *J* = 3.7 Hz, 1H), 6.84 (t, *J* = 3.4 Hz, 1H), 3.13 (t, *J* = 11.7 Hz, 1H), 2.02 (d, *J* = 12.8 Hz, 2H), 1.78–1.94 (m, 5H), 1.33–1.54 (m, 3H); ¹³C{1H} NMR (100 MHz, CDCl₃): δ 161.2, 136.3, 129.8, 127.3, 126.9, 125.7, 125.1, 114.1, 113.7, 113.3, 105.9, 43.7, 31.4, 26.7, 26.2; HRMS (FAB) *m*/*z*: calcd for C₁₇H₁₉N₂ [M + H]⁺, 251.1548; found, 251.1551.

7-Methyl-4-phenylpyrrolo[1,2-a]quinoxaline (**3ba**). Following the general procedure, 1-(4-methyl-2-nitrophenyl)-1*H*-pyrrole **1b** (0.3 mmol, 61 mg) and benzyl alcohol **2a** (0.9 mmol, 93 μL) were used as the starting material. After column chromatography (hexane/ EtOAc = 50:1), **3ba** was obtained as a pale-yellow solid (50 mg, 64% yield); mp 96–97 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.66 (d, *J* = 1.4 Hz, 1H), 7.44 (dd, *J* = 8.2, 1.8 Hz, 1H), 7.35 (d, *J* = 8.2 Hz, 1H), 6.77 (t, *J* = 2.1 Hz, 2H), 6.35 (t, *J* = 2.1 Hz, 2H), 2.47 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 154.4, 138.7, 136.3, 135.2, 130.2, 129.8, 128.7, 128.7, 125.4, 125.2, 114.5, 113.8, 113.5, 108.5, 21.2; HRMS (FAB) *m*/*z*: calcd for C₁₈H₁₅N₂ [M + H]⁺, 259.1235; found, 259.1233.

7-Methoxy-4-phenylpyrrolo[*1,2-a*]*quinoxaline* (*3ca*). Following the general procedure, 1-(4-methoxyl-2-nitrophenyl)-1*H*-pyrrole 1c (0.3 mmol, 65 mg) and benzyl alcohol 2a (0.9 mmol, 93 μ L) were

used as the starting material. After column chromatography (hexane/ EtOAc = 50:1), **3ca** was obtained as a pale-yellow solid (56 mg, 68% yield); mp 129–130 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.99 (dd, *J* = 7.6, 2.1 Hz, 2H), 7.94 (t, *J* = 1.2 Hz, 1H), 7.80 (d, *J* = 8.6 Hz, 1H), 7.50–7.57 (m, 4H), 7.14 (dd, *J* = 9.2, 3.1 Hz, 1H), 6.97 (d, *J* = 4.3 Hz, 1H), 6.87 (q, *J* = 2.2 Hz, 1H), 3.93 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 157.2, 154.6, 138.5, 137.3, 129.8, 128.6, 128.6, 125.1, 121.4, 116.6, 114.5, 114.3, 113.6, 111.3, 108.4, 55.7; HRMS (FAB) *m/z*: calcd for C₁₈H₁₅N₂O [M + H]⁺, 275.1184; found, 275.1188.

7-Chloro-4-phenylpyrrolo[*1,2-a*]*quinoxaline* (*3da*). Following the general procedure, 1-(4-chloro-2-nitrophenyl)-1*H*-pyrrole 1d (0.3 mmol, 66 mg) and benzyl alcohol 2a (0.9 mmol, 93 μL) were used as the starting material. After column chromatography (hexane/EtOAc = 50:1), 3da was obtained as a yellow solid (75 mg, 90% yield); mp 154–155 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.97–8.00 (m, 2H), 7.95 (d, *J* = 8.7 Hz, 1H), 7.90 (q, *J* = 1.2 Hz, 1H), 7.84 (d, *J* = 2.3 Hz, 1H), 7.53–7.56 (m, 3H), 7.39 (dd, *J* = 8.5, 2.1 Hz, 1H), 7.00 (dd, *J* = 3.9, 1.1 Hz, 1H), 6.90 (q, *J* = 2.3 Hz, 1H); 13 C{¹H} NMR (100 MHz, CDCl₃): δ 155.6, 138.2, 137.3, 130.5, 130.3, 129.7, 128.8, 128.8, 127.6, 126.0, 125.4, 115.1, 114.9, 114.6, 109.5; HRMS (FAB) *m/z*: calcd for C₁₇H₁₂CIN₂ [M + H]⁺, 279.0689; found, 79.0685.

4-Phenyl-7-(trifluoromethyl)pyrrolo[1,2-a]quinoxaline (**3ea**). Following the general procedure, 1-(2-nitro-4-(trifluoromethyl)phenyl)-1*H*-pyrrole **1e** (0.3 mmol, 77 mg) and benzyl alcohol **2a** (0.9 mmol, 93 μL) were used as the starting material. After column chromatography (hexane/EtOAc = 100:1), **3ea** was obtained as a yellow solid (69 mg, 74% yield); mp 96–98 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.34 (d, *J* = 0.9 Hz, 1H), 8.00–8.04 (m, 3H), 7.97 (d, *J* = 8.7 Hz, 1H), 7.74 (dd, *J* = 8.7, 1.8 Hz, 1H), 7.54–7.58 (m, 3H), 7.07 (d, *J* = 4.1 Hz, 1H), 6.96 (t, *J* = 3.4 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.9, 138.0, 136.1, 130.4, 129.4, 128.8 (d, ²*J*_{C-F} = 8.6 Hz), 128.7 (d, ²*J*_{C-F} = 8.6 Hz), 128.0 (q, ³*J*_{C-F} = 3.8 Hz), 127.9 (q, ³*J*_{C-F} = 3.8 Hz), 127.9 (q, ³*J*_{C-F} = 3.8 Hz), 127.9 (q, ⁴*J*_{C-F} = 3.8 Hz), 125.7, 125.5 (d, ¹*J*_{C-F} = 270.0 Hz), 124.0 (q, ⁴*J*_{C-F} = 3.8 Hz), 123.9 (q, ⁴*J*_{C-F} = 3.8 Hz), 123.9 (q, ⁴*J*_{C-F} = 3.8 Hz), 123.9 (q, ⁴*J*_{C-F} = 3.8 Hz), 122.8 (d, ¹*J*_{C-F} = 270.0 Hz), 115.5, 115.1, 114.5, 110.0; ¹⁹F NMR (376 MHz, CDCl₃): δ –61.83 ppm; HRMS (FAB) *m/z*: calcd for C₁₈H₁₂F₃N₂ [M + H]⁺, 313.0953; found, 313.0951.

8-Methyl-4-phenylpyrrolo[1,2-a]quinoxaline (**3fa**). Following the general procedure, 1-(5-methyl-2-nitrophenyl)-1*H*-pyrrole **1f** (0.3 mmol, 61 mg) and benzyl alcohol **2a** (0.9 mmol, 93 μL) were used as the starting material. After column chromatography (hexane/EtOAc = 50:1), **3fa** was obtained as a pale-yellow solid (30 mg, 38% yield); mp 76–77 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.90 (dd, *J* = 7.6, 1.6 Hz, 2H), 7.86 (q, *J* = 1.2 Hz, 1H), 7.83 (d, *J* = 8.3 Hz, 1H), 7.57 (s, 1H), 7.41–7.47 (m, 3H), 7.17 (dd, *J* = 8.7, 1.8 Hz, 1H), 6.87 (dd, *J* = 3.9, 1.1 Hz, 1H), 6.78 (q, *J* = 2.3 Hz, 1H), 2.46 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.6, 138.7, 138.1, 134.4, 130.1, 129.8, 128.7, 128.7, 127.0, 126.7, 125.6, 114.4, 114.0, 113.8, 108.5, 22.0; HRMS (FAB) *m/z*: calcd for C₁₈H₁₅N₂ [M + H]⁺, 259.1235; found, 259.1225.

8-Methoxy-4-phenylpyrrolo[1,2-a]quinoxaline (**3ga**). Following the general procedure, 1-(5-methoxyl-2-nitrophenyl)-1*H*-pyrrole **1g** (0.3 mmol, 65 mg) and benzyl alcohol **2a** (0.9 mmol, 93 μL) were used as the starting material. After column chromatography (hexane/EtOAc = 50:1), **3ga** was obtained as a yellow solid (39 mg, 47% yield); mp 95–96 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.98 (dt, *J* = 8.1, 2.3 Hz, 3H), 7.89 (dt, *J* = 1.4 Hz, 1H), 7.53 (q, *J* = 6.4 Hz, 3H), 7.29 (d, *J* = 2.7 Hz, 1H), 7.06 (dd, *J* = 9.1, 2.7 Hz, 1H), 6.97 (q, *J* = 1.8 Hz, 1H), 6.90 (q, *J* = 2.3 Hz, 1H), 3.97 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 159.3, 152.0, 138.8, 131.6, 130.9, 129.6, 128.7, 128.0, 125.5, 121.8, 114.2, 114.2, 113.0, 109.6, 108.3, 97.7, 56.0; HRMS (FAB) *m*/*z*: calcd for C₁₈H₁₅N₂O [M + H]⁺, 275.1184; found, 275.1193.

8-Chloro-4-phenylpyrrolo[1,2-a]quinoxaline (**3ha**). Following the general procedure, 1-(5-chloro-2-nitrophenyl)-1*H*-pyrrole **1h** (0.3 mmol, 66 mg) and benzyl alcohol **2a** (0.9 mmol, 93 μ L) were used as the starting material. After column chromatography (hexane/EtOAc = 50:1), **3ha** was obtained as a pale-yellow solid (63 mg, 76% yield); mp

187–189 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.02 (t, J = 2.5 Hz, 1H), 7.97–8.00 (m, 2H), 7.93 (q, J = 1.4 Hz, 1H), 7.77 (d, J = 8.7 Hz, 1H), 7.53–7.56 (m, 3H), 7.44 (dd, J = 8.7, 2.3 Hz, 1H), 7.01 (dd, J = 3.9, 1.1 Hz, 1H), 6.90 (q, J = 2.3 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 154.6, 138.2, 134.9, 132.9, 131.5, 130.1, 128.7, 128.7, 127.8, 125.8, 125.4, 114.9, 114.6, 113.9, 109.3; HRMS (FAB) m/z: calcd for C₁₇H₁₂ClN₂ [M + H]⁺, 279.0689; found, 279.0685.

9-Methyl-4-phenylpyrrolo[1,2-a]quinoxaline (**3ia**). Following the general procedure, 1-(2-methyl-6-nitrophenyl)-1*H*-pyrrole **1i** (0.3 mmol, 61 mg) and benzyl alcohol **2a** (0.9 mmol, 93 μL) were used as the starting material. After column chromatography (hexane/EtOAc = 50:1), **3ia** was obtained as a pale-yellow solid (27 mg, 35% yield); mp 122–124 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.38 (t, *J* = 1.5 Hz, 1H), 7.92–8.00 (m, 3H), 7.50–7.57 (m, 3H), 7.30–7.37 (m, 2H), 7.00 (q, *J* = 1.8 Hz, 1H), 6.87 (q, *J* = 2.2 Hz, 1H), 2.97 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 154.4, 131.1, 129.9, 128.8, 128.7, 127.6, 126.9, 125.4, 124.9, 120.5, 113.4, 108.4, 24.1; HRMS (FAB): *m/z* calcd for C₁₈H₁₅N₂ [M + H]⁺, 259.1235; found, 259.1229.

6-Phenylpyrido[3,2-e]pyrrolo[1,2-a]pyrazine (**3***ja*). Following the general procedure, 3-nitro-2-(1H-pyrrol-1-yl)pyridine **1***j* (0.3 mmol, 57 mg) and benzyl alcohol **2a** (0.9 mmol, 93 μ L) were used as the starting material. After column chromatography (hexane/EtOAc = 50:1), **3***j***a** was obtained as a brown solid (60 mg, 82% yield); mp 144–146 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.55 (dd, *J* = 4.8, 1.6 Hz, 1H), 8.48 (q, *J* = 1.4 Hz, 1H), 8.32 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.99–8.02 (m, 2H), 7.55 (td, *J* = 5.1, 3.4 Hz, 3H), 7.46 (q, *J* = 4.3 Hz, 1H), 7.07 (q, *J* = 1.8 Hz, 1H), 6.94 (dd, *J* = 3.7, 2.7 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.4, 146.8, 139.4, 138.1, 137.5, 131.2, 130.3, 128.8, 128.8, 126.9, 121.8, 116.1, 114.6, 110.5; HRMS (FAB) *m/z*: calcd for C₁₆H₁₂N₃ [M + H]⁺, 246.1031; found, 246.1029.

4-Phenyl-1H-pyrrolo[3,2-c]quinoline (**3ka**). Following the general procedure, 2-(2-nitrophenyl)-1H-pyrrole **1k** (0.3 mmol, 57 mg) and benzyl alcohol **2a** (0.9 mmol, 93 μL) were used as the starting material. The reaction was proceeded at 170 °C for 40 h. After column chromatography (hexane/EtOAc = 10:1 to 5:1), **3ka** was obtained as a brown solid (24 mg, 32% yield); mp 184–185 °C; ¹H NMR (400 MHz, CDCl₃): δ 10.11 (s, 1H), 8.27 (d, *J* = 8.3 Hz, 1H), 8.08 (q, *J* = 7.6 Hz, 3H), 7.55 (q, *J* = 7.2 Hz, 3H), 7.48 (q, *J* = 6.5 Hz, 2H), 7.35 (s, 1H), 6.92 (d, *J* = 3.1 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 154.3, 142.9, 139.2, 136.4, 129.4, 129.3, 129.0, 128.8, 127.3, 125.9, 124.1, 119.9, 119.0, 116.9, 105.3; HRMS (FAB) *m*/*z*: calcd for C₁₇H₁₃N₂ [M + H]⁺, 245.1079; found, 245.1084.

1-Methyl-4-phenyl-1H-pyrrolo[3,2-c]quinoline (**3***la*). Following the general procedure, 1-methyl-2-(2-nitrophenyl)-1H-pyrrole **11** (0.3 mmol, 61 mg) and benzyl alcohol **2a** (0.9 mmol, 93 μL) were used as the starting material. The reaction was proceeded at 170 °C for 40 h. After column chromatography (hexane/EtOAc = 10:1 to 5:1), **3la** was obtained as a pale-yellow solid (41 mg, 53% yield); mp 129–130 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.43 (d, *J* = 6.7 Hz, 1H), 8.32 (d, *J* = 8.6 Hz, 1H), 8.05 (d, *J* = 6.7 Hz, 2H), 7.62–7.64 (m, 1H), 7.54–7.57 (m, 3H), 7.49–7.50 (m, 1H), 7.11 (d, *J* = 3.1 Hz, 1H), 6.84 (d, *J* = 3.1 Hz, 1H), 4.30 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 154.9, 144.9, 140.4, 135.0, 130.9, 129.8, 129.3, 128.9, 128.7, 126.4, 125.5, 120.6, 120.3, 118.5, 103.2, 38.3; HRMS (FAB) *m/z*: calcd for C₁₈H₁₅N₂ [M + H]⁺, 259.1235; found, 259.1239.

Transfer Hydrogenation of 1a with Secondary Alcohol 4. To a mixture of 1-(2-nitrophenyl)-1*H*-pyrrole 1a (0.3 mmol, 56.4 mg), Fe I (0.018 mmol, 7.5 mg), trimethylamine *N*-oxide (0.036 mmol, 2.7 mg), and 50 mg molecular sieve (4 Å, powder), benzhydrol 4 (0.9 mmol, 166 mg) and CPME (0.3 mL) were added in O₂-charged borosilicate glass tubes. The reaction tube was sealed and stirred at 160 °C in a heating block. After stirring for 40 h, the reaction mixture was cooled to room temperature, diluted with DCM (1 mL), and filtered. Then, the reaction mixture was concentrated *in vacuo*. The crude reaction mixture was analyzed using dimethyl sulfone (0.03 mmol) as an internal standard.

Mechanistic Studies. Reaction between 1a' and 2a. To a mixture of 2-(1H-pyrrol-1-yl)aniline 1a' (0.3 mmol, 47.5 mg), Fe I

(0.018 mmol, 7.5 mg), trimethylamine *N*-oxide (0.036 mmol, 2.7 mg), and 50 mg molecular sieve (4 Å, powder), benzyl alcohol **2a** (0.9 mmol, 93 μ L) and CPME (0.3 mL) were added in O₂-charged borosilicate glass tubes. The reaction tube was sealed and stirred at 160 °C using a heating block. After stirring for 24 h, only trace amount of the **3aa** was observed in TLC.

Reaction between 1a and 2a'. To a mixture of 1-(2-nitrophenyl)-1H-pyrrole 1a (0.3 mmol, 56.4 mg), Fe I (0.018 mmol, 7.5 mg), trimethylamine N-oxide (0.036 mmol, 2.7 mg), and 50 mg molecular sieve (4 Å, powder), benzaldehyde 2a' (0.9 mmol, 92 μ L) and CPME (0.3 mL) were added in O₂-charged borosilicate glass tubes. The reaction tube was sealed and stirred at 160 °C in a heating block. After stirring for 24 h, 3aa was not observed in TLC.

Reaction between 1a' and 2a'. To a mixture of 2-(1H-pyrrol-1yl)aniline 1a' (0.3 mmol, 47.5 mg), Fe I (0.018 mmol, 7.5 mg), trimethylamine N-oxide (0.036 mmol, 2.7 mg), and 50 mg molecular sieve (4 Å, powder), benzaldehyde 2a' (0.9 mmol, 92 μ L) and CPME (0.3 mL) were added in O₂-charged borosilicate glass tubes. The reaction tube was sealed and stirred at 160 °C in a heating block. After stirring for 24 h, the reaction mixture was cooled to room temperature, diluted with DCM (1 mL), and filtered. Then, the reaction mixture was concentrated *in vacuo*. After purification by flash column chromatography (hexane/EtOAc = 50:1), 3aa was obtained as a pale-yellow solid (63 mg, 86% yield).

Reaction between 1a' and 2a' without Fe I. To a mixture of 2-(1H-pyrrol-1-yl)aniline 1a' (0.3 mmol, 47.5 mg) and 50 mg molecular sieve (4 Å, powder), benzaldehyde 2a' (0.9 mmol, 92 μ L) and CPME (0.3 mL) were added in O₂-charged borosilicate glass tubes. The reaction tube was sealed and stirred at 160 °C in a heating block. After stirring for 24 h, the reaction mixture was cooled to room temperature, diluted with DCM (1 mL), and filtered. Then, the reaction mixture was concentrated *in vacuo*. After purification by flash column chromatography (hexane/EtOAc = 50:1), **3aa** was obtained as a pale-yellow solid (61 mg, 83% yield).

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.joc.0c02145.

¹H and ¹³C NMR spectra, results of catalyst screening, and details for detection of intermediates (PDF)

AUTHOR INFORMATION

Corresponding Author

Suckchang Hong – Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; o orcid.org/0000-0003-4975-9192; Email: schong17@snu.ac.kr

Authors

- Simin Chun Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- **Jiwon Ahn** Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Ramachandra Reddy Putta BK 21 Plus Project, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Seok Beom Lee Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Dong-Chan Oh − Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; [©] orcid.org/0000-0001-6405-5535

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.joc.0c02145

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (2018R1C1B6005607 and 2018R1A4A1021703) and Creative-Pioneering Researchers Program through Seoul National University (SNU).

REFERENCES

(1) (a) Reed-Berendt, B. G.; Polidano, K.; Morrill, L. C. Recent advances in homogeneous borrowing hydrogen catalysis using earthabundant first row transition metals. Org. Biomol. Chem. 2019, 17, 1595-1607. (b) Corma, A.; Navas, J.; Sabater, M. J. Advances in One-Pot Synthesis through Borrowing Hydrogen Catalysis. Chem. Rev. 2018, 118, 1410-1459. (c) Chelucci, G. Ruthenium and osmium complexes in CC bond-forming reactions by borrowing hydrogen catalysis. Coord. Chem. Rev. 2017, 331, 1-36. (d) Huang, F.; Liu, Z.; Yu, Z. C-Alkylation of Ketones and Related Compounds by Alcohols: Transition-Metal-Catalyzed Dehydrogenation. Angew. Chem., Int. Ed. 2016, 55, 862-875. (e) Wang, Q.; Wanga, Q.; Yu, Z. Substitution of alcohols by N-nucleophiles via transition metal-catalyzed dehydrogenation. Chem. Soc. Rev. 2015, 44, 2305-2329. (f) Nandakumar, A.; Midya, S. P.; Landge, V. G.; Balaraman, E. Transition-Metal-Catalyzed Hydrogen-Transfer Annulations: Access to Heterocyclic Scaffolds. Angew. Chem., Int. Ed. 2015, 54, 11022-11034.

(2) (a) Wang, D.; McBurney, R. T.; Pernik, I.; Messerle, B. A. Controlling the selectivity and efficiency of the hydrogen borrowing reaction by switching between rhodium and iridium catalysts. Dalton Trans. 2019, 48, 13989-13999. (b) Genç, S.; Arslan, B.; Gülcemal, S.; Günnaz, S.; Çetinkaya, B.; Gülcemal, D. Iridium(I)-Catalyzed C-C and C-N Bond Formation Reactions via the Borrowing Hydrogen Strategy. J. Org. Chem. 2019, 84, 6286-6297. (c) Hikawa, H.; Imamura, H.; Kikkawa, S.; Azumaya, I. A borrowing hydrogen methodology: palladium-catalyzed dehydrative N-benzylation of 2aminopyridines in water. Green Chem. 2018, 20, 3044-3049. (d) Wong, C. M.; Peterson, M. B.; Pernik, I.; McBurney, R. T.; Messerle, B. A. Highly Efficient Rh(I) Homo- and Heterogeneous Catalysts for C-N Couplings via Hydrogen Borrowing. Inorg. Chem. 2017, 56, 14682-14687. (e) Marichev, K. O.; Takacs, J. M. Ruthenium-Catalyzed Amination of Secondary Alcohols using Borrowing Hydrogen Methodology. ACS Catal. 2016, 6, 2205-2210. (f) Wang, Q.; Wu, K.; Yu, Z. Ruthenium(III)-Catalyzed β -Alkylation of Secondary Alcohols with Primary Alcohols. Organometallics 2016, 35, 1251-1256.

(3) (a) Pignataro, L.; Gennari, C. Recent Catalytic Applications of (Cyclopentadienone)iron Complexes. *Eur. J. Org. Chem.* **2020**, 3192–3205. (b) Piarulli, U.; Fachini, S. V.; Pignataro, L. Enantioselective Reductions Promoted by (Cyclopentadienone)iron Complexes. *Chimia* **2017**, 71, 580–585. (c) Quintard, A.; Rodriguez, J. Iron Cyclopentadienone Complexes: Discovery, Properties, and Catalytic Reactivity. *Angew. Chem., Int. Ed.* **2014**, 53, 4044–4055. (d) Polidano, K.; Williams, J. M. J.; Morrill, L. C. Iron-Catalyzed Borrowing Hydrogen β -C(sp³)-Methylation of Alcohols. *ACS Catal.* **2019**, *9*, 8575–8580. (e) Dambatta, M. B.; Polidano, K.; Northey, A. D.; Williams, J. M. J.; Morrill, L. C. Iron-Catalyzed Borrowing Hydrogen C-Alkylation of Oxindoles with Alcohols. *ChemSusChem* **2019**, *12*, 2345–2349. (f) Latham, D. E.; Polidano, K.; Williams, J. M. J.; Morrill, L. C. One-Pot Conversion of Allylic Alcohols to α -Methyl

Ketones via Iron-Catalyzed Isomerization–Methylation. Org. Lett. **2019**, 21, 7914–7918. (g) Di Gregorio, G.; Mari, M.; Bartoccini, F.; Piersanti, G. Iron-Catalyzed Direct C3-Benzylation of Indoles with Benzyl Alcohols through Borrowing Hydrogen. J. Org. Chem. **2017**, 82, 8769–8775. (h) Bala, M.; Verma, P. K.; Sharma, U.; Kumar, N.; Singh, B. Iron phthalocyanine as an efficient and versatile catalyst for N-alkylation of heterocyclic amines with alcohols: one-pot synthesis of 2-substituted benzimidazoles, benzothiazoles and benzoxazoles. Green Chem. **2013**, 15, 1687–1693.

(4) (a) Deibl, N.; Kempe, R. General and Mild Cobalt-Catalyzed C-Alkylation of Unactivated Amides and Esters with Alcohols. *J. Am. Chem. Soc.* **2016**, *138*, 10786–10789. (b) Rösler, S.; Ertl, M.; Irrgang, T.; Kempe, R. Cobalt-Catalyzed Alkylation of Aromatic Amines by Alcohols. *Angew. Chem., Int. Ed.* **2015**, *54*, 15046–15050.

(5) (a) Schlagbauer, M.; Kallmeier, F.; Irrgang, T.; Kempe, R. Manganese-Catalyzed β -Methylation of Alcohols by Methanol. Angew. Chem., Int. Ed. 2020, 59, 1485-1490. (b) Reed-Berendt, B. G.; Morrill, L. C. Manganese-Catalyzed N-Alkylation of Sulfonamides Using Alcohols. J. Org. Chem. 2019, 84, 3715-3724. (c) Liu, T.; Wang, L.; Wu, K.; Yu, Z. Manganese-Catalyzed β -Alkylation of Secondary Alcohols with Primary Alcohols under Phosphine-Free Conditions. ACS Catal. 2018, 8, 7201-7207. (d) Fertig, R.; Irrgang, T.; Freitag, F.; Zander, J.; Kempe, R. Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen or Dehydrogenative Condensation. ACS Catal. 2018, 8, 8525-8530. (e) Chakraborty, S.; Daw, P.; Ben David, Y.; Milstein, D. Manganese-Catalyzed α -Alkylation of Ketones, Esters, and Amides Using Alcohols. ACS Catal. 2018, 8, 10300-10305. (f) Elangovan, S.; Neumann, J.; Sortais, J.-B.; Junge, K.; Darcel, C.; Beller, M. Efficient and selective N-alkylation of amines with alcohols catalysed by manganese pincer complexes. Nat. Commun. 2016, 7, 12641-12648. (g) Peña-López, M.; Piehl, P.; Elangovan, S.; Neumann, H.; Beller, M. Manganese-Catalyzed Hydrogen-Autotransfer C-C Bond Formation: α-Alkylation of Ketones with Primary Alcohols. Angew. Chem., Int. Ed. 2016, 55, 14967-14971.

(6) (a) Bera, S.; Bera, A.; Banerjee, D. Nickel-catalyzed hydrogenborrowing strategy: chemo-selective alkylation of nitriles with alcohols. Chem. Commun. 2020, 56, 6850-6853. (b) Balamurugan, G.; Ramesh, R.; Malecki, J. G. Nickel(II)-N^AN^AO Pincer Type Complex-Catalyzed N-alkylation of Amines with Alcohols via the Hydrogen Autotransfer Reaction. J. Org. Chem. 2020, 85, 7125-7135. (c) Bains, A. K.; Kundu, A.; Yadav, S.; Adhikari, D. Borrowing Hydrogen-Mediated N-Alkylation Reactions by a Well-Defined Homogeneous Nickel Catalyst. ACS Catal. 2019, 9, 9051-9059. (d) Yang, P.; Zhang, C.; Gao, W.-C.; Ma, Y.; Wang, X.; Zhang, L.; Yue, J.; Tang, B. Nickel-catalyzed borrowing hydrogen annulations: access to diversified N-heterocycles. Chem. Commun. 2019, 55, 7844-7847. (e) Das, J.; Singh, K.; Vellakkaran, M.; Banerjee, D. Nickel-Catalyzed Hydrogen-Borrowing Strategy for α -Alkylation of Ketones with Alcohols: A New Route to Branched gem-Bis(alkyl) Ketones. Org. Lett. 2018, 20, 5587-5591. (f) Yang, P.; Zhang, C.; Ma, Y.; Zhang, C.; Li, A.; Tang, B.; Zhou, J. S. Nickel-Catalyzed N-Alkylation of Acylhydrazines and Arylamines Using Alcohols and Enantioselective Examples. Angew. Chem., Int. Ed. 2017, 56, 14702-14706.

(7) (a) Ashouri, A.; Samadi, S.; Ahmadian, M.; Nasiri, B. Coppercatalyzed synthesis of diarylamines using p-toluene sulfonamides and benzhydrol derivatives under homogeneous borrowing hydrogen conditions. C. R. Chim. **2020**, 23, 47–55. (b) Xu, Z.; Wang, D.-S.; Yu, X.; Yang, Y.; Wang, D. Tunable Triazole-Phosphine-Copper Catalysts for the Synthesis of 2-Aryl-1H-benzo[d]imidazoles from Benzyl Alcohols and Diamines by Acceptorless Dehydrogenation and Borrowing Hydrogen Reactions. *Adv. Synth. Catal.* **2017**, 359, 3332–3340.

(8) Knölker, H.-J.; Baum, E.; Goesmann, H.; Klauss, R. Demetalation of Tricarbonyl(cyclopentadienone)iron Complexes Initiated by a Ligand Exchange Reaction with NaOH-X-Ray Analysis of a Complex with Nearly Square Planar Coordinated Sodium. *Angew. Chem., Int. Ed.* **1999**, *38*, 2064–2066.

(9) (a) Casey, C. P.; Guan, H. An Efficient and Chemoselective Iron Catalyst for the Hydrogenation of Ketones. J. Am. Chem. Soc. 2007, 129, 5816–5817. (b) Casey, C. P.; Guan, H. Cyclopentadienone Iron Alcohol Complexes: Synthesis, Reactivity, and Implications for the Mechanism of Iron-Catalyzed Hydrogenation of Aldehydes. J. Am. Chem. Soc. 2009, 131, 2499–2507. (c) Coleman, M. G.; Brown, A. N.; Bolton, B. A.; Guan, H. Iron-Catalyzed Oppenauer-Type Oxidation of Alcohols. Adv. Synth. Catal. 2010, 352, 967–970.

(10) (a) Yan, T.; Feringa, B. L.; Barta, K. Iron catalysed direct alkylation of amines with alcohols. Nat. Commun. 2014, 5, 5602-5608. (b) Rawlings, A. J.; Diorazio, L. J.; Wills, M. C-N Bond Formation between Alcohols and Amines using an Iron Cyclopentadienone Catalyst. Org. Lett. 2015, 17, 1086-1089. (c) Yan, T.; Feringa, B. L.; Barta, K. Benzylamines via Iron-Catalyzed Direct Amination of Benzyl Alcohols. ACS Catal. 2016, 6, 381-388. (d) Brown, T. J.; Cumbes, M.; Diorazio, L. J.; Clarkson, G. J.; Wills, M. Use of (Cyclopentadienone)iron Tricarbonyl Complexes for C-N Bond Formation Reactions between Amines and Alcohols. J. Org. Chem. 2017, 82, 10489-10503. (e) Emayavaramban, B.; Sen, M.; Sundararaju, B. Iron-Catalyzed Sustainable Synthesis of Pyrrole. Org. Lett. 2017, 19, 6-9. (f) Pan, H.-J.; Ng, T. W.; Zhao, Y. Iron-catalyzed amination of alcohols assisted by Lewis acid. Chem. Commun. 2015, 51, 11907-11910. (g) Yan, T.; Feringa, B. L.; Barta, K. Direct Nalkylation of unprotected amino acids with alcohols. Sci. Adv. 2017, 3, No. eaao6494. (h) Bai, X.; Aiolfi, F.; Cettolin, M.; Piarulli, U.; Dal Corso, A.; Pignataro, L.; Gennari, C. Hydrogen-Borrowing Amination of Secondary Alcohols Promoted by a (Cyclopentadienone)iron Complex. Synthesis 2019, 51, 3545-3555. (i) Hofmann, N.; Hultzsch, K. C. Switching the N-Alkylation of Arylamines with Benzyl Alcohols to Imine Formation Enables the One-Pot Synthesis of Enantioenriched α-N-Alkylaminophosphonates. Eur. J. Org. Chem. 2019, 3105-3111. (j) Polidano, K.; Allen, B. D. W.; Williams, J. M. J.; Morrill, L. C. Iron-Catalyzed Methylation Using the Borrowing Hydrogen Approach. ACS Catal. 2018, 8, 6440-6445. (k) Vayer, M.; Morcillo, S. P.; Dupont, J.; Gandon, V.; Bour, C. Iron-Catalyzed Reductive Ethylation of Imines with Ethanol. Angew. Chem., Int. Ed. 2018, 57, 3228-3232. (1) Lator, A.; Gaillard, S.; Poater, A.; Renaud, J.-L. Well-Defined Phosphine-Free Iron-Catalyzed N-Ethylation and N-Methylation of Amines with Ethanol and Methanol. Org. Lett. 2018, 20, 5985-5990.

(11) (a) Desplat, V.; Geneste, A.; Begorre, M.-A.; Fabre, S. B.; Brajot, S.; Massip, S.; Thiolat, D.; Mossalayi, D.; Jarry, C.; Guillon, J. Synthesis of New Pyrrolo[1,2-a]quinoxaline Derivatives as Potential Inhibitors of Akt Kinase. J. Enzyme Inhib. Med. Chem. 2008, 23, 648-658. (b) Aiello, F.; Carullo, G.; Giordano, F.; Spina, E.; Nigro, A.; Garofalo, A.; Tassini, S.; Costantino, G.; Vincetti, P.; Bruno, A.; Radi, M. Identification of Breast Cancer Inhibitors Specific for G Protein-Coupled Estrogen Receptor (GPER)-Expressing Cells. ChemMed-Chem 2017, 12, 1279-1285. (c) Guillon, J.; Cohen, A.; Gueddouda, N. M.; Das, R. N.; Moreau, S.; Ronga, L.; Savrimoutou, S.; Basmaciyan, L.; Monnier, A.; Monget, M.; Rubio, S.; Garnerin, T.; Azas, N.; Mergny, J.-L.; Mullié, C.; Sonnet, P. Design, synthesis and antimalarial activity of novel bis {N-[(pyrrolo[1,2-a]quinoxalin-4yl)benzyl]-3-aminopropyl}amine derivatives. J. Enzyme Inhib. Med. Chem. 2017, 32, 547-563. (d) Guillon, J.; Mouray, E.; Moreau, S.; Mullié, C.; Forfar, I.; Desplat, V.; Belisle-Fabre, S.; Pinaud, N.; Ravanello, F.; Le-Naour, A.; Léger, J.-M.; Gosmann, G.; Jarry, C.; Déléris, G.; Sonnet, P.; Grellier, P. New ferrocenic pyrrolo[1,2a]quinoxaline derivatives: Synthesis, and in vitro antimalarial activity-Part II. Eur. J. Med. Chem. 2011, 46, 2310-2326. (e) Desplat, V.; Moreau, S.; Gay, A.; Fabre, S. B.; Thiolat, D.; Massip, S.; Macky, G.; Godde, F.; Mossalayi, D.; Jarry, C.; Guillon, J. Synthesis and evaluation of the antiproliferative activity of novel pyrrolo[1,2a]quinoxaline derivatives, potential inhibitors of Akt kinase. Part II. J. Enzyme Inhib. Med. Chem. 2010, 25, 204-215.

(12) (a) Gemma, S.; Colombo, L.; Forloni, G.; Savini, L.; Fracasso, C.; Caccia, S.; Salmona, M.; Brindisi, M.; Joshi, B. P.; Tripaldi, P.; Giorgi, G.; Taglialatela-Scafati, O.; Novellino, E.; Fiorini, I.; Campiani, G.; Butini, S. Pyrroloquinoxaline hydrazones as fluorescent

pubs.acs.org/joc

probes for amyloid fibrils. Org. Biomol. Chem. 2011, 9, 5137-5148. (b) Carbaş, B. B.; Kivrak, A.; Zora, M.; Önal, A. M. Synthesis of a novel fluorescent and ion sensitive monomer bearing quinoxaline moieties and its electropolymerization. React. Funct. Polym. 2011, 71, 579-587. (c) Carbas, B. B.; Kivrak, A.; Zora, M.; Önal, A. M. Synthesis and electropolymerization of a new ion sensitive ethylenedioxy-substituted terthiophene monomer bearing a quinoxaline moiety. J. Electroanal. Chem. 2012, 677-680, 9-14. (d) Patil, B. N.; Lade, J. J.; Vadagaonkar, K. S.; Chetti, P.; Chaskar, A. C. Pyrrolo[1,2a]quinoxaline-Based Bipolar Host Materials for Efficient Red Phosphorescent OLEDs. ChemistrySelect 2018, 3, 10010-10018. (e) Lade, J. J.; Patil, B. N.; Sathe, P. A.; Vadagaonkar, K. S.; Chetti, P.; Chaskar, A. C. Iron Catalyzed Cascade Protocol for the Synthesis of Pyrrolo [1,2-a] quinoxalines: A Powerful Tool to Access Solid State Emissive Organic Luminophores. ChemistrySelect 2017, 2, 6811-6817.

(13) (a) Wang, C.; Li, Y.; Zhao, J.; Cheng, B.; Wang, H.; Zhai, H. An environmentally friendly approach to pyrrolo[1,2-a]quinoxalines using oxygen as the oxidant. Tetrahedron Lett. 2016, 57, 3908-3911. (b) Verma, A. K.; Jha, R. R.; Sankar, V. K.; Aggarwal, T.; Singh, R. P.; Chandra, R. Lewis Acid-Catalyzed Selective Synthesis of Diversely Substituted Indolo- and Pyrrolo[1,2-a]quinoxalines and Quinoxalinones by Modified Pictet-Spengler Reaction. Eur. J. Org. Chem. 2011, 6998-7010. (c) Krishna, T.; Reddy, T. N.; Laxminarayana, E.; Kalita, D. Copper-Catalyzed One-Pot Synthesis of Pyrrolo[1,2-a]quinoxaline Derivatives from 1-(2-Aminophenyl)-pyrroles and Aldehydes. ChemistrySelect 2019, 4, 250-253. (d) Preetam, A.; Nath, M. An ecofriendly Pictet-Spengler approach to pyrrolo- and indolo[1,2a]quinoxalines using p-dodecylbenzenesulfonic acid as an efficient Brønsted acid catalyst. RSC Adv. 2015, 5, 21843-21853. (e) Allan, P. N. M.; Ostrowska, M. I.; Patel, B. Acetic Acid Catalysed One-Pot Synthesis of Pyrrolo [1,2-a] quinoxaline Derivatives. Synlett 2019, 30, 2148-2152. (f) Huo, H.-r.; Tang, X.-Y.; Gong, Y.-f. Metal-Free Synthesis of Pyrrolo[1,2-a]quinoxalines Mediated by TEMPO Oxoammonium Salts. Synthesis 2018, 50, 2727-2740. (g) Kamal, A.; Babu, K. S.; Kovvuri, J.; Manasa, V.; Ravikumar, A.; Alarifi, A. Amberlite IR-120H: an efficient and recyclable heterogeneous catalyst for the synthesis of pyrrolo[1,2-a]quinoxalines and 5'H-spiro-[indoline-3,4'-pyrrolo[1,2-a]quinoxalin]-2-ones. Tetrahedron Lett. 2015, 56, 7012-7015.

(14) Pereira, M. d. F.; Thiéry, V. One-Pot Synthesis of Pyrrolo[1,2a]quinoxaline Derivatives via Iron-Promoted Aryl Nitro Reduction and Aerobic Oxidation of Alcohols. *Org. Lett.* **2012**, *14*, 4754–4757. (15) Rubio-Presa, R.; Pedrosa, M. R.; Fernández-Rodríguez, M. A.; Arnáiz, F. J.; Sanz, R. Molybdenum-Catalyzed Synthesis of Nitrogenated Polyheterocycles from Nitroarenes and Glycols with Reuse of Waste Reduction Byproduct. *Org. Lett.* **2017**, *19*, 5470–5473.

(16) Sun, Q.; Liu, L.; Yang, Y.; Zha, Z.; Wang, Z. Unexpected activated carbon-catalyzed pyrrolo[1,2-a]quinoxalines synthesis in water. *Chin. Chem. Lett.* **2019**, *30*, 1379–1382.