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ABSTRACT: The double-oxidative dehydrogenative (DOD) cycliza-
tion represents one of the most straightforward and atom-economical
methods for cyclic structure formation. A Cu(II)/DDQ/O2 system-
catalyzed DOD [4 + 2]-annulation/oxidative aromatization tandem
reaction of readily available glycine derivatives and alkylbenzenes was
established. This approach facilitates rapid access to a broad scope of
substituted quinoline-2-carboxylate derivatives, an important motif in
drug discovery. The reaction could feasibly be applied to a 10 gram-
scale synthesis.

Oxidation reactions are of significant importance in nature
and play a crucial role in organic synthesis and the

chemical industry.1 Therefore, more sustainable and selective
oxidation methods are currently in demand. In the past decade,
oxidative dehydrogenative coupling reactions, namely, direct
coupling between two C−H bonds, have become a growing and
attractive field in organic chemistry.2

Very recently, we proposed the concept of the double-
oxidative dehydrogenative (DOD) cyclization reaction.3 From a
scientific point of view, a DOD cyclization reaction that directly
constructs two C−C bonds from four C−H bonds will be highly
desirable as a straightforward and atom-economic method
(Scheme 1a).
The quinoline-2-carboxylate framework is a common motif in

bioactive natural products and synthetic drugs and has attracted
widespread interest from the pharmaceutical and synthetic
communities.4 Many named reactions have been identified for
quinoline synthesis, such as the Povarov, Skraup, Combes,
Conrad−Limpach, Doebner−von Miller, Friedla ̈nder, and
Pfitzinger reactions. In 1963, Povarov described the formal [4
+ 2]-cyclization of aromatic imines and electron-rich olefins to
form quinoline skeletons for the first time.5 This reaction, which
is now known as the Povarov reaction or imino Diels−Alder
(imino-D-A) reaction, has become a powerful synthetic method
for a six-membered N-heteroring system (Scheme 1b).6

Glycine is the simplest natural amino acid and can be
manufactured industrially by treating chloroacetic acid with
ammonia. In 2011, the Mancheño group developed a tandem
oxidative Povarov/aromatization reaction of glycine derivatives
with alkenes using an iron(III) salt as the catalyst and 2,2,6,6-
tetramethylpiperidin-1-yl)oxy (TEMPO) oxoammonium salt as
the oxidant for the first time.7 Since then, oxidative dehydrogen-
ative cyclization ofN-arylglycine derivatives with multiple bonds

to form substituted quinoline-2-carboxylate motifs has been
widely studied (Scheme 1c).8

Ethylbenzene (EB) is a frequently used and incredibly cheap
reagent in the chemical industry. EB is one of the most widely
produced alkyl aromatic compounds in the world and is readily
available from biorenewable sources.9 EB is cheaper than
styrene. More importantly, EB is the upstream material of
styrene. Styrene is prepared mainly from EB industrially. We
questioned whether a new type of annulation reaction in which
glycine derivatives and alkylbenzenes such as EB were oxidized
in the same reaction mixture followed by the Povarov reaction
was possible (Scheme 1d). If this DOD cyclization concept
could be accessed, then the Povarov reaction will be advanced to
a new level.
Herein, we report the preliminary realization of the DOD

cyclization reaction envisioned above with a Cu(II)/DDQ/O2
catalyst system. This primary work illustrates the great
application potential of DOD cyclization to construct multiple
carbon−carbon bonds and deliver complex cyclic frameworks.
Our initial investigation began with the DOD [4 + 2]-

annulation of methyl (4-methoxyphenyl)glycinate (1a) with
ethylbenzene (2a). Encouragingly, when the reactions were
carried out by employing copper or iron salts as the catalysts and
DDQ as the oxidant, the desired quinoline-2-carboxylate
product 3aa could be isolated in 37−63% yields (Scheme 2,
entries 1−8). The molecular structure of 3aawas confirmed by a
single-crystal X-ray diffraction study. A catalyst screen showed
that CuCl2 was the best choice for the transformation (Scheme
2, entry 1). When the copper loading was reduced to 5 mol % or
increased to 15 mol %, lower yields of 3aa were obtained
(Scheme 2, entries 9−10). The oxidant strongly affected this
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reaction, and DDQ was found to be the most suitable oxidant.
This DOD imino-D-A cycloaddition did not proceed when
using benzoquinone, TBHP, DTBP, mCPBA, or oxone as the
oxidant (Scheme 2, entries 11−15). A lower yield was observed
when air (open flask) was used instead of pure oxygen gas
(balloon) (Scheme 2, entry 16). Control experiments indicated
that none of the desired reaction was observed under an argon
atmosphere (Scheme 2, entry 17). The influence of the
temperature was also studied. Both increasing and decreasing

the temperature resulted in lower yields (Scheme 2, entries 18−
19). The reaction did not give excellent yield maybe due to the
self-reactions of glycine ester under oxidation conditions. The
dimer and oxidative product of glycine ester 1a can be detected
by HRMS in the reaction mixture.

Scheme 1. Design of Double-Oxidative Dehydrogenative
(DOD) Annulation

Scheme 2. Screening of Reaction Conditions

aReaction conditions: 1a (0.5 mmol), 2a (1.2 mL), oxidant (1.25
mmol), atmosphere (O2 balloon), 5 h, 90−60 °C. bIsolated yields.

Scheme 3. Tandem DOD [4 + 2]-Annulation/Oxidative
Aromatization Reaction of Glycine Derivatives with EB
(2a)a,b

aReaction conditions: 1 (0.5 mmol), 2a (1.2 mL), CuCl2 (10 mol %),
DDQ (1.25 mmol), O2(balloon), 5−18 h, 90−60 °C. bIsolated yields.
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With this DOD catalytic system in hand, we next sought to
examine the scope and generality of glycine derivatives. Initially,
different N-PMP (p-methoxyphenyl) glycine esters (Scheme 3,
1a−1h), N-PMP glycine amides (Scheme 3, 1i−1m), and short
peptides (Scheme 3, 1n) were investigated, and the reaction
proceeded smoothly to afford the desired products in high yields
(Scheme 3, 3aa−3na). Notably, a glycine derivative with a more
elaborate molecular architecture, namely, the trans-androster-
one derivative, was also a suitable substrate and afforded the
corresponding product 3ha in high yield. This product may have
potential utility in pharmaceutical chemistry. This example helps
demonstrate the value of this method in providing rapid access
to complex compounds. A range of substituents on the N-aryl
group were applicable to the present catalyst system (Scheme 3,
3oa−3xa). Halide substituents remained intact after the
reaction, providing an easy handle for further synthetic
elaborations (Scheme 3, 3ba−3xa). meta- or ortho-Substituted
aniline glycine derivatives gave a complex reaction mixture.
Moreover, the scope of EBs was also investigated with methyl
(4-methoxyphenyl)glycinate (1a). EBs with electron-donating
groups and electron-withdrawing groups all worked well under
the present reaction conditions (Scheme 4, 3aa−3ag). It is
worth noting that 2h derived from (+)-menthol was also a

suitable substrate for the reaction, affording the desired product
3ah in moderate yield. This example also helps demonstrate the
value of this method in providing rapid access to complex
compounds. The reaction of meta- or ortho-substituted EBs also
proceeded smoothly to furnish the corresponding products
(Scheme 4, 3ai, 3aj) in high yield.
To examine the scalability of this DOD annulation method,

the reaction between methyl (4-methoxyphenyl)glycinate (1a)
and ethylbenzene (2a) was performed on a 10 gram-scale in a
single batch. The desired product 3aa was obtained in 65%
isolated yield (Scheme 5). This result indicates that the present
DOD protocol not only is atom-efficient but also could be
conveniently scaled up in industry.

Scheme 4. Tandem DOD [4 + 2]-Annulation/Oxidative
Aromatization Reaction of Methyl (4-
Methoxyphenyl)glycinate (1a) with EB Derivativesa,b

aReaction conditions: 1a (0.5 mmol), 2 (1.2 mL), CuCl2 (10 mol %),
DDQ (1.25 mmol), O2(balloon), 5−18 h, 90−60 °C.

bIsolated yields.

Scheme 5. Scalability of the Reaction to the Multigram Scale

Scheme 6. Control Experiments
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To shed light on the reactionmechanism of this DOD [4 + 2]-
cyclization/oxidative aromatization tandem reaction of glycine
derivatives with alkylbenzenes, a series of experimental studies
were conducted. The reaction of glycine ester (1a) and styrene
(E), the reaction of imine B and EB (2a), and the reaction of
imine B and styrene (E) were investigated (Scheme 6).
Furthermore, we found that imine B, styrene E, and
tetrahydroquinoline F could be detected in the crude reaction
mixtures by means of HRMS analysis (Scheme 6). These results
indicate that imine B, styrene, E, and tetrahydroquinoline Fmay
be involved as key intermediates in this DOD-based tandem
process. The reaction of 1a and 2a under an argon atmosphere
was investigated (Scheme 6), and none of the desired product
3aa was obtained. This result indicates that oxygen is crucial for
the reaction. Radical trapping experiments were also conducted
by employing TEMPO or BHT as radical scavengers (Scheme
6). No desired product was observed in the reaction of 1a with
2a. These results suggest that the reaction includes a radical
process.
Based on the experimental data and precedent literature, a

plausible mechanism is proposed in Scheme 7. Glycine ester 1a
was oxidized to generate imine intermediate B under copper-
catalyzed aerobic conditions. Moreover, EB was oxidized to
generate styrene E in the presence of DDQ at the same time.
Subsequently, a Povarov reaction of B with E occurred to
generate the corresponding tetrahydroquinazoline intermediate
F regioselectively due to the stability of intermediate
carbocation. Finally, oxidative aromatization of intermediate F
occurred to afford the desired product 3aa.
In summary, we have developed an efficient and practical

Cu(II)/DDQ/O2-catalyzed tandem DOD [4 + 2]-annulation/
oxidative aromatization reaction from easily available starting
materials for the efficient synthesis of quinoline-2-carboxylates
via activation of four C−H bonds in one reaction. This new
method represents a straightforward and atom-economical
concept and tolerates a variety of useful functional groups.

The 2-carboxyl group of the products makes this method
particularly appealing since this substituent can be used for
further synthetic manipulations. Further studies expanding the
DOD cyclization strategy to the synthesis of other heterocycles
are currently underway.
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