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ABSTRACT: Herein we describe the development and 
application of a method for the mild, late-stage conversion of 
primary sulfonamides to several other other functional groups. 
These reactions occur via initial reductive deamination of 
sulfonamides to sulfinates via an NHC-catalyzed reaction of 
transiently formed N-sulfonylimines. The method described here 
is tolerant of nearly all common functional groups, as exemplified 
by the late-stage derivatization of several complex pharmaceutical 
compounds. Based on the prevalence of sulfonamide-containing 
drugs and building blocks, we have developed a method to enable 
sulfonamides to be applied as versatile synthetic handles for 
synthetic chemsitry.

Sulfonamides and related sulfur-based functional groups are of 
paramount importance in drug discovery and development. Since 
the first sulfa antibiotic, Prontosil, was introduced to the market in 
the 1930’s, sulfonamides and other sulfur-containing drugs have 
become pervasive in medicines spanning all therapeutic areas 
(Figure 1).1 In fact, a recent analysis revealed that sulfur is the 5th 
most common element in FDA-approved drugs, just behind the 
mainstays of organic chemistry: C, H, N, and O.1 Based on the 
prevalence of S-containing drugs, methods that enable the late-
stage interconversion of common sulfur functional groups will 
have a meaningful impact in drug discovery.2
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Figure 1. Representative sulfur-containing drugs

Of the many sulfur-containing drugs, nearly 30% contain a 
sulfonamide moiety (Figure 1).1 As such, numerous methods have 
been developed to prepare sulfonamides from a wide-array of 

starting materials.3 Yet, analogous methods for the conversion of 
sulfonamides into other functional groups, specifically in the 
context of complex molecule diversification, are essentially 
unknown. Such general methods, as exemplified in eq. 1, could 
have an immediate impact in the discovery of new biologically 
active compounds through late-stage functionalization,4 given the 
prevalence of sulfonamide-containing molecules in compound 
libraries across pharmaceutical and agrochemical companies. For 
instance, Merck’s building block library contains similar numbers 
of sulfonamides and arylboronic acids, yet sulfonamides are 
almost exclusively considered to be terminal functional groups 
rather than synthetic handles. To address the lack of late-stage 
functionalization methods for sulfonamides, we report here a 
general method to readily convert complex drug-like 
sulfonamides to a variety of common functional groups. 
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For the conversion of sulfonamides to other functional groups, 
we proposed that the most versatile method would occur via 
initial formation of a sulfinate salt. This proposal was based on 
the ease of functionalization of sulfinates via electrophilic 
trapping or through loss of SO2, classes of reactions which 
typically occur under mild conditions.5 To achieve this goal, we 
proposed that primary sulfonamides could be converted to 
sulfinate salts via the intermediacy of N-sulfonylimines that 
would form via condensation with aldehydes, ultimately liberating 
a nitrile as the stoichiometric byproduct (Figure 2). 
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Figure 2. Strategy for the late-stage functionalization of 
sulfonamides

This hypothesis was tested with benzenesulfonamide as a 
model substrate under a multitude of reaction conditions, 
comprising a wide array of aldehydes, bases, and solvents (see 
Supporting Information). Yet, across this diverse set of reaction 
conditions, only trace amounts of the sulfinate product was 
observed (Figure 3A). In considering the elimination of the 
sulfinate leaving group, we hypothesized that an NHC catalyst 
could lower the energy barrier and facilitate the reaction (Figure 
3B).6 This proposal was largely inspired by pioneering work 
involving NHC-catalyzed reactions of α-reducible aldehydes that 
form acylazolium species (Figure 3C).7 In the presence of 
benzaldehyde, a mild base (K2CO3), and 3 mol % of triazole-
based NHC precatalyst 1, benzenesulfonamide was converted to 
benzenesulfinate in quantitative yield, along with the formation of 
benzonitrile as the byproduct (see Supporting Information for 
additional details).
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Figure 3. Discovery of a method for the functionalization of 
sulfonamides via NHC-catalyzed reductive N-S bond cleavage

The NHC-catalyzed deamination was investigated further, and 
a general set of reaction conditions were identified that could be 
applied to all classes of primary sulfonamides (Scheme 1). The 
reaction conditions involve heating a mixture of the sulfonamide 
substrate in the presence of a slight excess of benzaldehyde and 
potassium carbonate with 3 mol % of 1 in ethanol. During the 
course of the reaction, a portion of the benzaldehyde undergoes 
benzoin condensation.8 However, as the benzoin reaction is 
reversible, this side process is of little consequence. Of particular 
practical importance is that the reactions can be set up on the 
benchtop without the exclusion of air or moisture, are run at high 
concentrations (1 M in EtOH), use only simple reagents, and form 
innocuous byproducts. 
Scheme 1. Establishing substrate scope with respect to steric 
and electronic properties of sulfonamide 2
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aConversion of sulfonamide to sulfinate based on UPLC area percent at 
210 nm or 1H NMR spectroscopy. Percent conversion compared within 
2% of the assay yields of benzonitrile with a calibrated UPLC instrument. 

Having validated the deamination reaction on aromatic and 
aliphatic sulfonamides with varying electronic and steric 
properties, we turned our attention to the functionalization of 
drug-like molecules, along with enabling the in situ 
functionalization of the sulfinate salts. Conditions were identified 
that enable the crude mixtures from the deamination reactions to 
be directly converted to methyl sulfones by treatment with methyl 
iodide (Scheme 2), or to sulfonic acids via oxidation with H2O2 
(Scheme 3). The deamination step tolerates carboxylic acids, free 
amines, basic heterocycles, halides, non-primary sulfonamides, 
and several other common functional groups. While primary and 
secondary amino groups can reversibly condense with 
benzaldehyde, such imines do not react further, ultimately 
resulting in exclusive selectivity for the functionalization of 
primary sulfonamides in the presence of other amino 
functionality. Thus, the high selectivity for functionalizing 
primary sulfonamides underscores the value of this approach for 
predictable, high-yielding late-stage diversification.4

Scheme 2. Conversion of complex sulfonamides to methyl 
sulfonesa
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aYields shown for reactions performed on 1.0 mmol scale, sulfinate 
intermediate not isolated. For experimental details, see the Supporting 
Information.

High selectivity was also observed during the conversion of the 
sulfinate intermediates to methyl sulfones. This observation is due 
to the fact that methyl iodide reacts more rapidly with sulfinate 
salts than with other nucleophilic groups.9 Similarly, selective 
oxidation of the sulfinates to sulfonic acids could be carried out 
with excellent functional group tolerance (Scheme 3). In these 
cases, the pure sulfonic acid product could be isolated via 
crystallization by simply adding water and aqueous HCl.

While most of the sulfonamide substrates used throughout this 
work are widely studied drugs, many of the sulfone and sulfonic 
acid products prepared are novel. This is significant, as it serves to 
highlight the fact that sulfonamides have traditionally been 
synthetic dead-ends, and calls attention to the difficulty and lack 
of structure-activity relationship (SAR) studies at S(VI). 
Scheme 3. Conversion of complex sulfonamides to sulfonic 
acidsa
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aYields shown for reactions performed on 1.0 mmol scale, sulfinate 
intermediate not isolated. For experimental details, see the Supporting 
Information.

To further validate the utility of this late-stage functionalization 
method, we demonstrated that the crude sulfinate salts generated 
in situ could be diverted to several different functional groups 
(Scheme 4). Sulfonamide deamination followed by treatment of 
the sulfinate with I2 in the presence of an amine offers a 
convenient method to interconvert sulfonamides.10a,b Beyond 
being a useful approach to SAR studies on small scale, this 
deamination/amination sequence was readily scaled to prepare 
decagram quantities of compound 6d. Similarly, using 15NH4OH 
as the amine source enables rapid access to 15N-labeled 
sulfonamide drugs directly from the 14N parent molecule. The 
ability to selectively and completely exchange 14N for 15N on a 
drug-like molecule without resorting to multi-step syntheses is 
valuable for labeled compound synthesis to support 
pharmacological studies in drug discovery.11 
Scheme 4. Late-stage diversification of Celebrex (celecoxib)a
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aFor experimental details, see the Supporting Information. Reaction 
conditions: (a) standard deamination conditions; (b) piperidine, I2; (c) 
15NH4OH, I2; (d) 2-chloro-5-trifluoromethylpyridine; (e) Xantphos/Pd, 
PhI; (f) XPhos/Pd, PhOTf.

The sulfinates generated in situ, as soft, anionic nucleophiles, 
can react with various alkyl electrophiles beyond methyl iodide, 
as well as electron deficient aryl halides in SNAr reactions 
(Scheme 4).9,10c Furthermore, the crude sulfinate salts can engage 
in cross-couplings with aryl electrophiles to provide aryl 
sulfones.10d Finally, the sulfinates can act as aryl nucleophiles, 
analogous to arylboronic acids, in cross-coupling reactions to 
form biaryl compounds through loss of SO2.12 The latter reaction 
is particularly intriguing, as primary sulfonamides can now be 
thought of as precursors to aryl nucleophiles for cross-coupling. 
Overall, this diverse set of reactions showcases the remarkable 
breadth and utility of the deamination/sulfinate functionalization 
strategy reported here.

In conclusion, we have developed a general, reliable, and user-
friendly approach to the late-stage functionalization of 
sulfonamides. These reactions occur with exceptional scope in 
regards to the steric and electronic properties of the sulfonamide, 
as well as the functionality contained within the molecule. The 
methods outlined here have been exemplified on several complex 
drug and drug-like sulfonamides and have been used to prepare 
novel derivatives that would otherwise require lengthy, de novo 
syntheses. Moreover, the value of this approach will continue to 
grow with the development of new methods for sulfinate 
functionalization. Having already witnessed a rapid uptake of this 
chemistry amongst our colleagues across drug discovery and 
development, we are confident that the work described here will 
have an immediate and tangible impact across synthetic 
chemistry, as primary sulfonamides can now be applied as 
versatile synthetic handles. 
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