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Abstract—A rapid and efficient synthesis of amino-substituted 2-pyridones was demonstrated by palladium-catalyzed amination
reaction under microwave irradiation. This high-speed synthesis provided a number of amino-substituted 2-pyridones from the cor-
responding bromo-2-benzyloxypyridines via palladium-catalyzed amination followed by hydrogenolysis of benzyl ether.
� 2005 Elsevier Ltd. All rights reserved.
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A rapid and efficient synthesis of novel building blocks is
still on tremendous demands in pharmaceutical and
agrochemical research areas. In recent years, amino-
substituted 2-pyridones have attracted attention due to
their promising features as an important core structure
for the development of biologically active molecules.1

Pharmaceuticals with the 2-pyridone skeleton have
emerged as antitumor,2 antifungal,3 antibacterial,4 anti-
viral,5 and antithrombotic6 agents. Although many syn-
thetic methods for the preparation of aminopyridine
derivatives have been reported, there is still rare for
the common preparation of amino-substituted 2-pyri-
dones.7 Therefore we envisioned that the palladium-cata-
lyzed amination of bromopyridine with microwave
irradiation would be utilized as a key step for the synthe-
sis of amino-substituted 2-pyridones.8,9 This microwave-
promoted heating technology has become a powerful
tool for the high-speed synthesis of novel chemical enti-
ties.10 Many synthetic efforts using microwave were
extensively focused on the amination of aryl bromides,
chlorides, or triflates in the presence of a palladium cata-
lyst.11 Herein, we describe a convenient and efficient
synthesis of a series of amino-substituted 2-pyridones
via microwave-promoted palladium-catalyzed amina-
tion of 5- or 6-bromo-2-benzyloxypyridines followed
by hydrogenolysis of benzyl ether.
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The prerequisite 5- or 6-bromo-2-benzyloxypyridines
were prepared by simple modifications of previous litera-
ture methods (Scheme 1). Selective O-benzylation was
accomplished by the reaction of 5-bromo-2-pyridone 1
with benzyl bromide in the presence of silver carbonate
in a dark to provide 2-benzyloxy-5-bromopyridine 2.12

On the other hand, 2-benzyloxy-6-bromopyridine 4
was easily obtained from 2,6-dibromopyridine 3 via
mono-nucleophilic substitution with sodium benzyl-
oxide in high yield.13

With bromopyridines in hand, we first carried out pal-
ladium-catalyzed amination of 2 with morpholine
under microwave irradiation using conditions devel-
oped by Buchwald (Pd2(dba)3, (±)-2,2 0-bis(diphenyl-
phosphino)-1,1 0-binaphthyl (BINAP), NaO-t-Bu, and
toluene).14 It is well-known that the use of bis-
(phosphine) ligand such as BINAP is essential for
the success of aminations of bromopyridines due to
the formation of pyridine–palladium complexes.14a
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Scheme 1.
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Table 1. Palladium-catalyzed amination of 2-benzyloxy-5-bromopyridine with morpholinea
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NaOt-Bu
toluene

Microwave2 5a 6

+

Entry Pd source Ligandf Base Temperature (�C) Time (min) Yield of 5ab (%)

1 Pd2(dba)3 BINAP NaO-t-Bu 150 10 65c

2 Pd2(dba)3 BINAP NaO-t-Bu 150 5 80

3 Pd(OAc)2 BINAP NaO-t-Bu 150 5 50c

4 Pd2(dba)3 BINAP NaO-t-Bu 130 10 81

5 Pd2(dba)3 BINAP NaO-t-Bu 130 5 73d

6 Pd2(dba)3 BINAP NaO-t-Bu 120 10 89

7 Pd2(dba)3 BINAP NaO-t-Bu 80e 18 h 89

8 Pd(OAc)2 BINAP NaO-t-Bu 120 10 49d

9 Pd2(dba)3 BINAP NaO-t-Bu 110 10 69d

10 Pd2(dba)3 A NaO-t-Bu 120 10 90

11 Pd2(dba)3 B NaO-t-Bu 120 10 52d

12 Pd2(dba)3 C NaO-t-Bu 120 10 12d

13 Pd2(dba)3 D NaO-t-Bu 120 10 14d

14 Pd2(dba)3 BINAP Cs2CO3 120 10 15d

15 Pd2(dba)3 A Cs2CO3 120 10 23d

16 Pd2(dba)3 A K2CO3 120 10 14d

17 Pd2(dba)3 A K3PO4 120 10 11d

a Reaction conditions: Pd (1 mol %), ligand (1.5 mol %), bromopyridine 2 (1 mmol), morpholine (1.2 mmol), base (1.4 mmol), toluene (3 mL).
b Isolated yield.
c Debrominated by-product 6 was detected (entry 3; 25%).
d Starting material 2 remained (entry 5; 7%).
e The reaction was performed under conventional oil-bath heating.
f Used ligands.
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As summarized in Table 1, microwave reaction in a
sealed tube at 150 �C for 10 min provided the desired
aminopyridine 5a in 65% yield along with debromi-
nated by-product 6 (entry 1). When carried out at
150 �C for 5 min, the reaction afforded the desired
product in better yield (entry 2). As an alternative pal-
ladium source, the use of Pd(OAc)2 under the same
reaction conditions gave 5a in 50% yield and the
debrominated by-product 6 in 25% yield (entry 3).
Based on these observations, Pd2(dba)3 is superior to
Pd(OAc)2 as the palladium source for the micro-
wave-promoted amination reaction. To optimize
microwave heating temperature, we continued to
examine reactions at various temperatures and reac-
tion times (entries 4–9). Decreasing reaction tempera-
ture to 130 �C for 10 min also gave 5a in good
yield (entry 4). However, shortening microwave expo-
sure to 5 min at the same temperature resulted in low-
er yield (73%) due to the incompletion of the reaction
(entry 5). When the reaction was run at 120 �C for
10 min, the best result was obtained to provide 5a in
89% yield with all consumption of starting material
(entry 6). This result was compatible with that of
the conventional oil-bath heating conditions (entry
7). Further decreasing the reaction temperature to
110 �C led to lower yield due to incompletion of the
reaction (entry 9). It is noteworthy that finely con-
trolled reaction temperature and time (120 �C,
10 min) are critical factors for high yielding of the
Pd-catalyzed amination of bromopyridine 2 under
microwave irradiation.

Next, we examined several phosphine ligands and bases
using the selected Pd-catalyst/temperature/time set. Of
five phosphine ligands screened, BINAP and amino-
phosphine ligand A gave the best results (entries 6 and
10), while the reactions employing other ligands (B, C,
and D) were incomplete (Table 1, entries 10–13). Base
effects using Cs2CO3, K2CO3, or K3PO4 were clearly
showed that the reaction progress became very slow
and starting bromopyridne 2 remained significantly
(Table 1, entries 14–17). Consequently, the optimum
reaction set for the palladium catalyzed amination of
bromopyridine is Pd2(dba)3, BINAP or ligand A,
NaO-t-Bu at 120 �C for 10 min.

With the optimized conditions, we investigated the
Pd-catalyzed amination of bromopyridine 2 with
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various amines to obtain amino-substituted pyridines
5. The results are listed in Table 2.15 In cases of cyclic
secondary amines, amino-substituted pyridines 5a–f
were obtained in good to high isolated yields (entries
1–6). Aminations with aniline derivatives using BI-
NAP or aminophosphine ligand A also furnished
aminopyridines 5g–i in good yields (entries 7–9). When
aliphatic primary amines were used, the reactions were
less effective, probably due to their ability of b-hydride
elimination and dipyridinyl amination (entries 10–
11).14a,16 Finally, catalytic debenzylation of amino-
substituted pyridines 5 was easily accomplished to pro-
vide the corresponding 2-pyridones 7a–k in high yields
(Table 2).

Further explorations of amination of 2-benzyloxy-6-
bromopyridine 4 with some representative amines were
carried out using the standard set developed. As out-
Table 2. Palladium-catalyzed amination of bromopyridine 2a followed by hy

NBnO

Br

NBnO

HNR1R2

Pd, ligand
NaOt-Bu
toluene

µwave, 120 ˚C, 10 min
2    5

Entry Amine Ligand Yield of 5c (%

1 HN OHN O A 90

2 HN BINAP 88

3 HN BINAP 69

4 HN
O

O
BINAP 73

5 HN N CH3 BINAP 85

6
HN N O

O
BINAP 88

7

H
N

H3C BINAP 72

8
H2N CH3

A 89

9

H2N

F

A 78

10 NH2N O A 71

11 H2N A 60

a Reaction conditions: Pd2(dba)3 (1 mol %), ligand (1.5 mol %), bromopyridin

120 �C, 10 min.
b Reaction conditions: H2 (30–40 psi), 10% Pd/C (10 wt %), MeOH–EtOAc (
c Isolated yield.
lined in Table 3, amination with cyclic secondary
amines gave satisfactory results (entries 1–4). In cases
of anilines and primary amines, amination was less
effective and gave aminopyridines 8e–h in moderate
to good yields (entries 5–8). Then, catalytic debenzyla-
tion of aminopyridines 8a–h was easily achieved to af-
ford the corresponding 2-pyridones 9a–h in high yields
(Table 3).

In summary, we successfully demonstrated the simple
and rapid synthesis of amino-substituted 2-pyridone
derivatives using palladium-catalyzed amination under
microwave irradiation. Such high-speed construction
of 2-pyridone derivatives can be utilized to the discovery
of useful pharmaceuticals. Further applications of palla-
dium-catalyzed amination for the construction of novel
building blocks are under investigation in our
laboratory.
drogenationb
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e 2 (1 mmol), amine (1.2 mmol), NaO-t-Bu (1.4 mmol), toluene (3 mL),

2:1), 4 h.



Table 3. Palladium-catalyzed amination of bromopyridine 4a followed by hydrogenationb
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Entry Amine Ligand Yield of 8c (%) 2-Pyridone Yield of 9c (%)

1 HN OHN O BINAP 80
NH

N

O

O
9a

95

2 HN BINAP 87 NH
N

O

9b 97

3 HN BINAP 92 NH
N

O

9c 92

4 HN N CH3 BINAP 80 NH
N

O

N CH3
9d 95

5
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H3C A 75
NH
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CH3
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6

H2N

F

A 92 NH
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F
9f 95

7 NH2N O A 67d NH

H
N

O

N

O

9g 80

8 H2N A 65 NH

H
N

O

n-C6H13
9h 85

a Reaction conditions: Pd2(dba)3 (1 mol %), ligand (1.5 mol %), bromopyridine 4 (1 mmol), amine (1.2 mmol), NaO-t-Bu (1.4 mmol), toluene (3 mL),

120 �C, 10 min.
b Reaction conditions: H2 (30–40 psi), 10% Pd/C (10 wt %), MeOH–EtOAc (2:1), 4 h.
c Isolated yield.
d Dipyridinyl amine was detected by HPLC/MS (9%).
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