SYNTHESIS AND REACTIVITY IN INORGANIC AND METAL-ORGANIC CHEMISTRY Vol. 33, No. 10, pp. 1835–1855, 2003

Novel N₄ Macrocycles and Their Transition Metal Chelates

K. S. Siddiqi,^{1,*} N. Nishat,² and Fouzia Rafat¹

¹Department of Chemistry, Aligarh Muslim University, Aligarh, India ²Department of Chemistry, Jamia Millia Islamia, New Delhi, India

ABSTRACT

Four novel N₄-type macrocyclic chelating agents L^1 , L^2 , L^3 , L^4 with pendant groups and their metal chelates with some transition metal ions have been synthesized. Electrical conductance of the Cr(III) and Fe(III) chelates indicated them to be 1:1 electrolytes whilst those of divalent metal ions are non-electrolytes in DMSO. Spectroscopic evidence suggests that all of the complexes are six-coordinate and the pendant groups are not involved in coordination.

*Correspondence: K. S. Siddiqi, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India; E-mail: ks_siddiqi@yahoo.co.in.

1835

DOI: 10.1081/SIM-120026552 Copyright © 2003 by Marcel Dekker, Inc. 0094-5714 (Print); 1532-2440 (Online) www.dekker.com

INTRODUCTION

The coordination properties of macrocycle bearing pendant groups have attracted great deal of attention.^[1–4] More recently, the crystal and molecular structure of [3-(4-pyridiniumcarbonyl)-1,3,5,8,12,-pentaazacyclotetradecane]-nickel(II) was described^[5] in which pyridine acts as pendant group. A metallocyclam subunit has been appended to pyridine through a metal template procedure which involves the condensation of amides of 3- and 4pyridine carboxylic acid with formaldehyde and the nickel(II) complex with the open-chain tetraamine. These metallocyclam units act as building blocks of supramolecular system and act as two-electron redox systems. In the recent past, a 36-membered macrocycle with four ethylenediamine entities has been reported.^[6]

The synthesis of transition metal complexes with macrocycles containing a variety of functional groups on the periphery has been reported.^[7] These groups have been termed superstructures. Such compounds are of particular importance in view of their use in the treatment of malignant tumors.^[8] Increasing interest has been shown in the design of new macrocycles with predetermined guest complexation.^[9,10] In view of these observations it was considered worthwhile to investigate, in detail, the synthesis of four tetradentate macrocycles and their chelates with transition metal ions.

RESULTS AND DISCUSSION

A mixture of 4-aminoantipyrine, acetylacetone and 1,3-diaminopropane or 1,6-diaminohexane was refluxed. It was cooled to zero $^{\circ}C$ and an excess of dilute HCl was added to cause precipitation of L¹ and L² as shown in Figure 1.

For the synthesis of L^3 and L^4 , a mixture of 4-aminoantipyrine, 1,3diaminopropane or ethylenediamine was refluxed for 20 h. It was cooled to zero °C and precipitated with dilute HCl. This product was dissolved in ethanol and refluxed with benzoylacetic acid. Addition of dilute HCl afforded the ligands L^3 and L^4 (Figure 2).

Metal complexes were synthesized directly by the addition of hydrated metal chloride solutions to the ligand solution in the same solvent. Since the yield of the complexes was too poor (10 to 15%), the in situ method was employed. In this method the ligand was not isolated. The metal chloride was added to the solution of the ligand under preparation.

Elemental analyses of the complexes correspond to the compositions $MLCI_2$ and $M'LCI_3$ where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) and

Figure 1. Synthesis of ligands L^1 and L^2 .

M' = Cr(III) and Fe(III). The molar conductances measured in DMSO (15–42 ohm⁻¹ cm² mole⁻¹) indicated that the divalent metal complexes are non electrolytes^[10] while those of M(III) ions are 1:1 electrolytes (Table 1).

IR Spectra

It has been observed by many workers^[11,12] that in Schiff base macrocyclic complexes the C=N stretching frequency appears in the 1620–1660 cm⁻¹ region. A comparison of the IR spectra of the free macrocycles

Figure 2. Synthesis of ligands L^3 and L^4 .

with those of their complexes indicated a substantial shift in v(C=N) and v(C-N) (Table 2). The presence of v(NH) in L³ and L⁴ and their complexes has been supported by the appearance of a band in the 3080–3230 cm⁻¹ region. It is interesting to note that v(COOH) consistently appears at 1430 cm⁻¹ in both the free (L³ and L⁴) and chelated macrocycles which implies that the pendant group is not coordinated in any case although macrocycles having pendant donor groups that are capable of coordinating with the central metal ions are known.^[13] Some 'scorpiand' type molecules are also reported having H₂N–CH₂ 'tails' to a tetraamine macrocycle.^[9]

Marcel Dekker, Inc. 270 Madison Avenue, New York, New York 10016

Novel	N_4	Macrocycles
-------	-------	-------------

	Table 1.	Physical	properties	and analytical	data for L^1 , L^2 , L^3 , L^4	and its m	etal chel	ates.		
	Comnounde	Viald			Molar		% Anal	ysis found	l (calcd).	
	(formula weight)	(%)	Color	M.p. ^a (°C)	$(ohm^{-1} cm^2 mol^{-1})$	C	Н	z	CI	Μ
	$L^{1}, C_{30}H_{36}N_{8}$	20	Orange	200	I	70.5	7.2	22.1	I	I
<u>(</u>	[CrL ¹ Cl ₂] Cl-	40	Green	330 d	61	(70.0) 54.5	(<i>1</i> .1) 5.5	(22.0) 16.2	15.4	7.2
	$C_{30}H_{36}Cl_3CrN_8$ (667.03)					(54.0)	(5.4)	(16.8)	(15.9)	(7.8)
6	[MnL1Cl2]-	28	Brown	260 d	15	56.5	5.5	17.5	11.2	8.8
	$C_{30}H_{36}Cl_2MnN_8$ (634.51)					(56.8)	(5.7)	(17.7)	(11.1)	(8.6)
3	[FeL ¹ Cl ₂]Cl-	35	Brown	265 d	71	53.3	5.0	16.4	15.5	8.6
	$C_{30}H_{36}Cl_{3}FeN_{8}$ (670.88)					(53.7)	(5.4)	(16.7)	(15.8)	(8.3)
<u></u>	[CoL ¹ Cl ₂]-	38	Pink	280 d	26	56.9	5.9	17.2	11.2	9.7
	$C_{30}H_{36}Cl_2C0N_8$ (638.50)					(56.4)	(5.6)	(17.6)	(11.1)	(9.2)
(2)	[NiL1Cl2]-	41	Green	295 d	30	56.1	5.1	17.2	11.5	9.5
	$C_{30}H_{36}Cl_2N_8Ni$ (638.28)					(56.5)	(5.6)	(17.6)	(11.1)	(9.2)
9	[CuL1Cl2]-	39	Green	310 d	32	56.5	5.8	17.8	11.5	9.3
	C ₃₀ H ₃₆ Cl ₂ CuN ₈ (643.12)					(56.0)	(5.6)	(17.4)	(11.0)	(9.8)
									100)	inued)

1839

(continued)

				I anni	COMPARENCE.					
	Compounds	Vield			Molar conductance		% Anal	lysis foun	d (calcd)	
	(formula weight)	(%)	Color	M.p. ^a (°C)	$(ohm^{-1} cm^2 mol^{-1})$	С	Н	Z	CI	Μ
6	$[\operatorname{ZnL}^{1}\operatorname{Cl}_{2}]$ -	36	White	320 d	42	55.6	5.8	17.5	11.3	10.2
	$C_{30}H_{36}Cl_2N_8Zn$					(55.9)	(5.6)	(17.3)	(11.0)	(10.1)
	$L^{2}, C_{33}H_{42}N_{8}$	25	Yellow	210	I	72.2	7.9	20.5	I	I
	(550.75)					(71.9)	(7.7)	(20.3)		
8	[CrL ² Cl ₂]Cl-	36	Green	295 d	70	55.5	5.8	15.3	14.6	7.5
	$C_{33}H_{42}Cl_3CrN_8$					(55.9)	(5.9)	(15.8)	(15.0)	(7.3)
6	[MnL2Cl2]-	38	Grey	340 d	40	58.3	6.6	16.1	10.7	8.4
	$C_{33}H_{42}Cl_2MnN_8$					(58.6)	(6.3)	(16.6)	(10.5)	(8.1)
(10)	[FeL ² Cl ₂]Cl-	41	Brown	320 d	53	55.2	5.7	15.4	14.5	7.5
	C ₃₃ H ₄₂ Cl ₃ FeN ₈ (712-96)					(55.6)	(5.9)	(15.7)	(14.9)	(7.8)
(11)	$[CoL^2Cl_2]$ -	43	Pink	340 d	34	58.5	6.1	16.7	16.9	8.9
	$C_{33}H_{42}Cl_2CoN_8$ (680.58)					(58.2)	(6.2)	(16.5)	(16.5)	(8.6)
(12)	[NiL2Cl2]-	42	Green	330 d	27	57.8	6.5	16.9	10.8	8.9
	$C_{33}H_{42}Cl_2N_8Ni$ (680.36)					(58.3)	(6.2)	(16.5)	(10.4)	(8.6)

Table 1. Continued.

1840

Siddiqi, Nishat, and Rafat

13)	[CuL2Cl2]-	45	Green	290	17	57.2	6.2	16.2	10.5	9.9
	$C_{33}H_{42}Cl_2CuN_8$					(57.8)	(6.2)	(16.4)	(10.4)	(6.3)
	(685.20)									
14)	$[\operatorname{ZnL}^2 \operatorname{Cl}_2]$ -	42	White	280 d	18	57.3	6.2	16.4	10.9	9.7
	$C_{33}H_{42}Cl_2N_8$ Zn					(57.7)	(6.2)	(16.3)	(10.3)	(9.5)
	(687.03)									
	L^3 , $C_{42}H_{42}N_8O_4$	28	White	240	I	69.3	5.9	15.5	I	I
	(722.85)					(69.8)	(5.8)	(15.5)		
15)	[CrL ³ Cl ₂]Cl-	40	Green	257 d	70	57.5	4.9	12.8	12.2	5.4
	$C_{42}H_{42}Cl_3CrN_8O$					(57.2)	(4.8)	(12.7)	(12.0)	(5.9)
	(881.21)									
16)	[MnL3Cl2]-	38	Grey	290 d	22	58.9	4.8	13.5	8.4	6.1
	$\mathrm{C}_{42}\mathrm{H}_{42}\mathrm{Cl}_{2}\mathrm{MnN}_{8}\mathrm{O}_{4}$					(59.4)	(2.9)	(13.2)	(8.3)	(6.4)
	(848.69)									
17)	[FeL ³ Cl ₂]Cl	36	Brown	320 d	80	56.5	4.6	12.2	12.5	6.4
	$C_{42}H_{42}Cl_3FeN_8O_4$					(56.9)	(4.7)	(12.6)	(12.0)	(6.3)
	(885.06)									
18)	$[CoL^3Cl_2]$	28	Pink	340 d	28	59.2	4.7	13.5	8.5	6.5
	$C_{42}H_{42}Cl_2CoN_8O_4$					(59.1)	(4.9)	(13.1)	(8.3)	(6.9)
	(852.68)									
19)	[NiL ³ Cl ₂]	29	Green	320 d	32	58.7	4.4	13.6	8.5	6.7
	$C_{42}H_{42}Cl_2N_8$ NiO ₄					(59.1)	(4.9)	(13.5)	(8.3)	(6.9)
	(852.46)									
20)	[CuL ³ Cl ₂]	32	Green	330 d	42	58.5	4.5	13.4	8.6	7.9
	$C_{42}H_{42}Cl_2CuN_8O_4$					(58.8)	(4.9)	(13.0)	(8.2)	(7.4)
	(857.30)									
									uo2)	tinued)

				Table 1.	Continued.					
	Compounds	Vield			Molar conductance		% Anal	ysis found	d (calcd)	
	(formula weight)	(%)	Color	M.p. ^a (°C)	$(\text{ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1})$	С	Н	Z	CI	Μ
(21)	[ZnL ³ Cl ₂]-	33	White	350 d	40	58.2	4.4	13.3	7.8	7.6
	C ₄₂ H ₄₂ Cl ₂ N ₈ O ₄ Zn (859.13)					(58.6)	(4.9)	(13.0)	(8.2)	(7.8)
	L^4 , $C_{43}H_{44} N_8O_4$	23	White	230	I	70.5	6.5	15.6	I	I
	(736.87)					(70.0)	(0.0)	(15.2)		
(22)	[CrL ⁴ Cl ₂]Cl-	42	Green	265 d	52	58.1	4.6	12.2	11.3	5.6
	C ₄₃ H ₄₄ Cl ₃ CrN ₈ O ₄					(57.6)	(4.9)	(12.5)	(11.8)	(5.8)
(23)	(82.23) [MnL ⁴ Cl ₂]-	24	Grey	320 d	25	59.3	4.7	12.5	8.5	6.8
	C ₄₃ H ₄₄ Cl ₂ MnN ₈ O ₄					(59.8)	(5.1)	(13.0)	(8.2)	(6.3)
(54)	(802.71) [FeL ⁴ Cl ₂]Cl-	28	Brown	340 d	61	57.2	4.8	12.2	11.3	6.5
·	C ₄₃ H ₄₄ Cl ₃ FeN ₈ O ₄ (899.01)					(57.5)	(4.9)	(12.5)	(11.8)	(6.2)
	(=									

Siddiqi, Nishat, and Rafat

1842

Copyright @ 2003 by Marcel Dekker, Inc. All rights reserved. **M**

(25)	$[CoL^4Cl_2]$ -	41	Pink	350 d	41	60.1	5.5	12.6	8.2	6.6
	C ₄₃ H ₄₄ Cl ₂ CoN ₈ O ₄ (866 70)					(59.6)	(5.1)	(12.9)	(8.1)	(6.8)
(26)	[NiL4Cl2]-	29	Green	310 d	30	59.2	5.5	12.4	8.3	6.3
	$C_{43}H_{44}Cl_2N_8NiO_4$					(59.6)	(5.1)	(12.9)	(8.1)	(6.7)
	(866.48)									
(27)	$[CuL^4Cl_2]$ -	26	Green	380 d	27	59.6	4.7	12.4	8.4	6.8
	$C_{43}H_{44}Cl_2CuN_8O_4$					(59.2)	(5.0)	(12.8)	(8.1)	(7.3)
	(871.32)									
(28)	$[ZnL^4Cl_2]$	28	White	290 d	28	59.2	5.4	12.5	8.3	7.0
	$C_{43}H_{44}Cl_2N_8O_4Zn$					(59.1)	(5.0)	(12.8)	(8.1)	(7.4)
	(873.15)									
										l

 $^{a}d = decomposition.$

Marcel Dekker, Inc. 270 Madison Avenue, New York, New York 10016

Novel N₄ Macrocycles

	Table 2.	Important IR ban	ds (cm ⁻¹) for liganc	ls and their metal che	elates.	
	Compounds	v(C=N)	v(C-N)	v(N-N)	v(M-N)	v(M-CI)
	L ¹	1660 s	1410 w	1070 w	I	I
(1)	$[Cr(L^1)Cl_2]Cl$	1620 s	1380 w	1070 w	390 w	265 w
(2)	[Mn(L ¹)Cl ₂]	1630 s	1390 w	1070 w	330 w	270 w
(3)	$[Fe(L^1)Cl_2]Cl$	1640 s	1410 w	1070 w	340 w	285 w
(4)	$[Co(L^1)Cl_2]$	1620 s	1390 w	1070 w	340 w	285 w
(5)	[Ni(L ¹)Cl ₂]	1630 s	1380 w	1070 w	345 w	295 w
(9)	$[Cu(L^1)Cl_2]$	1640 s	1380 w	1070 w	335 w	295 w
(L)	[Zn(L ¹)Cl ₂]	1620 s	1370 w	1070 w	330 w	280 w
	L^{2}	1655 s	1070 m	1390 m	I	I
(8)	$[Cr(L^2)Cl_2]Cl$	1640 s	1070 m	1370 m	390 w	280 w
(6)	$[Mn(L^2)Cl_2]$	1630 s	1070 m	1360 m	330 w	285 w
(10)	$[Fe(L^2)Cl_2]Cl$	1645 s	1070 m	1375 m	380 w	260 w
(11)	$[Co(L^2)Cl_2]$	1635 s	1070 m	1380 m	320 w	265 w
(12)	[Ni(L ²)Cl ₂]	1630 s	1070 m	1360 m	330 w	270 w
(13)	$[Cu(L^2)Cl_2]$	1620 s	1070 m	1370 m	340 w	260 w
(14)	[Zn(L ²)Cl ₂]	1620 s	1070 m	1380 m	320 w	275 w

1844

Siddiqi, Nishat, and Rafat

Marcel Dekker, Inc. 270 Madison Avenue, New York, New York 10016

	L^3	3230 m	1660 s	1400 m	1420 m	1615 m	1070 w	I	I
(15)	$[Cr(L^3)Cl_2]Cl$	3200 m	1640 s	1380 m	1420 m	1615 m	1070 w	380 w	300 w
(16)	[Mn(L ³)Cl ₂]	3210 m	1650 s	1360 m	1420 m	1615 m	1070 w	345 w	290 w
(17)	$[Fe(L^3)Cl_2]Cl]$	3220 m	2645 s	1380 m	1420 m	1615 m	1070 w	390 w	280 w
(18)	$[Co(L^3)Cl_2]$	3210 m	1640 s	1380 m	1420 m	1615 m	1070 w	335 w	260 w
(19)	$[Ni(L^3)Cl_2]$	3220 m	1640 s	1390 m	1410 m	1615 m	1070 w	340 w	255 w
(20)	$[Cu(L^3)Cl_2]$	3220 m	1630 s	1370 m	1410 m	1615 m	1070 w	345 w	265 w
(21)	[Zn(L ³)Cl ₂]	3210 m	1650 s	1360 m	1420 m	1615 m	1070 w	345 w	270 w
	L^4	3100 m	1670 s	1480 m	1420 m	1615 m	1070 w	Ι	I
(22)	$[Cr(L^4)Cl_2]Cl$	3090 m	1660 s	1360 m	1420 m	1615 m	1070 w	385 w	290 w
(23)	[Mn(L ⁴)Cl ₂]	3080 m	1640 s	1360 m	1420 m	1615 m	1070 w	330 w	295 w
(24)	$[Fe(L^4)Cl_2]Cl$	3090 m	1645 s	1365 m	1420 m	1615 m	1070 w	375 w	290 w
(25)	$[Co(L^4)Cl_2]$	3080 m	1650 s	1370 m	1410 m	1615 m	1070 w	320 w	280 w
(26)	$[Ni(L^4)Cl_2]$	3080 m	1650 s	1360 m	1420 m	1615 m	1070 w	340 w	285 w
(27)	$[Cu(L^4)Cl_2]$	3090 m	1655 s	1360 m	1420 m	1615 m	1070 w	320 w	280 w
(28)	$[Zn(L^4)Cl_2]$	3100 m	1650 s	1370 m	1420 m	1615 m	1070 w	340 w	295 w

	Table 3.	Magnetic suscel	ptibility, electronic	spectra, and ligar	nd field parameters of t	he complexe	s.	
		Magnetic						
		moment	Electronic	Э	Possible	10Dq	В	
	Compounds	(B.M.)	bands (cm^{-1})	$(mol^{-1}cm^2)$	assignments	(cm^{-1})	(cm^{-1})	β
(1)	$[Cr(L^1)Cl_2]Cl$	3.80	35,714	20	$^4T_{1_g}(P)\!\leftarrow^4\!A_{2_g}(F)$	13400	006	0.87
			21,978	13	${}^{4}\mathrm{T}_{1\mathrm{g}}(\mathrm{F}) \leftarrow {}^{4}\mathrm{A}_{2\mathrm{g}}(\mathrm{F})$			
			15,151	6	${}^{4}T_{2\mathfrak{g}}(F) \leftarrow {}^{4}A_{2\mathfrak{g}}(F)$			
(5)	[Mn(L ¹)Cl ₂]	5.99	25,974	16	${}^{4}A_{1g}^{-g}(G) \leftarrow {}^{6}A_{1g}^{-g}$	10890	069	0.72
			23,255	13	$^{4}T_{2g}(G) \leftarrow ^{6}A_{1g}$			
			17,241	11	$^{4}T_{1e}(G) \leftarrow ^{6}A_{1e}$			
(3)	$[Fe(L^1)Cl_2]Cl$	5.88	33,333	24	$^{4}T_{1g}(P) \leftarrow ^{6}A_{1g}$	12240	840	0.76
			28,985	17	${}^{4}\mathrm{E_{g}(D)} \leftarrow {}^{6}\mathrm{A_{1g}}$			
			21,052	12	${}^{4}T_{2g}(G) \leftarrow {}^{6}A_{1g}$			
(4)	$[Co(L^1)Cl_2]$	3.20	22,988	21	$^{4}\mathrm{T}_{1\mathrm{g}}(\mathrm{P}) \leftarrow ^{4}\mathrm{T}_{1\mathrm{g}}(\mathrm{F})$	11870	800	0.82
			18,018	16	$^{4}A_{2g}(F) \leftarrow ^{4}T_{1g}(F)$			
			12,987	L	$^{4}T_{2g}(F) \leftarrow ^{4}T_{1g}(F)$			
(2)	[Ni(L ¹)Cl ₂]	3.20	27,027	32	${}^{3}T_{1g}(P) \leftarrow {}^{3}A_{2g}(F)$	11820	760	0.70
			23,809	24	${}^{3}T_{1g}(F) \leftarrow {}^{3}A_{2g}(F)$			
			13,986	11	${}^{3}T_{2g}(F) \leftarrow {}^{3}A_{2g}(F)$			
9	[Cu(L ¹)Cl ₂]	1.96	33,258	14	Charge transfer	13157	I	I
			13,157	6	$^{2}\mathrm{T}_{2\mathrm{g}} {\leftarrow}^{2}\mathrm{E}_{\mathrm{g}}$			
6	[Zn(L ¹)Cl ₂]	Diamagnetic			•			
(8)	$[Cr(L^2)Cl_2]Cl$	3.88	34,482	28	$^{4}\mathrm{T}_{1\mathrm{g}}(\mathrm{P}) \! \leftarrow ^{4}\mathrm{A}_{2\mathrm{g}}(\mathrm{F})$	11090	880	0.85
			25,000	21	${}^{4}T_{1\underline{e}}(F) \leftarrow {}^{4}A_{2\underline{e}}(F)$			
			18,000	17	${}^{4}\mathrm{T}_{2\mathrm{g}}(\mathrm{F}) \leftarrow {}^{4}\mathrm{A}_{2\mathrm{g}}(\mathrm{F})$			

1846

Siddiqi, Nishat, and Rafat

H

		${}^{4}T_{2g}(F) \! \leftarrow {}^{4}T_{1g}(F)$	7	12,987			
		$^{4}A_{2g}(F) \leftarrow ^{4}T_{1g}(F)$	15	18,018			
790	11820	$^{4}\mathrm{T}_{1\mathrm{g}}(\mathrm{P}) \leftarrow ^{4}\mathrm{T}_{1\mathrm{g}}(\mathrm{F})$	18	21,978	3.30	$[Co(L^3)Cl_2]$	(18)
		${}^{4}T_{1g}(G) \leftarrow {}^{6}A_{1g}$	19	18,000			
		$^{4}T_{2g}(G) \leftarrow ^{6}A_{1g}$	23	23,255			
860	12210	${}^{4}\mathrm{E_{g}(D)} \leftarrow {}^{6}\mathrm{A_{1g}}$	28	30,303	6.01	$[Fe(L^3)Cl_2]Cl$	(17)
		${}^{4}T_{1g}(G) \leftarrow {}^{6}A_{1g}$	22	16,666			
		$^{4}T_{2g}(G) \leftarrow ^{6}A_{1g}$	27	22,727			
670	0666	${}^{4}A_{1g}(G) \leftarrow {}^{6}A_{1g}$	30	32,258	6.04	[Mn(L ³)Cl ₂]	(16)
		${}^{4}T_{2g}(F) \leftarrow {}^{4}A_{2g}(F)$	S	16,949			
		${}^{4}T_{1g}(F) \leftarrow {}^{4}A_{2g}(F)$	8	20,000			
006	13200	${}^{4}T_{1g}(P) \leftarrow {}^{4}A_{2g}(F)$	12	34,482	3.88	$[Cr(L^3)Cl_2]Cl$	(15)
					Diamagnetic	[Zn(L ²)Cl ₂]	(14)
		$^{2}\mathrm{T}_{2\mathrm{g}}$ $\leftarrow^{2}\mathrm{E}_{\mathrm{g}}$	13	11,235			
I	11235	charge transfer	20	28,571	1.93	[Cu(L ²)Cl ₂]	(13)
		${}^{3}T_{2g}(F) \leftarrow {}^{3}A_{2g}(F)$	17	111,111			
		${}^{3}T_{1g}(F) \leftarrow {}^{3}A_{2g}(F)$	23	16,000			
710	0666	${}^{3}T_{1g}(P) \leftarrow {}^{3}A_{2g}(F)$	30	25,974	3.32	[Ni(L ²)Cl ₂]	(12)
		${}^{4}T_{1g}(F) \leftarrow {}^{4}T_{2g}(F)$	11	12,048			
		$^{4}A_{2g}(F) \leftarrow ^{4}T_{2g}(F)$	15	19,047			
720	10860	${}^{4}T_{1g}(P) \leftarrow {}^{4}T_{1g}(F)$	18	22,988	4.60	$[Co(L^2)Cl_2]$	(11)
		${}^{4}T_{1\underline{e}}(G) \leftarrow {}^{6}A_{1\underline{e}}(F)$	21	18,000			
		$^{4}T_{2g}(G) \leftarrow ^{6}A_{1g}(F)$	27	22,988			
840	11210	${}^{4}T_{1g}(P) \leftarrow {}^{6}A_{1g}(F)$	32	32,258	5.89	$[Fe(L^2)Cl_2]Cl$	(10)
		${}^{4}T_{1g}(G) \leftarrow {}^{6}A_{1g}$	6	17,241			
		${}^{4}T_{1g}(G) \leftarrow {}^{6}A_{1g}$	18	21,052			
620	8010	$^4T_{1_g}(P) \! \leftarrow \! ^6A_{1_g}$	22	33,333	6.12	[Mn(L ²)Cl ₂	6

0.76

0.74

0.66

- 0.87

0.70

0.78

0.81

0.65

(continued)

			Table	3. Continued.				
	Compounds	Magnetic moment (B.M.)	Electronic bands (cm ⁻¹)	$\frac{\epsilon}{(mol^{-1}cm^2)}$	Possible assignments	$10 \mathrm{Dq}$ (cm^{-1})	${f B} ({ m cm}^{-1})$	β
(19)	$[Ni(L^3)Cl_2]$	3.21	25,974 22,988	34 29	$\stackrel{3}{\overset{3}{}}T_{1g}(\mathbf{P}) \leftarrow \stackrel{3}{\overset{3}{}}A_{2g}(F)$ $\stackrel{3}{\overset{3}{}}T_{1g}(F) \leftarrow \stackrel{3}{\overset{3}{}}A_{2g}(F)$ $\stackrel{3}{\overset{3}{}}T_{1g}(F) \leftarrow \stackrel{3}{\overset{3}{}}A_{2g}(F)$	10860	740	0.69
(20)	$[Cu(L^3)Cl_2]$	1.99	13,980 30,303 12,987	24 12	$1_{2g}(F) \leftarrow A_{2g}(F)$ Charge transfer ${}^{2}T_{7,-} \leftarrow {}^{2}F_{1,-}$	12987	I	I
(21)	[Zn(L3)Cl2] [Cr(L4)Cl2]Cl	Diamagnetic 3.83	37.037	24	$^{4}T_{1,c}(P) \leftarrow ^{4}A_{2,c}(F)$	- 14200	- 920	- 0.89
			19,047 16,000	17	${}^{4}T_{1g}^{1g}(F) \leftarrow {}^{4}A_{2g}^{2g}(F)$ ${}^{4}T_{2a}(F) \leftarrow {}^{4}A_{2a}(F)$			
(23)	[Mn(L ⁴)Cl ₂]	5.98	32,258 21.978	12	${}^{4}\mathrm{T}_{\mathrm{1g}}^{2}\mathrm{G}(\mathrm{G}) \leftarrow {}^{6}\mathrm{A}_{\mathrm{1g}}^{2}$ ${}^{4}\mathrm{T}_{2n}\mathrm{G}(\mathrm{G}) \leftarrow {}^{6}\mathrm{A}_{\mathrm{1g}}^{2}$	10320	710	0.74
			18,018	9	${}^{4}T_{1g}(G) \leftarrow {}^{6}A_{1g}$			

1848

Siddiqi, Nishat, and Rafat

(24)	[Fe(L ⁴)Cl ₂]Cl	6.02	33,333 22,988	18 12	$\stackrel{4}{}T_{1g}(P) \leftarrow \stackrel{6}{}A_{1g}$ $\stackrel{4}{}T_{1g}(G) \leftarrow \stackrel{6}{}A_{1g}$	13320	890	0.81
(25)	$[Co(L^4)Cl_2]$	2.92	17,241 21,052 19,047	8 12 8	$\begin{array}{c} {}^{4}T_{1g}(G) \leftarrow {}^{6}A_{1g} \\ {}^{4}T_{1g}(P) \leftarrow {}^{4}T_{1g}(F) \\ {}^{4}A_{2g}(F) \leftarrow {}^{4}T_{1g}(F) \end{array}$	12210	820	0.85
(26)	[Ni(L ⁴)Cl ₂]	3.22	10,989 27,777 24,096	7 30 21	$\begin{array}{l} {}^{4}\mathrm{T}_{2g}(\mathrm{F}) \! \leftarrow \! {}^{4}\mathrm{T}_{1g}(\mathrm{F}) \\ {}^{3}\mathrm{T}_{1g}(\mathrm{P}) \! \leftarrow \! {}^{3}\mathrm{A}_{2g}(\mathrm{F}) \\ {}^{3}\mathrm{T}_{1g}(\mathrm{F}) \! \leftarrow \! {}^{3}\mathrm{A}_{2g}(\mathrm{F}) \end{array}$	11880	780	0.72
(27)	$[Cu(L^4)Cl_2]$	1.98	13,986 34,482 32,051	15 36 30	${}^{3}T_{2g}(F) \leftarrow {}^{3}A_{2g}(F)$ Charge transfer ${}^{2}T_{2g} \leftarrow {}^{2}E_{g}$	12987	I	I
(28)	$[Zn(L^4)Cl_2]$	Diamagnetic	12,987	- 24)	I	I	I

The far IR spectra of the complexes show intense halogen-sensitive absorptions in the $255-300 \text{ cm}^{-1}$ region. The bands in the $320-390 \text{ cm}^{-1}$ range are assigned to v(M–N) vibrations. A band at 1070 cm⁻¹ in all the ligands and complexes is assigned to v(N–N) in pyrazole.

Electronic Spectra and Magnetic Moments

The magnetic moment values and electronic spectral bands are given in Table 3. Three bands characteristic of octahedral nickel(II) ion in a high-spin state are anticipated. In the present case the bands observed have been assigned to ${}^{3}T_{2g}(P) \leftarrow {}^{3}A_{2g}(F)$, ${}^{3}T_{1g}(F) \leftarrow {}^{3}A_{2g}(F)$ and ${}^{3}T_{1g}(P) \leftarrow {}^{3}A_{2g}(F)$ transitions.^[14] The electronic spectral bands and the relatively low magnetic moments suggest a distorted octahedral geometry for nickel(II) ion.

In all of the cobalt(II) complexes three bands have been observed. The magnetic moment value of Co(II) complexes with L^1 , L^3 and L^4 is very low which is probably due to an equilibrium between low and high spin states of Co(II). However, the electronic bands and the pink colour of the complexes are consistent with an octahedral environment around cobalt(II) ion (Figure 3).

The observed magnetic moment values for chromium(III) complexes are close to that calculated for a d^3 ion, corresponding to an octahedral geometry (Figure 4).

The magnetic moment for all of the manganese(II) complexes ranges between 5.98-6.12 B.M. which correspond to a high-spin octahedral structure for the metal ion.^[15]

The iron(III) complexes exhibit three bands. In the high-spin complexes the theoretical magnetic moment value is 5.91 B.M. We have obtained for these complexes values in the range for a high-spin octahedral geometry.^[16]

The copper(II) complexes show one or two charge transfer bands. The band exhibited in the 11,235-13,157 cm⁻¹ region is assigned to the ${}^{2}T_{2g} \leftarrow {}^{2}E_{g}$ transition which is characteristic of an octahedral copper(II) ion. The magnetic moment value also supports the above geometry.

EXPERIMENTAL

4-Aminoantipyrine, ethylenediamine, 1,3-diaminopropane, 1.6-diaminohexane (Koch Light) ethyl acetoacetate (S.D. Fine chemicals), acetylaczetone, benzoylchloride, and hydrated metal chlorides (BDH) were used as received. Benzoylacetic acid was synthesized and recrystallized by the literature method.^[17] Elemental analyses were carried out with a Carlo Erba 1106 analyser. The metals were determined by complexometric titration^[18]

using EDTA and CI was determined gravimetrically.^[19] The IR spectra $(4000-200 \text{ cm}^{-1})$ were recorded on a 621 Perkin–Elmer grating spectrometer as KBr disc. The electronic spectra were recorded in DMSO on a Carl–Zeiss VSU2P spectrophotometer. Magnetic susceptibility measurements were done with an Allied Research model 155 vibrating sample magnetometer and the molar conductances were measured at room temperature using a Systemics 321 conductivity bridge.

Figure 3. Synthesis of complexes of ligands L^1 , L^2 , L^3 and L^4 .

Copyright © 2003 by Marcel Dekker, Inc. All rights reserved.

Marcel Dekker, Inc. 270 Madison Avenue, New York, New York 10016

Synthesis of L^1 and L^2

To a solution of 4-aminoantipyrine (20 mmol, 4.06 g) dissolved in 100 mL of hot ethanol, acetylacetone (10 mmol, 1.03 mL) was added and the mixture refluxed for half an hour in a round bottom flask. On cooling this mixture to room temperature, a light-orange precipitate was obtained

Figure 4. Synthesis of complexes of ligands L^1 , L^2 , L^3 and L^4 .

(Figure 1). It was redissolved in THF (100 mL) and 1,6-diaminohexane (10 mmol, 1.16 g) or 1,3-diaminopropane (10 mmol, 0.85 mL) were then added and the mixture was refluxed for about 10 h. It was then cooled to 0 °C and an excess of 0.1 molar HCl (20 mL) was added to cause precipitation. The product was thoroughly washed with diethyl ether and dried in vacuo. Yield 1.27 g for L^1 (25%) and 1.48 g for L^2 (27%).

Synthesis of L³ and L⁴

A mixture of 4-aminoantipyrine (20 mmol, 4.06 g) and 1,3diaminopropane (10 mmol, 0.85 mL) or ethylenediamine (10 mmol, 0.66 mL) in 100 mL ethanol was refluxed for about 20 h. It was cooled to 0 °C and acidified with 20 mL of 0.1 molar HCI which afforded a brown product. It was redissolved in hot ethanol (100 mL) and benzoylacetic acid (20 mmol, 3.2 g) was added to it .It was further refluxed for about 30 h and then cooled to 0 °C followed by the addition of 0.1 molar (20 mL) HCl which yielded a precipitate (Figure 2). It was washed thoroughly with ethanol and dried in vacuo. Yield 1.81 g for L^3 (25%) and 1.7 g for L^4 (23%).

General Methods for the Synthesis of Complexes

Initially we tried to synthesize the complexes by adding the metal salts to ligand solution, however the yields were poor (10 to 15%). To overcome this problem, the complexes were synthesized in situ, in which salts were immediately added to the solution of ligand under preparation (Figures 3 and 4).

Acetylacetone (2 mmol, 0. 20 mL) was added drop-wise to an ethanolic solution (50 mL) of 4-aminoantipyrine (4 mmol, 0.80 g). After refluxing this mixture for about half an hour 1,6-diaminohexane (2 mmol, 0.23 g) was added and further refluxed for 24 h. The mixture was then cooled to 0 °C and hydrated metal chloride (2 mmol) in ethanol (25 mL) was added which afforded brisk precipitation of coloured complexes. It was filtered, washed with cold ethanol and dried in vacuo.

ACKNOWLEDGMENT

One of the authors (F.R.) thanks the Council of Scientific and Industrial Research (CSIR) New Delhi for the award of JRF.

REFERENCES

- Rawle, S.C.; Clarke, A.J.; Moore, P.; Alcock, N.W. Ligands designed to impose tetrahedral co-ordination: a convenient route to aminoethyl and aminopropyl pendant arm derivatives of 1,5,9-triaza-cyclododecane. J. Chem. Soc. Dalton Trans. **1992**, 2755.
- Gunter, M.J.; Robinson, B.C. Purpurins bearing functionality at the 6,16-meso-positions: synthesis from 5,15-disubstituted meso-[β-(methoxycarbonyl)vinyl]porphyrins. Aust. J. Chem. **1990**, *43*, 1839.
- Inoue, M.B.; Villegas, C.A.; Asano, K.; Nakamura, M.; Inoue, M.; Fernando, Q. New 12-membered and 24-membered macrocycles with pendant acetato groups and x-ray crystal structures of the copper(II) and manganese(II) complexes. Inorg. Chem. **1992**, *31*, 2480.
- Alcock, N.W.; Balakrishnan, K.P.; Berry, A.; Moore, P.; Reader, C.J. Studies of pendant arm macrocycle ligands. Part 6 Synthesis of two penta-aza macrocyclic ligands containing single pendant co-ordinating 2-pyridylmethyl and 1-pyrazolylmethyl arms, and characterisation of their nickel(II), copper(II), cobalt(II) and zinc(II) complexes. Crystal structure of {3,11-dibenzyl-7-(2'-pyridylmethyl)-3,7,11,17-tetra-azabicyclo[11.3.1]-heptadeca-1-(17),13,15-triene}-zinc(II) perchlorate. J. Chem. Soc. Dalton Trans. **1988**, 1089.
- Blas, A.D.; Santis, G.D.; Fabbrizzi, L.; Licchelli, M.; Lanfredi, A.M.M.; Pallavicini, P.; Poggi, A.; Ugozzoli, F. Pyridines with an appended metallocyclam subunit. Versatile building blocks to supramolecular multielectron redox systems. Inorg. Chem. **1993**, *32*, 106.
- Shimada, T.; Kodera, M.; Okawa, H.; Kida, S. Synthesis of 1,10,19,28tetraoxa-4,7,13,16,22,25,31,34-octaazacyclohexatria-contane (L) and its complex [Cu₄L(OH)₄] [ClO₄]₄·2H₂O. J. Chem. Soc. Dalton Trans. 1992, 1121.
- Cameron, J.M.; Harvey, H.B.; Soutar, I. Non-symmetrical teraaza macrocyclic complexes of nickel(II) and their binding to synthetic polymer supports. J. Chem. Soc. Dalton Trans. 1992, 597.
- Parker, D. Tumour targetting with radiolabelled macrocycle—antibody conjugates. Chem. Soc. Rev. 1990, 19, 271.
- 9. Izatt, R.M.; Bradshaw, J.S.; Pawlak, K.; Bruening, R.L.; Tarbet, B.J. Thermodynamic and kinetic data for macrocycle interaction with neutral molecules. Chem. Rev. **1992**, *92*, 1261.
- Geary, W.J. Molar conductances of coordination compounds. Coord. Chem. Rev. 1971, 7, 81.
- Drew, M.G.B.; Binothman, A.H.; Mcfall, S.G.; Mcllroy, P.D.A.; Nelson, S.M. Seven-co-ordination in metal complexes of quinquedentate macrocyclic ligands. Part 5. Synthesis and properties of

pentagonal-bipyramidal and pentagonal-pyramidal manganese(II) complexes and crystal and molecular structure of {2,15-dimethyl-3,7,10,14,20-penta-azabicyclo-[14.3.1]eicosa-1(20),2,14,16,18-pen-taene}-bis(isothiocyanato)manganese(II). J. Chem. Soc. Dalton Trans. **1977**, 438.

- Veggal, F.C.J.M.V.; Harkema, S.; Bos, M.; Verboom, W.; Staveren, C.J.V.; Gerritsma, G.J.; Reinhoudt, D.N. Metallomacrocycles: synthesis, x-ray structure, electrochemistry, and ESR spectroscopy of mononuclear and heterodinuclear complexes. Inorg. Chem. **1989**, 28, 1133.
- Daszkiewicz, B.K. Nickel(II) complexes of novel tetraaza macrocyclic ligands bearing pendant donor groups. J. Chem. Soc. Dalton Trans. 1992, 1673.
- Nanda, K.K.; Das, R.; Newlands, M.J.; Hynes, R.; Gabe, E.J.; Nag, K. Phenoxo-bridged dinickel(II) complexes of a macrocyclic ligand: synthesis, stereochemical equilibria and structure. J. Chem. Soc. Dalton Trans. **1992**, 897.
- 15. Lewis, J.; Wilkins, R.G. *Modern Coordination Chemistry*; Interscience: New York, 1960; 406.
- 16. Ballhausen, C.J. *Introduction to Ligand Field Theory*; Mc Graw Hill. New York, 1962; 253.
- 17. Resenfeld, S.; Williams, A. Benzoylacetic acid: synthesis and examination of the tautomeric equilibrium. J. Chem. Educ. **1991**, *68*, 66.
- 18. Reilley, C.N.; Schmid, R.W.; Sadek, F.S. Chelon approach to analysis (1) survey of theory and application. J. Chem. Educ. **1959**, *36*, 555.
- 19. Vogel, A.I. *Text Book of Quantitative Inorganic Analysis*; Longmans Green, 1986; 507.

Received October 4, 2001 Accepted July 12, 2003 Referee I: K. Moedritzer Referee II: M. W. Smith

Copyright of Synthesis & Reactivity in Inorganic & Metal-Organic Chemistry is the property of Marcel Dekker Inc. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.

Copyright of Synthesis & Reactivity in Inorganic & Metal-Organic Chemistry is the property of Marcel Dekker Inc. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.