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Abstract: An enantioselective synthesis of (–)-stemoamide has
been achieved in 14 steps starting from pyroglutamyl alcohol in ca.
7% overall yield. The key steps in the strategy are a conjugate addi-
tion of a vinyl copper reagent and a ring closing metathesis (RCM)
reaction to form the seven-membered ring.
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The stemona group of alkaloids has received considerable
attention from synthetic chemists in the past decade
(Figure 1).1 Root extracts from stemona species have been
used in traditional Chinese medicine to treat respiratory
disorders.2 Insecticidal, anti-feedant, and neuromuscular
activities of some members of the stemona group have
also been noted in the literature. Several groups have com-
pleted the synthesis of simple as well as more complex
members of the stemona group.3 A key feature of this
class of alkaloids is the 1-azabicyclo[5.3.0]decane core
(5) which is present in most members of this family. Five
enantioselective total syntheses of stemoamide have been
reported so far.4 In this work we report an enantioselective
synthesis of stemoamide that compares favorably in the
total number of steps and overall yield to those reported in
the literature.

Our strategy for the synthesis of stemoamide is outlined in
Scheme 1. Our plan involved the conversion of the key
tricyclic lactone 6 to the target which requires an epimer-

ization of C-9 center using the precedence from Jacobi’s
work on stemoamide4b and C-10 methylation as described
previously by Narasaka and co-workers.4g The final lac-
tone ring would be constructed by iodolactonization of a
bicyclic lactam, installing the correct stereochemistry at
C-8. Other key steps in our strategy were the preparation
of a bicyclic lactam from 7 via a ring closing metathesis
(RCM) reaction. This precursor could be accessed
through a syn selective conjugate addition of a vinyl frag-
ment to 8. (S)-Pyroglutamic acid would serve as the initial
starting material similar to the several reported synthesis
of stemoamide.

Scheme 1 Retrosynthetic analysis

Our synthesis started from the inexpensive (S)-pyro-
glutamic acid 9 (Scheme 2). Esterification under standard
conditions gave the known methyl ester 10.5 Initially, we
attempted the alkylation of the lactam nitrogen of 10 with
bromobutene under a variety of conditions. Although the
alkylation was successful, extensive racemization of the
chiral center was observed. To reduce the acidity of the
methine hydrogen, the ester 10 was converted to the
known primary alcohol 11 using sodium borohydride.6

Protection of the primary alcohol as the TBS ether under
standard conditions gave the known compound 12.7

Alkylation of the imide using bromobutene gave 13 in
good yield.8 Deprotection of the TBS ether using TBAF
furnished the primary alcohol 14 in enantiomerically pure
form. Swern oxidation under carefully controlled condi-
tions gave the aldehyde which without purification was
subjected to Wittig reaction with the preformed ylide.9

The a,b-unsaturated ester 8 was obtained in good yield as
a single E-isomer.
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Scheme 2 Synthesis of the conjugate addition precursor 8

Highly syn stereoselective conjugate addition of copper
reagents to g-amino alkenoates have been reported in the
literature.10 This is in contrast to the high anti selectivity
observed in conjugate additions to g-alkoxy alkenoates.11

With the intermediate 8 in hand, the introduction of the
key vinyl group was undertaken (Scheme 3). Conjugate
addition with the copper reagent derived from vinyl mag-
nesium bromide and copper bromide gave 7 in excellent
yield and as a single syn diastereomer.12 The origins of the
stereoselectivity with the g-amino alkenoates are not com-
pletely apparent at the present time. However, re face ad-
dition in a Felkin–Anh model accounts for the observed
syn selectivity for 7. It should be noted that the configura-
tion at the newly formed chiral center (C-9) is opposite to
that of the target stemoamide.13 The formation of seven-
membered rings using RCM has been well established in
the literature.14 Ring closure of 7 using either Grubbs I or
II catalyst gave the bicyclic lactam 15 in high yield. Hy-
drolysis of the ester gave the acid 16. Iodolactonization
under standard conditions produced the tricyclic lactone
17 in excellent yield. A detailed NMR structure analysis
of 17 clearly established the relative stereochemistry at
the four contiguous chiral centers. Thus the lactonization
allows for the installation of the proper stereochemistry at
C-8. Reduction of the iodolactone under radical condi-
tions gave 6 in good yield over two steps.15

The next key step was epimerization of the stereocenter at
C-9 (Scheme 4) by a three step protocol. Jacobi in his ex-
cellent work on the synthesis of stemoamide has shown
that it is possible to obtain correct stereochemistry at C-9
by a stereoselective reduction.4b This is based on confor-
mational analysis of the tricyclic core of the stemoam-
ide.16 Phenylselenation of 6 was achieved by treating it
with LiHMDS followed by the addition of phenylselenyl
bromide furnishing 18 in good yield.17 Installation of the
C9-C10 double bond was accomplished by selenoxide
elimination providing 19 in good overall yield over two
steps. The crucial reduction was accomplished using nick-
el chloride and sodium borohydride furnishing the known

lactone 204a with the proper configuration at C-9.4b Meth-
ylation of lactone 20 using a slight modification of the
previously reported conditions of Narasaka4g gave ste-
moamide in 70% yield. The spectral and analytical char-
acteristics of 4 were identical to those reported in the
literature for (–)-stemoamide.18 The overall yield of ste-
moamide is ca. 7% starting from pyroglutamyl alcohol 11.
The present synthesis compares favorably in yield and
number of steps to those reported in the literature.4

Scheme 4 Completion of the synthesis of (–)-stemoamide

In conclusion we have developed an efficient synthesis of
stemoamide, which highlights the use of stereoselective
conjugate addition and ring closing metathesis as the key
steps. The synthesis of other members of the stemona
alkaloid family is underway in our laboratory.
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(15) Preparation of the Tricyclic Lactam 6: The iodolactone 17 
(0.748 g, 2.2 mmol) was dissolved in degassed toluene (75 
mL) in a two-neck round-bottomed flask fitted with a reflux 
condenser and a rubber septum. Tributyltin hydride (0.722 
mL, 2.68 mmol) was added and the reaction heated to 80 °C. 
A solution of AIBN (60 mg) in toluene (5 mL) was added to 
the reaction mixture four times with the interval of 1 h. The 
resultant solution was refluxed for 10 h. The solvent was 
removed and the residue was chromatographed over silica 
gel to give 6 as a highly viscous liquid that solidified upon 
cooling (0.321 g, 70%); mp 42–43 °C. 1H NMR (500 MHz, 
CDCl3): d = 1.51–1.60 (m, 2 H), 1.70 (q, J = 10.5 Hz, 1 H), 
1.83–1.85 (m, 1 H), 2.02–2.08 (m, 1 H), 2.36–2.41 (m, 4 H), 
2.47–2.53 (m, 1 H), 2.60–2.70 (m, 1 H), 2.76–2.87 (m, 1 H), 
4.0 (dt, J = 6.0, 10.5 Hz, 1 H), 4.11–4.14 (m, 1 H), 4.27 (dt, 
J = 3.0, 10.5 Hz, 1 H). 13C NMR (125 MHz, CDCl3): d = 
22.9, 25.7, 30.8, 31.2, 34.8, 40.4, 45.1, 56.3, 80.0, 174.3, 

174.9. [a]D
25 –91.9 (c = 1.0, CHCl3). HRMS: m/z calcd for 

C11H15NO3Na: 232.0944; found: 232.0940.
(16) Also see ref. 4c for a similar reduction and establishment of 

stereocenter at C-9 and C-10.
(17) Lactone 6 could also be methylated to provide C-9, C-10 

diepi stemoamide (data not shown).
(18) Mp: 185–186 °C. 1H NMR (500 MHz, CDCl3): d = 1.31 (d, 

J = 6.9 Hz, 3 H), 1.50–1.58 (m, 2 H), 1.72 (quint, J = 10.7 
Hz, 1 H), 1.85–1.90 (m, 1 H), 2.0–2.10 (m, 1 H), 2.38–2.45 
(m, 4 H), 2.60 (dq, J = 6.9, 12.5 Hz, 1 H), 2.65 (dd, J = 12.3, 
14.1 Hz, 1 H), 3.99 (dt, J = 10.8, 6.3  Hz, 1 H), 4.16 (m, 1 H), 
4.20 (dt, J = 3.1, 10.3 Hz, 1 H). 13C NMR (125 MHz, 
CDCl3): d = 14.1, 22.5, 25.6, 30.5, 34.8, 37.3, 40.2, 52.7, 
55.8, 77.6, 174.0, 177.3. IR (neat): 1768, 1681 cm–1. [a]D

25 
–191.6 (c = 0.5, MeOH). {Lit. [a]D

25 –183.5 (c = 1.36, 
MeOH);4b [a]D

30 –219.3 (c = 0.5, MeOH);4d [a]D –181.6 
(c = 0.89, MeOH)}.4e HRMS: m/z calcd for C12H17NO3Na+: 
246.1100: found: 246.1099.
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