DOI: 10.1002/ejoc.201101013

Lewis Acid-Catalyzed Selective Synthesis of Diversely Substituted Indolo- and Pyrrolo[1,2-*a*]quinoxalines and Quinoxalinones by Modified Pictet–Spengler Reaction

Akhilesh K. Verma,^{*[a]} Rajeev R. Jha,^[a] V. Kasi Sankar,^[a,b] Trapti Aggarwal,^[a] Rajendra P. Singh,^[c] and Ramesh Chandra^[a]

Keywords: Nitrogen heterocycles / Fused-ring systems / Polycycles / Cross-coupling / Cyclization / Lewis acids

An efficient tandem process for the selective synthesis of 1,2annulated α -fused quinoxalines using benzotriazole methodology by a modified Pictet–Spengler reaction is described. The approach involves the reaction of arylamines **4** with aromatic aldehydes **5** to furnish 6-*endo-dig*-cyclized products. Dihydroquinoxalines **6** were selectively obtained by using AlCl₃ in tetrahydrofuran (THF) at room temperature for two hours. However, after ten hours, quinoxalines **7** were obtained exclusively in excellent yields. A series of biologically important fluoro- and piperazenyl-substituted quinoxalines were also synthesized. This developed methodology also provides access to a novel tandem synthesis of quinoxalinones **9**.

Introduction

A wide variety of biologically active natural and synthetic compounds are known to have substituted heterocycles in their core. For instance, guinoxalines are an important class of nitrogen-containing heterocycles^[1] that possess a broad spectrum of physiological and biological activities and can act as anti-cancer^[2] and anti-HIV^[3a] agents, glucagon receptor antagonists,^[3b] and angiotensin receptor antagonists.^[3c] They have also been used as a template for the synthesis of GABA benzodiazepines receptor agonists or antagonists^[4] and for other therapeutic applications.^[5] Besides these pharmaceutical applications, this class of compounds has also been used as building blocks for the synthesis of organic semiconductors, dyes, useful rigid subunits in macrocyclic receptors, and chemically controllable switches.^[1,6a] In comparison to α-fused angular polycyclic quinoxaline ring systems, compounds containing the β -fused framework have been extensively studied because of their wide range of pharmacological activities.^[6b,6c] Therefore, the development of a novel route that enables their syntheses using efficient processes is an important area of research.

Among the various C-C bond-forming reactions, the Pictet-Spengler reaction^[6d] has been widely used for the

[a] Department of Chemistry, University of Delhi, Delhi 110007, India

- E-mail: averma@acbr.du.ac.in
- [b] Pharmaceutical Chemistry Division, VIT University, Vellore 632014, Tamilnadu, India
- [c] Centre for Fire, Explosive & Environment Safety, Timarpur, Delhi 110054, India
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201101013.

formation of ring systems such as tetrahydroimidazo-pyridines (THIPs), tetrahydroisoquinolines (THIQs), and tetrahydro-β-carbolines (THBCs) (Figure 1).^[7] From a synthetic point of view, the opportunity to prepare complex polycyclic molecules in a limited number steps is an exciting goal for every modern organic chemist. Although a number of methods are available for the synthesis of simple substituted quinoxalines,^[8,9] only a limited amount of work has been done on the synthesis of polycyclic quinoxalines, especially indoloquinoxalines.^[10–11] Furthermore, to the best of our knowledge, none of the reported procedures have described the selective synthesis of dihydroquinoxalines or quinoxalines. Reported syntheses of indolo- and pyrrolofused quinoxalines involves the reaction of aryl amines with

Figure 1. (i) Typical base-catalyzed Pictet–Spengler reaction. (ii) Typical acid-catalyzed Pictet–Spengler reaction.

6998

Kundu and co-workers reported the synthesis of imidazo-quinoxalines in 50–74% yields by using the Pictet– Spengler reaction on solid phase at 80 °C for 48 h.^[11c] Other reported methods are multistep and required longer reaction times, and high temperature.

In a continuation of our interest in the synthesis of fused heterocycles by using benzotriazole^[12] methodology^[13] and alkyne chemistry,^[14] herein we report the selective synthesis of 1,2-annulated α -fused dihydro-pyrrolo/indolo[1,2-*a*]quinoxalines **6** and pyrrolo/indolo[1,2-*a*]quinoxalines **7** in good to excellent yields by using a modified Pictet–Spengler reaction at 25 °C. The developed process is also successful for the tandem synthesis of indolo/pyrrolo[2,1-*a*]quinoxalinone **9** (Scheme 1).

Scheme 1. Synthesis of reduced and oxidized forms of quinoxalines 6, 7, and polycyclic quinoxalinones 9.

Results and Discussion

In this study, we selected arylamines 4, which linked to N-1 of indole and pyrrole 1, as possible substrates for the synthesis of diversely-substituted indolo- and pyrrolo-quinoxalines. The arylamines 4 required for the reactions were obtained in quantitative yields by the reduction of the corresponding nitro derivatives (Scheme 2). The nitro compounds 3 were prepared by the reaction of commercially

available 2-fluoronitrobenzene (**2a**) and 2,4-difluronitrobenzene (**2b**) with N-heterocycles **1** using NaOH in dimethyl sulfoxide (DMSO) at room temperature (see Table S1 in the Supporting Information).

Scheme 2. Synthesis of N-heterocyclic amines.

To optimize the reaction conditions for the selective synthesis of quinoxalines, various Lewis acids and organic solvents were examined and the reaction time was varied; the results are summarized in Table 1. We first allowed 4a (0.5 mmol) to react with 1.0 equiv. of 5a, 10.0 mol-% of AlCl₃, and 1.0 equiv. of benzotriazole in 2.0 mL of CH₂Cl₂ at room temp. for 30 min, but found that 4,5-dihydropyrrolo[1,2-a]quinoxaline (6a) could be obtained in only 60%yield (Table 1, entry 1). Increasing the reaction time to 1 h and then to 2 h afforded the reduced product in 78 and 83% yields respectively (Table 1, entries 2–3). When reaction was stirred for 5 h, the desired product 6a was obtained in 68% yield along with the oxidized form of quinoxaline 7a in 18% yield (Table 1, entry 4). After 10 h, products 6a and 7a were obtained in 45 and 50% yield, respectively (Table 1, entry 5). The same results were obtained when chloroform was used (Table 1, entry 6). Using toluene as solvent, the product 6a was obtained in 85% yield in 2 h (Table 1, entry 7). When the reaction was continued for 10 h, products **6a** and 7a were obtained in 13 and 70% yield, respectively (Table 1, entry 8). When tetrahydrofuran (THF) was used, product 6a was obtained in 92% yield after 2 h, however it was completely oxidized after 10 h to compound 7a, which was selectively obtained in 90% yield (Table 1, entry 11). Lower yield of product was obtained in the absence of benzotriazole (Table 1, entry 12). When the catalyst loading was decreased from 10 to 5 mol-%, only 56% of product 6a was obtained in 2 h (Table 1, entry 13). After 7 h, we obtained a mixture products 6a and 7a in 20 and 31% yield, respectively, along with 50% of starting material (Table 1, entry

Table 1. Optimization of the reaction conditions.[a]

	NH ₂ +	D	N N NH	+ \	Ph N
		solvent			Ţ
4a	5a		6a	7	а
Entry	Solvent	Catalyst / mol-%	<i>t</i> [h]	Yiel 6a	d [%] ^[b] 7a
1	CH_2Cl_2	AlCl ₃ / 10	0.5	60	00
2	CH_2Cl_2	$AlCl_3 / 10$	1.0	78	00
3	CH_2Cl_2	AlCl ₃ / 10	2.0	83	00
4	CH_2Cl_2	AlCl ₃ / 10	5.0	68	18
5	CH_2Cl_2	AlCl ₃ / 10	10.0	45	50
6	CHCl ₃	AlCl ₃ / 10	10.0	40	54
7	toluene	AlCl ₃ / 10	2.0	85	00
8	toluene	AlCl ₃ / 10	10.0	13	70
9	THF	AlCl ₃ / 10	2.0	92	00
10	THF	AlCl ₃ / 10	5.0	39	60
11	THF	AlCl ₃ / 10	10.0	00	90
12	THF	AlCl ₃ / 10	10.0	00	60 ^[c]
13	THF	AlCl ₃ / 05	2.0	50	00
14	THF	AlCl ₃ / 05	7.0	20	31
15	THF	AlCl ₃ / 05	12.0	00	50
16	THF	TsOH / 10	2.0	80	00
17	THF	TsOH / 10	5.0	45	30
18	THF	TsOH / 10	10.0	17	70
19	THF	FeCl ₃ / 10	2.0	59	00
20	THF	FeCl ₃ / 10	5.0	70	00
21	THF	FeCl ₃ / 10	10.0	81	00
22	THF	ZnCl ₂ / 10	2.0	45	00
23	THF	ZnCl ₂ / 10	10.0	67	00
24	THF	—	24.0	_	10

[a] Reagents and conditions: aldehyde 5a (0.6 mmol), benzotriazole (0.5 mmol), catalyst (5.0/10 mol-%), amine 4a (0.5 mmol), solvent (2.0 mL), 25 °C unless otherwise noted. [b] Isolated yield. [c] Reaction performed without benzotriazole.

We then examined the effect of a range of Lewis acids on the reaction. Use of TsOH in the reaction afforded the products 6a and 7a with slightly lower yield than with AlCl₃ (Table 1, entries 16–18). FeCl₃ afforded the reduced product in 5 h and no oxidized product 7a was observed even after 10 h (Table 1, entries 19–21). ZnCl₂ afforded only the reduced product in 67% yield after 10 h (Table 1, entries 22-23). When the reaction was performed in the absence of AlCl₃, only 10% of the reduced form **6a** was obtained in 5 h, which was further oxidized to 7a in 24 h. No further conversion of 4a into the product 6a was observed (Table 1, entry 24). Among the different solvent systems and Lewis acids examined, THF with AlCl₃ was found to be most effective for the selective formation of the desired products 6a and 7a in good to excellent yields (Table 1, entries 9 and 11).

The scope and limitations of the optimized reaction conditions were then examined by employing various substituted aldehydes and amines. First, a diverse library of dihydro-pyrrolo/indolo[1,2-a]quinoxalines 6a-r was synthesized by reacting amines 4a-d with aldehydes 5a-l in the presence of AlCl₃ in THF at room temp. for 2 h (Table 2). The presence of an electron-withdrawing group in the aldehyde afforded the cyclized products 6d-k and 6n-q in good yields (Table 2, entries 4-11 and 14-17). However, aldehydes having electron-releasing groups such as methoxy or 4-ethylfuryl afforded the cyclized products **6b** and **6c** in 83 and 76% yield, respectively (Table 2, entries 2 and 3). The reaction proceeded well with π -deficient 2-bromonicotinaldehyde (5i), providing the desired product in 82% yield (Table 2, entry 11). However, the reaction with aliphatic aldehyde 5j, afforded the desired product 61 in 65% yield (Table 2, entry 12). Reaction of 2-(3-methyl-1H-indol-1-yl)aniline (4c) and 4-fluoro-2-(3-methyl-1*H*-indol-1-yl)aniline (4d) provided the expected products 6m-q in good to excellent yields (Table 2, entries 11-15).

The formation of the desired cyclized products were confirmed by ¹H NMR and ¹³C NMR spectroscopic analysis. Furthermore, the formation of dihydro-quinoxalines was confirmed by the disappearance of the NH proton in the NMR spectra of compound **6d** measured in D_2O (see the Supporting Information).

Reaction of terephthaldehyde (5m) with 2.0 equiv. of amine 4a using AlCl₃ in THF afforded 1,4-bis(4,5-dihy-dropyrrolo[1,2-*a*]quinoxalin-4-yl)benzene (6r) in 78% yield (Scheme 3).

Scheme 3. Synthesis of bis-dihydroquinoxaline.

Using the optimized reaction conditions for the oxidized form of quinoxalines, a second library of quinoxalines 7a-r was synthesized in good to excellent yields by reacting amines 4a-h with substituted aldehydes 5a-p (Table 3). It was noticed that the effect on the reaction of different substituents on the aldehyde was the same as observed in the synthesis of dihydroquinoxaline. The reaction of 2-(3methyl-1*H*-indol-1-yl)anilines 4c-d, bearing an electron-releasing methyl group at the 3-position of the indole, afforded quinoxalines 7f-p in 85 to 96% yield (Table 3, entries 6-13). However, amine 4e and 4f, without a methyl group at the 3-position of the indole nucleus, afforded the desired products 7n-p in 58–66% yields (Table 3, entries 9–11).

The scope of the reaction was further extended for the synthesis of another important class of fused imidazo[1,5-*a*]quinoxalines (Table 3, entries 17–18). Reaction of electrondeficient 2-(1*H*-imidazol-1-yl)aniline **4g** failed to afford the desired cyclized product **7q** under the standardized conditions (Table 3, entry 17). However, reaction of 2-(4-methyl-1*H*-imidazol-1-yl)aniline **4h**, having an electron-releasing methyl group at the 4-position, afforded the cyclized product **7r** in 74% yield (Table 3, entry 18).

Table 2. Selective synthesis of	f 4,5-dihydropyrrolo[1,2- <i>a</i>]quinoxalines	6a – l and 5,6-dihydroindolo[1,2- <i>a</i>]quinoxalines	6m-q. ^{[a}
---------------------------------	--	--	---------------------

Entry	/	R ⁵ CHO		Product	Yield	l [%] ^[b]	Entry	y	R ⁵ CHO		Product	Yield	[%] ^[b]
1	4 a	CHO	5a		6a	90	10	4b		5g		6j	82
2	4 a	CHO OCH3	5b	OCH3	6b	83	11	4 a	CHO N Br	5i	Br-N N	6k	82
3	4 a	Et CHO	5c		6c	76	12	4 a	H ₃ C	5i	H ₃ C	61	65
4	4 a	CHO NO ₂	5d		6d	90			0≕ н	.,		U.	
5	4 a	CHO Br	5e	Br NH	6e	93	13	4c		5a	Me NH NH	6m	90
6	4 a	CHO F	5f	F CNNNH	6f	88	14	4c		5f	Me NH	6n	88
7	4 a	CHO CI	5g		6g	84	15	4c	CHO	5k		60	92
8	4 a	СНО	5h		6h	68	16	4c	CHO	51		6р	85
9	4b	CI	5f	NH CN	6i	85	17	4d		5k		6q	78

[a] Reagents and conditions: aldehyde 5 (0.6 mmol), benzotriazole (1.0 equiv.), $AlCl_3$ (10 mol-%), amine 4 (0.5 mmol), THF (2.0 mL), room temp., 1–2 h, unless otherwise noted. [b] Isolated yield.

Higher yields observed for the reaction with 3-methylindole amine were presumably due to the formation of a more stable transient tertiary carbocation, which then increases the efficiency of the cyclization (Figure 2).

The presence of an electron-releasing methyl group at the 3-position of indole-arylamine **4a**, and at the 4-position of imidazole-arylamine **4h**, increases the nucleophilicity of the ring system, which facilitates intramolecular attack of the

C-2 position of indole and the C-5 position of imidazole to afford the cyclized products (Figure 2).

Piperazine scaffolds are commonly found in biologically active compounds across a number of different therapeutic areas.^[15] Therefore, a novel series of piperazine fused indolo[1,2-*a*]quinoxalines were synthesized to further extend the scope of this reaction. Reaction of arylamines 4i-j with aldehydes 5d-f, 5k, and *m*-nitobenzaldehyde (5q) af-

Table 3. Selective synthesis of pyrrolo, indolo-quinoxalines 7a-p and imidazo-quinoxaline 7q-r.^[a]

Entry		R⁵CHO		Product	Yield	[%] ^[b]	Entry	5	R⁵CHO	Product	Yield[[%] ^[b]
1	4 a		5a		7a	91	10	4c	CHO Br 50	Me Br Br	7j	96
2	4 a		5f		7b	86	11	4c	CHO CF ₃ 5p	Me CF3	7k	88
3	4 a		5e		7c	96	12	4c	5e	Me Br	71	90
4	4 a		5k		7d	88	13	4d	5k		7m	85
5	4b	CHO Me	5n	CN Ne	7e	85	14	4 e	5p		7n	66
6	4c		5a		7f	95	15	4f	5p	MeO CF3	70	58
7	4c		5f	Me F	7g	91	16	4f	51		7p	64
8	4c		51		7h	88	17	4g	5a		7q	00
9	4c		5n		7i	86	18	4h	5d	Me N N N N N NO ₂	7r	74

[a] Reagents and conditions: 5 (0.6 mmol), benzotriazole (1.0 equiv.), $AlCl_3$ (10 mol-%), 4 (0.5 mmol), THF (2.0 mL), room temp., 8–10 h; unless otherwise noted. [b] Isolated yield.

Figure 2. Effect of substituents on intramolecular cyclization.

forded the piperazine-substituted cyclized products 7s-x in 72-82% yields under the standardized reaction conditions (Table 4).

Table 4. Synthesis of piperazinyl-substituted quinoxalines.

With these results, we have proposed a plausible mechanism for the selective formation of quinoxalines. The suggested reaction mechanism involves the formation of intermediate **A** in the presence of a Lewis acid and benzotriazole. This intermediate forms the true iminium ion **B** by facile removal of benzotriazole.^[12] The latter intermediate **B** undergoes intramolecular C–C bond formation by 6-*endo-dig* attack at C-2 of the N-heterocycle to furnish the dihydroquinoxalines **6** (Scheme 4). These dihydroquinoxalines were oxidized in the presence of air after 8–10 h to yield the oxidized form of quinoxalines **7**.

Scheme 4. Possible mechanism for the selective synthesis of quinoxalines.

The strategy was further extended to the tandem synthesis of polycyclic quinoxalinones **9a–d** by the condensation of amines **4a** and **4c** with 2-formylbenzoic acid (**8a**) and 2-acetylbenzoic acid (**8b**) in the presence of benzotriazole in toluene using a Dean–Stark apparatus at 110 °C for 2–4 h (Table 5).

Table 5. Synthesis of quinoxalinones 9a-d.[a]

[a] Reagents and conditions: carboxy-benzoic acid 8 (0.6 mmol), TsOH (5.0 mol-%), 4 (0.5 mmol), benzotriazole (0.5 mmol), toluene (2.0 mL), Dean–Stark apparatus at 110 °C for 2–4 h. [b] Isolated yield.

Quinoxaline **7c**, containing a bromo handle, could be further functionalized through palladium-catalyzed coupling reactions such as Suzuki^[16] and Heck^[17] reactions to afford the corresponding coupling products **10**, **11**, **12**, and **13** in 85, 81, 72, and 74% yields, respectively (Scheme 5).

FULL PAPER

Scheme 5. Palladium-catalyzed diversification.

Conclusions

We have demonstrated for the first time a simple and efficient method for the selective synthesis of oxidized and reduced forms of indolo/pyrrolo[1,2-*a*]quinoxalines, in good to excellent yields, by applying a modified Pictet–Spengler reaction under mild conditions. The reaction was facilitated by Lewis acids as a catalyst and benzotriazole as an additive. The results show that benzotriazole can be used for various types of transformation due to its unique properties. A novel series of piperazine-substituted quinoxalines were also synthesized because of their importance in medicinal chemistry. We have also extended our strategy to the tandem synthesis of indolo/pyrrolo quinoxalinones in one pot without isolating the benzotriazole intermediate. Further investigations that are focused on expanding the reaction scope are ongoing and will be reported in due course.

Experimental Section

General Procedure for the Synthesis of Piperazinyl-Substituted 3-Methyl-1-(2-nitrophenyl)-1*H***-indoles 3i and 3j: To a well-stirred solution of N-heterocycle (1.0 mmol) in DMSO (1.0 mL), NaOH (1.0 equiv.) and aryl halide (1.0 mmol) were added slowly. The reaction mixture was stirred vigorously for 1–1.5 h at room temperature until no more starting material was detectable by TLC analysis. The reaction mixture was extracted with ethyl acetate and water** and dried with Na_2SO_4 . The solvent was evaporated in vacuo and the solid obtained was purified by column chromatography (hexane/ethyl acetate) to afford the desired product in good yields.

3-Methyl-1-[2-nitro-5-(4-phenylpiperazin-1-yl)phenyl]-1*H***-indole** (**3i**): The product was obtained as a yellow solid; m.p. 174–176 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 8.15$ (d, J = 9.3 Hz, 1 H), 7.66–7.54 (m, 1 H), 7.31–7.28 (m, 3 H), 7.20–7.13 (m, 3 H), 6.97–6.84 (m, 5 H), 3.59–3.56 (m, 4 H), 3.36–3.33 (m, 4 H), 2.39 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 154.1$, 150.5, 136.7, 135.8, 135.2, 129.5, 129.3, 128.5, 125.5, 122.7, 120.5, 120.0, 119.3, 116.3, 113.7, 113.2, 111.5, 109.6, 48.8, 47.00, 9.7 ppm. HRMS (ESI): calcd. for C₂₅H₂₄N₄O₂ [M + H]⁺ 412.1899; found 412.1901.

1-(5-{4-[Bis(4-fluorophenyl]methyl]piperazin-1-yl}-2-nitrophenyl)-3methyl-1*H***-indole (3j): The product was obtained as a yellow solid; m.p. 166–168 °C. ¹H NMR (300 MHz, CDCl₃): \delta = 8.10 (d,** *J* **= 9 Hz, 1 H), 7.60–7.57 (m, 1 H), 7.37–7.33 (m, 4 H), 7.18–7.09 (m, 3 H), 7.08–6.94 (m, 4 H), 6.89 (d,** *J* **= 9 Hz, 1 H), 6.81–6.75 (m, 2 H), 4.25 (s, 1 H), 3.38 (t,** *J* **= 5.1 Hz, 4 H), 2.50 (t,** *J* **= 4.9 Hz, 4 H), 2.35 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): \delta = 163.5, 160.3, 154.2, 137.5, 136.5, 135.7, 134.9, 129.5, 129.1, 129.0, 128.4, 125.4, 122.6, 120.0, 119.3, 115.7, 115.5, 113.7, 113.0, 111.3, 109.6, 74.2, 51.1, 47.1, 9.6 ppm. HRMS (ESI): calcd. for C₃₂H₂₈F₂N₄O₂ [M + H]⁺ 538.2180; found 538.2188.**

Typical Procedure for the Synthesis of 2,4-Di(pyrrol-1-yl)phenylamine (4b): To a well-stirred solution of alkyl-substituted 1-(2-nitrophenyl)-1*H*-indole or 1-(2-nitrophenyl)-1*H*-imidazole (5.0 mmol) in absolute ethanol (25 mL), 10% Pd/C (20 mol-%) was added. The reaction mixture was stirred for 2–3 h at room temperature under a hydrogen atmosphere at 45 psi. The reaction mixture was filtered through Celite and the filtrate was evaporated in vacuo to obtain the desired amines.

2,4-Di(pyrrol-1-yl)phenylamine (4b): The product was obtained as a white solid; m.p. 96–98 °C. ¹H NMR (300 MHz, CDCl₃): δ = 7.27–7.22 (m, 2 H), 7.00 (t, *J* = 1.8 Hz, 2 H), 6.90–6.81 (m, 3 H), 6.40–6.32 (m, 4 H), 3.77 (s, 2 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 139.9, 132.6, 127.6, 121.5, 121.1, 119.9, 119.5, 116.6, 109.8, 109.7 ppm. HRMS (ESI): calcd. for C₁₄H₁₃N₃ [M + H]⁺ 223.1109; found 223.1113.

General Procedure for the Synthesis of 4,5-Dihydropyrrolo[1,2-*a*]quinoxalines 6a–1 and 6r and 5,6-Dihydroindolo[1,2-*a*]quinoxalines 6m–q: To a well-stirred solution of aldehyde 5 (0.6 mmol), benzotriazole (1.0 equiv.), and 10 mol-% AlCl₃ in THF, 1-(2-aminophenyl)pyrrole or 2-(3-methylindol-1-yl)phenylamine (4; 0.5 mmol) was added. The reaction was stirred at room temperature for 1–2 h, then the reaction mixture was extracted with ethyl acetate and water. The organic layer was washed with NaOH, brine, and dried with Na₂SO₄. The solvent was evaporated in vacuo and the solid obtained was purified by column chromatography (hexane/ethyl acetate) to afford the desired product in good yields.

4-Phenyl-4,5-dihydropyrrolo[1,2-*a*]quinoxaline (6a): The product was obtained as a pale-yellow solid; m.p. 98–99 °C. ¹H NMR (300 MHz, CDCl₃): δ = 7.47–7.45 (m, 2 H), 7.37–7.32 (m, 4 H), 7.21–7.19 (m, 1 H), 6.96 (t, *J* = 7.5 Hz, 1 H), 6.84 (d, *J* = 7.8 Hz, 1 H), 6.72 (d, *J* = 7.8 Hz, 1 H), 6.24 (t, *J* = 3 Hz, 1 H), 5.57–5.52 (m, 2 H), 4.13 (br. s, 1 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 141.4, 136.1, 130.0, 128.6, 128.2, 127.9, 125.4, 119.3, 115.3, 114.7, 114.3, 110.1, 105.8, 56.2 ppm. HRMS (ESI): calcd. for C₁₇H₁₄N₂ [M + H]⁺ 246.1157; found 246.1161.

4-(4-Methoxyphenyl)-4,5-dihydropyrrolo[1,2-a]quinoxaline (6b): The product was obtained as a light-yellow solid; m.p. 108–110 °C. ¹H NMR (300 MHz, CDCl₃): δ = 7.32–6.76 (m, 9 H), 6.25 (s, 1 H),

5.62 (s, 1 H), 5.52 (s, 1 H), 4.17 (br. s, 1 H), 3.79 (s, 3 H) ppm. 13 C NMR (75 MHz, CDCl₃): δ = 159.5, 136.2, 133.4, 130.2, 129.1, 125.4, 124.5, 119.2, 115.2, 114.6, 114.2, 113.9, 110.0, 105.7, 55.5, 55.2 ppm. HRMS (ESI): calcd. for C₁₈H₁₆N₂O [M + H]⁺ 276.1263; found 276.1269.

4-(5-Ethylfuran-2-yl)-4,5-dihydropyrrolo[1,2-*a*]quinoxaline (6c): The product was obtained as a semi-solid; m.p. 208–210 °C. ¹H NMR (300 MHz, CDCl₃): δ = 7.29 (d, *J* = 7.8 Hz, 1 H), 7.18–7.13 (m, 1 H), 7.94 (t, *J* = 7.5 Hz, 1 H), 6.84–6.78 (m, 1 H), 6.72 (d, *J* = 7.8 Hz, 1 H), 6.33–6.30 (m, 1 H), 6.00–5.96 (m, 2 H), 5.85 (d, *J* = 2.7 Hz, 1 H), 5.63 (s, 1 H), 4.33 (br. s, 1 H), 2.61 (q, *J* = 7.5 Hz, 2 H), 1.2 (t, *J* = 7.5 Hz, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 157.7, 152.2, 135.0, 126.2, 125.4, 124.6, 119.5, 115.7, 114.6, 116.4, 110.0, 109.3, 107.7, 105.6, 104.5, 49.3, 21.3, 12.0 ppm. HRMS (ESI): calcd. for C₁₇H₁₆N₂O [M + H]⁺ 264.1263; found 264.1267.

4-(4-Nitrophenyl)-4,5-dihydropyrrolo[1,2-*a*]quinoxaline (6d): The product was obtained as a light-yellow solid; m.p. 106–108 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.21–8.20 (m, 2 H), 7.63–7.60 (m, 2 H), 7.3 (d, *J* = 7.3 Hz, 1 H), 7.21–7.20 (m, 1 H), 7.0 (td, *J* = 8.0, 1.4 Hz, 1 H), 6.8 (t, *J* = 8 Hz, 1 H), 6.7 (m, 1 H), 6.24 (m, 1 H), 5.6 (m, 1 H), 5.6 (s, 1 H), 4.2 (br. s, 1 H) ppm. ¹³C (100 MHz, CDCl₃): δ = 148.7, 147.7, 135.1, 128.6, 127.9, 125.2, 124.9, 123.9, 119.9, 115.5, 114.8, 110.3, 106.2, 55.4 ppm. HRMS (ESI): calcd. for C₁₇H₁₃N₃O₂ [M + H]⁺ 291.1008; found 291.1010.

4-(4-Nitrophenyl)-4,5-dihydropyrrolo[1,2-*a*]quinoxaline (6d): ¹H NMR (400 MHz, D₂O): δ = 8.20 (d, *J* = 8.8 Hz, 2 H), 7.60 (d, *J* = 8.8 Hz, 2 H), 7.5 (d, *J* = 9.4 Hz, 1 H), 7.4 (d, *J* = 1.4 Hz, 1 H), 6.99–6.92 (m, 2 H), 6.8 (t, *J* = 5.1 Hz, 1 H), 6.24 (t, *J* = 3.3 Hz, 1 H), 5.79 (d, *J* = 2.9 Hz, 1 H), 5.76 (s, 1 H) ppm.

4-(4-Bromophenyl)-4,5-dihydropyrrolo[1,2-*a*]quinoxaline (6e): The product was obtained as a light-yellow solid; m.p. 116–118 °C. ¹H NMR (300 MHz, CDCl₃): δ = 7.5 (d, *J* = 8.1 Hz, 2 H), 7.33 (d, *J* = 8.4 Hz, 3 H), 7.21–7.19 (m, 1 H), 6.97 (t, *J* = 7.5 Hz, 1 H), 6.88 (t, *J* = 7.8 Hz, 1 H), 6.74 (d, *J* = 7.8 Hz, 1 H), 6.24–6.23 (m, 1 H), 5.55–5.48 (m, 2 H), 4.11 (br. s, 1 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 140.4, 135.8, 131.8, 129.6, 125.4, 124.7, 122.2, 119.6, 115.4, 114.7, 114.5, 110.2, 105.9, 55.6 ppm. HRMS (ESI): calcd. for C₁₇H₁₃BrN₂ [M + H]⁺ 324.0262; found 324.0268.

4-(4-Fluorophenyl)-4,5-dihydropyrrolo[1,2-*a*]quinoxaline (6f): The product was obtained as a light-yellow solid; m.p. 112–114 °C. ¹H NMR (300 MHz, CDCl₃): δ = 7.46–7.41 (m, 2 H), 7.33 (d, *J* = 7.8 Hz, 1 H), 7.19–7.18 (m, 1 H), 7.12–7.10 (m, 2 H), 6.97 (td, *J* = 1.2, 7.5 Hz, 1 H), 6.85 (td, *J* = 1.2, 7.8 Hz, 1 H), 6.74 (dd, *J* = 1.2, 7.8 Hz, 1 H), 6.27–6.23 (m, 1 H), 5.54–5.50 (m, 2 H), 4.10 (br. s, 1 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 164.3, 161.0, 137.2, 137.1, 136.0, 129.8, 129.7, 129.6, 125.5, 124.7, 119.5, 115.6, 115.3, 114.7, 114.4, 110.2, 105.8, 55.5 ppm. HRMS (ESI): calcd. for C₁₇H₁₃FN₂ [M + H]⁺ 264.1063; found 264.1066.

4-(2,4-Dichlorophenyl)-4,5-dihydropyrrolo[1,2-*a***]quinoxaline (6g):** The product was obtained as a yellow solid; m.p. 240–242 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.42 (d, *J* = 1.5 Hz, 1 H), 7.36 (d, *J* = 7.8 Hz, 1 H), 7.26–7.24 (m, 1 H), 7.16–7.10 (m, 2 H), 6.96 (td, *J* = 1.5, 7.8 Hz, 1 H), 6.86 (td, *J* = 1.2, 7.8 Hz, 1 H), 6.73 (dd, *J* = 0.6, 2.7 Hz, 1 H), 6.32 (t, *J* = 3.2 Hz, 1 H), 6.05 (s, 1 H), 5.83 (d, *J* = 2.72 Hz, 1 H), 4.38 (br. s, 1 H) ppm. ¹³C (75 MHz, CDCl₃): 138.2, 134.8, 134.1, 133.2, 130.1, 129.2, 127.6, 126.8, 125.2, 124.8, 119.6, 115.7, 114.7, 114.5, 110.4, 106.0, 51.4 ppm. HRMS (ESI): calcd. for C₁₇H₁₂Cl₂N₂ [M + H]⁺ 314.0378; found 314.0380.

4-[5-(3,4-Dichlorophenyl)furan-2-yl]-4,5-dihydropyrrolo[1,2-*a***]quinoxaline (6h):** The product was obtained as a light-yellow solid; m.p. 220–222 °C. ¹H NMR (300 MHz, CDCl₃): δ = 7.60 (d, *J* =

1.2 Hz, 1 H), 7.52–7.46 (m, 3 H), 7.22–7.20 (m, 1 H), 6.96 (td, J = 7.8, 1.4 Hz, 1 H), 6.90–6.88 (m, 1 H), 6.78–6.50 (m, 1 H), 6.50 (dd, J = 1.2, 7.8 Hz, 1 H), 6.32 (t, J = 3.3 Hz, 1 H), 6.12 (d, J = 3.3 Hz, 1 H), 6.06 (d, J = 2.7 Hz, 1 H), 5.73 (s, 1 H), 4.4 (br. s, 1 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta =$ 155.1, 151.2, 134.6, 132.9, 130.9, 130.6, 130.5, 127.5, 125.9, 125.5, 124.8, 123.4, 122.8, 119.8, 115.8, 114.7, 110.3, 109.2, 107.2, 105.8, 49.3 ppm. HRMS (ESI): calcd. for C₂₁H₁₄Cl₂N₂O [M + H]⁺ 380.0483; found 380.0489.

4-(4-Fluorophenyl)-8-pyrrol-1-yl-4,5-dihydropyrrolo[1,2-*a***]quinoxaline (6i):** The product was obtained as a colourless solid; m.p. 150–152 °C. ¹H NMR (300 MHz, CDCl₃): δ = 7.42–7.47 (m, 2 H), 7.34 (d, *J* = 2.4 Hz, 1 H), 7.17–7.19 (m, 1 H), 6.98–7.10 (m, 5 H), 6.78 (d, *J* = 8.4 Hz, 1 H), 6.34 (t, *J* = 2.1 Hz, 2 H), 6.27 (t, *J* = 3.1 Hz, 1 H), 5.56–5.58 (m, 1 H), 5.53 (s, 1 H), 4.17 (br. s, 1 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 136.8, 134.0, 133.7, 129.9, 129.7, 129.5, 125.8, 119.7, 117.6, 115.8, 115.7, 115.4, 114.5, 110.7, 109.9, 108.4, 106.4, 55.5 ppm. HRMS (ESI): calcd. for C₂₁H₁₆FN₃ [M + H]⁺ 329.1328; found 329.1333.

4-(2,4-Dichlorophenyl)-8-(1*H***-pyrrol-1-yl)-4,5-dihydropyrrolo[1,2-***a***]quinoxaline (6j): The product was obtained as a light-yellow solid; m.p. 188–189 °C. ¹H NMR (300 MHz, CDCl₃): \delta = 7.43 (s, 1 H), 7.36 (s, 1 H), 7.26–7.24 (m, 2 H), 7.15 (q,** *J* **= 8.7 Hz, 2 H), 7.02– 6.97 (m, 2 H), 6.73 (d,** *J* **= 8.2 Hz, 1 H), 6.34 (m, 3 H), 6.06 (s, 1 H), 5.86 (s, 1 H), 4.43 (br. s, 1 H) ppm. ¹³C NMR (75 MHz, CDCl₃): \delta = 137.9, 134.3, 133.8, 133.2, 132.8, 130.1, 129.3, 127.7, 126.9, 125.6, 119.7, 117.7, 116.1, 114.6, 111.0, 109.9, 108.3, 106.6, 51.5 ppm. HRMS (ESI): calcd. for C₂₁H₁₅Cl₂N₃ [M + H]⁺ 379.0643; found 379.0645.**

4-(2-Bromopyridin-3-yl)-4,5-dihydropyrrolo[1,2-*a*]quinoxaline (6k): The product was obtained as a light-yellow solid; m.p. 145–148 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.25 (t, *J* = 2.9 Hz, 1 H), 7.36–7.35 (m, 2 H), 7.26–7.25 (m, 1 H), 7.16–7.15 (m, 1 H), 6.99–6.98 (m, 1 H), 6.88–6.81 (m, 1 H), 6.73–6.72 (m, 1 H), 6.33 (t, *J* = 3.3 Hz, 1 H), 6.1 (s, 1 H), 5.89–5.88 (m, 1 H), 4.57 (br. s, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 149.3, 142.3, 138.6, 137.8, 134.3, 126.2, 125.2, 124.9, 123.3, 119.7, 115.8, 114.6, 110.5, 106.3, 53.6 ppm. HRMS (ESI): calcd. for C₁₆H₁₂BrN₃ [M + H]⁺ 326.1906; found 326.1909.

4-Ethyl-4,5-dihydropyrrolo[1,2-*a***]quinoxaline (61):** The product was obtained as a light-yellow oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.20–7.17 (m, 1 H), 7.06–7.05 (m, 1 H), 6.85 (td, *J* = 7.8, 1.4 Hz, 1 H), 6.71 (td, *J* = 8.0, 1.4 Hz, 2 H), 6.65 (dd, *J* = 7.8, 0.9 Hz, 1 H), 6.22–6.20 (m, 1 H), 5.91–5.90 (m, 1 H), 4.29 (q, *J* = 1.8 Hz, 2 H), 3.2 (br. s, 1 H), 0.95 (t, *J* = 7.8 Hz, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 136.2, 129.7, 125.6, 124.7, 119.1, 115.7, 114.8, 114.2, 110.1, 104.0, 52.2, 27.1, 9.8 ppm. HRMS (ESI): calcd. for C₁₃H₁₄N₂ [M + H]⁺ 198.2637; found 198.2639.

7-Methyl-6-phenyl-5,6-dihydroindolo[1,2-*a*]quinoxaline (6m): The product was obtained as a light-yellow solid; m.p. 148–150 °C. ¹H NMR (300 MHz, CDCl₃): δ = 8.01 (d, *J* = 8.2 Hz, 1 H), 7.90 (t, *J* = 4.3 Hz, 1 H), 7.56 (d, *J* = 7.7 Hz, 1 H), 7.31–7.17 (m, 7 H), 6.95 (t, *J* = 4.3 Hz, 2 H), 6.75 (t, *J* = 4.5 Hz, 1 H), 5.60 (s, 1 H), 4.22 (br. s, 1 H), 2.03 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 141.7, 135.6, 133.3, 132.5, 130.6, 128.7, 127.8, 127.1, 123.6, 122.4, 120.3, 119.7, 118.8, 116.3, 116.1, 114.3, 111.7, 107.3, 55.0, 8.3 ppm. HRMS (ESI): calcd. for C₂₂H₁₈N₂ [M + H]⁺ 310.1470; found 310.1479.

6-(4-Fluorophenyl)-7-methyl-5,6-dihydroindolo[1,2-a]quinoxaline (**6n**): The product was obtained as a light-yellow solid; m.p. 218–220 °C. ¹H NMR (300 MHz, CDCl₃): δ = 8.02 (d, *J* = 7.9 Hz, 1 H), 7.91 (d, *J* = 3.8 Hz, 1 H), 7.57 (d, *J* = 6.8 Hz, 1 H), 7.30–7.22

(m, 4 H), 6.97 (d, J = 4.6 Hz, 4 H), 6.78 (s, 1 H), 5.68 (s, 1 H), 4.20 (br. s, 1 H), 2.03 (d, J = 2.7 Hz, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 158.3$, 135.8, 134.3, 130.5, 128.9, 128.2, 126.8, 124.1, 121.8, 121.3, 120.5, 119.6, 118.5, 116.7, 114.8, 111.5, 108.4, 54.8, 7.9 ppm. HRMS (ESI): calcd. for C₂₂H₁₇FN₂ [M + H]⁺ 328.1376; found 328.1380.

6-(4-Chlorophenyl)-7-methyl-5,6-dihydroindolo[1,2-*a*]quinoxaline (**60**): The product was obtained as a light-yellow solid; m.p. 190–192 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.02 (d, *J* = 8.2 Hz, 1 H), 7.91–7.89 (m, 1 H), 7.59 (d, *J* = 7.8 Hz, 1 H), 7.32 (td, *J* = 6.8, 1.3 Hz, 1 H), 7.24–7.21 (m, 3 H), 7.15 (d, *J* = 8.2 Hz, 2 H), 6.98–6.95 (m, 2 H), 6.77–6.74 (m, 1 H), 5.60 (s, 1 H), 2.06 (s, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 140.4, 135.4, 133.9, 133.6, 132.3, 130.7, 129.1, 128.7, 127.5, 124.0, 122.9, 120.7, 120.7, 120.2, 119.1, 116.6, 116.5, 112.0, 107.4, 54.2, 8.3 ppm. HRMS (ESI): calcd. for C₂₂H₁₇ClN₂ [M + H]⁺ 344.1080; found 344.1087.

6-(3-Chlorophenyl)-7-methyl-5,6-dihydroindolo[1,2-*a***]quinoxaline (6p**): The product was obtained as a light-yellow solid; m.p. 168– 170 °C. ¹H NMR (300 MHz, CDCl₃): δ = 8.02 (d, *J* = 8.1 Hz, 1 H), 7.91–7.88 (m, 1 H), 7.59 (d, *J* = 7.5 Hz, 1 H), 7.33–7.15 (m, 5 H), 7.08 (d, *J* = 6.9 Hz, 1 H), 6.98–6.94 (m, 2 H), 6.77 (t, *J* = 4.5 Hz, 1 H), 5.66 (s, 1 H), 4.31 (br. s, 1 H), 2.07 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 143.7, 135.1, 134.6, 133.5, 131.8, 130.6, 130.1, 128.1, 127.3, 125.3, 123.8, 122.7, 120.5, 120.1, 119.0, 116.5, 116.3, 111.8, 107.6, 54.4, 8.4 ppm. HRMS (ESI): calcd. for C₂₂H₁₇ClN₂ [M + H]⁺ 344.0924; found 344.0928.

6-(4-Chlorophenyl)-2-fluoro-7-methyl-5,6-dihydroindolo[1,2-*a***]quinoxaline (6q): The product was obtained as a yellow solid; m.p. 190–192 °C. ¹H NMR (300 MHz, CDCl₃): \delta = 7.95 (d,** *J* **= 8.4 Hz, 1 H), 7.64–7.57 (m, 2 H), 7.33 (td,** *J* **= 1.2, 7.2 Hz, 1 H), 7.25–7.21 (m, 3 H), 7.15–7.12 (m, 2 H), 6.67 (dd,** *J* **= 1.2, 6.6 Hz, 2 H), 5.63 (s, 1 H), 4.19 (br. s, 1 H), 2.04 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): \delta = 155.4, 139.8, 133.8, 131.9, 130.7, 129.0, 128.5, 127.9, 123.1, 120.9, 119.2, 116.7, 111.5, 109.9, 109.6, 108.1, 104.4, 104.0, 54.3, 8.3 ppm. HRMS (ESI): calcd. for C₂₂H₁₆ClFN₂ [M + H]⁺ 362.0986; found 362.0996.**

1,4-Bis(4,5-dihydropyrrolo[1,2-*a***]quinoxalin-4-yl)benzene (6r):** The product was obtained as a yellow solid; m.p. 190–192 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.6 (d, *J* = 8.3 Hz, 1 H), 7.48–7.46 (m, 3 H), 7.33–7.31 (m, 2 H), 7.21–7.18 (m, 2 H), 6.95 (td, *J* = 8.7, 1.3 Hz, 2 H), 6.8 (td, *J* = 7.8, 0.9 Hz, 2 H), 6.73–6.71 (m, 2 H), 6.3–6.2 (m, 2 H), 5.56–5.53 (m, 2 H), 5.5 (s,2 H), 4.13 (br. s, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 141.5, 136.0, 129.6, 128.1, 125.4, 124.6, 119.3, 115.3, 114.7, 114.3, 110.1, 105.8, 55.7 ppm. HRMS (ESI): calcd. for C₂₈H₂₂N₄ [M + H]⁺ 414.1844; found 414.1848.

General Procedure for the Synthesis of Pyrrolo/Indolo-quinoxalines 7a–e, 7f–p and 7s–x and Imidazoquinoxalines 7q–r: To a well-stirred solution of aldehyde 5 (0.6 mmol), benzotriazole (1.0 equiv.) and 10 mol-% AlCl₃ in THF, 1-(2-aminophenyl)pyrrole or 2-(3-meth-ylindol-1-yl)phenylamine (4; 0.5 mmol) was added. The reaction was stirred at room temperature for 8–10 h. The reaction mixture was extracted with ethyl acetate and water and the organic layer was washed with NaOH, brine, and dried with Na₂SO₄. The solvent was evaporated in vacuo and the solid obtained was purified by column chromatography (hexane/ethyl acetate) to afford the desired product in good yields.

4-Phenylpyrrolo[1,2-*a*]quinoxaline (7a): The product was obtained as a light-yellow solid; m.p. 118–120 °C. ¹H (400 MHz, CDCl₃): δ = 8.13 (d, *J* = 8 Hz, 1 H), 7.99–7.97 (m, 3 H), 7.80 (d, *J* = 7.3 Hz, 1 H), 7.50–7.40 (m, 5 H), 6.90 (t, *J* = 3 Hz, 1 H), 6.80 (t, *J* =

2.9 Hz, 1 H) ppm. 13 C NMR (100 MHz, CDCl₃): δ = 154.4, 138.4, 136.2, 130.2, 129.8, 128.5, 127.4, 127.1, 125.3, 125.2, 114.5, 113.9, 113.6, 108.8 ppm. HRMS (ESI): calcd. for $C_{17}H_{12}N_2$ [M + H]⁺ 244.1000; found 244.1002.

4-(4-Fluorophenyl)pyrrolo[1,2-*a*]quinoxaline (7b): The product was obtained as a light-yellow solid; m.p. 108–110 °C. ¹H NMR (300 MHz, CHCl₃): δ = 8.01 (d, *J* = 13.9 Hz, 4 H), 7.90 (d, *J* = 7.2 Hz, 1 H), 7.53–7.44 (m, 2 H), 7.25–7.20 (m, 2 H), 6.95–6.90 (m, 2 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 162.9, 153.2, 136.2, 134.6, 130.6, 130.2, 127.5, 127.1, 125.3, 115.5, 115.3, 114.7, 113.6, 108.5 ppm. HRMS (ESI): calcd. for C₁₇H₁₁FN₂ [M + H]⁺ 262.0906; found 262.0912.

4-(4-Bromophenyl)pyrrolo[1,2-*a*]quinoxaline (7c): The product was obtained as a white solid; m.p. 104–106 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.00-7.90$ (m, 2 H), 7.90–7.80 (m, 3 H), 7.70–7.60 (m, 2 H), 7.50 (td, J = 8.7, 1.5 Hz, 1 H), 7.50 (td, J = 8.0, 1.4 Hz, 1 H), 6.94 (t, J = 3 Hz, 1 H), 6.93 (t, J = 2.9 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 153.0$, 137.2, 136.0, 131.7, 130.2, 127.7, 127.0, 125.3, 124.9, 124.1, 114.8, 114.1, 113.6, 108.5 ppm. HRMS (ESI): calcd. for C₁₇H₁₁BrN₂ [M + H]⁺ 322.0106; found 322.0108.

4-(4-Chlorophenyl)pyrrolo[1,2-*a*]quinoxaline (7d): The product was obtained as a pale-yellow solid; m.p. 110–112 °C. ¹H NMR (300 MHz, CDCl₃): δ = 8.03 (d, *J* = 7.2 Hz, 2 H), 7.96 (d, *J* = 8.4 Hz, 2 H), 7.89 (d, *J* = 8.1 Hz, 1 H), 7.56–7.44 (m, 4 H), 6.97–6.90 (m, 2 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 153.1, 136.8, 136.1, 135.8, 130.2, 129.9, 128.8, 127.7, 125.4, 125.0, 114.8, 114.1, 113.6, 108.4 ppm. HRMS (ESI): calcd. for C₁₇H₁₁ClN₂ [M + H]⁺ 278.0611; found 278.0616.

8-(1*H***-Pyrrol-1-yl)-4-***p***-tolylpyrrolo[1,2-***a***]quinoxaline (7e): The product was obtained as a light-yellow crystals; m.p. 174–176 °C. ¹H NMR (300 MHz, CDCl₃): \delta = 8.13 (s, 1 H), 7.96 (s, 1 H), 7.86 (d,** *J* **= 7.5 Hz, 2 H), 7.77–7.75 (m, 1 H), 7.44 (d,** *J* **= 8.4 Hz, 1 H), 7.30 (d,** *J* **= 7.8 Hz, 1 H), 7.17 (d,** *J* **= 6.6 Hz, 3 H), 7.03 (s, 1 H), 6.91 (s, 1 H), 6.37 (m, 2 H), 2.4 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): \delta = 153.8, 140.0, 139.5, 135.5, 134.2, 131.4, 129.3, 128.5, 127.7, 125.5, 119.6, 117.8, 114.5, 114.4, 111.2, 109.0, 105.1, 21.5 ppm. HRMS (ESI): calcd. for C₂₂H₁₇N₃ [M + H]⁺ 323.1422; found 323.1426.**

7-Methyl-6-phenylindolo[1,2-*a*]quinoxaline (7f): The product was obtained as a yellow solid; m.p. 94–96 °C. ¹H NMR (300 MHz, CDCl₃): δ = 8.48 (d, *J* = 8.2 Hz, 2 H), 8.01 (d, *J* = 7.8 Hz, 1 H), 7.90 (d, *J* = 8.1 Hz, 1 H), 7.25–7.63 (m, 9 H), 2.05 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 157.6, 139.8, 136.2, 135.9, 133.1, 132.5, 131.2, 130.1, 130.0, 129.6, 128.8, 128.3, 128.1, 125.3, 124.5, 123.6, 122.0, 121.7, 120.5, 114.2, 110.7, 11.2 ppm. HRMS (ESI): calcd. for C₂₂H₁₆N₂ [M + H]⁺ 308.1313; found 308.1323.

6-(4-Fluorophenyl)-7-methylindolo[1,2-*a***]quinoxaline (7g):** The product was obtained as a greenish-yellow solid; m.p. 112–114 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 8.49$ (d, J = 7.7 Hz, 2 H), 7.99 (d, J = 7.6 Hz, 1 H), 7.91 (d, J = 7.9 Hz, 1 H), 7.21–7.66 (m, 8 H), 2.09 (t, J = 19.8 Hz, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 156.5$, 135.6, 131.6, 130.5, 130.1, 128.4, 127.7, 126.5, 125.8, 124.8, 123.8, 123.6, 122.1, 121.1, 120.4, 115.6, 115.4, 114.4, 110.5, 11.3 ppm. HRMS (ESI): calcd. for C₂₂H₁₅FN₂ [M + H]⁺ 326.1219; found 326.1226.

6-(3-Chlorophenyl)-7-methylindolo[1,2-*a***]quinoxaline (7h):** The product was obtained as a pale-yellow solid; m.p. 114–116 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.43-8.41$ (m, 2 H), 7.99 (dd, J = 7.7, 1.3 Hz, 1 H), 7.88 (dd, J = 8.2, 0.9 Hz, 1 H), 7.64 (t, J = 1.4 Hz, 1 H), 7.57–7.56 (m, 3 H), 7.52–7.50 (m, 2 H), 7.48–7.44 (m, 1 H),

7.39 (td, J = 5.9, 0.9 Hz, 1 H), 2.08 (s, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 155.9$, 141.1, 135.4, 134.4, 131.9, 130.4, 130.1, 129.7, 129.3, 128.8, 128.5, 126.8, 125.2, 124.8, 123.8, 122.1, 120.7, 114.34, 114.32, 110.6, 11.2 ppm. HRMS (ESI): calcd. for C₂₂H₁₅ClN₂ [M + H]⁺ 342.0924; found 342.0928.

7-Methyl-6-*p***-tolylindolo[1,2-***a***]quinoxaline (7i):** The product was obtained as a pale-yellow solid; m.p. 118–120 °C. ¹H NMR (300 MHz, CDCl₃): δ = 8.48 (d, *J* = 8.4 Hz, 2 H), 8.00 (dd, *J* = 7.8, 1.5 Hz, 1 H), 7.90 (d, *J* = 8.1 Hz, 1 H), 7.60–7.51 (m, 4 H), 7.47–7.41 (m, 2 H), 7.39–7.32 (m, 2 H), 2.47 (s, 3 H), 2.1 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 157.8, 139.2, 136.8, 135.8, 132.0, 130.5, 130.3, 130.1, 129.1, 128.5, 128.1, 125.9, 124.6, 123.1, 122.0,120.7, 114.4, 114.3, 110.8, 21.5, 11.3 ppm. HRMS (ESI): calcd. for C₂₃H₁₈N₂ [M + H]⁺ 322.1470; found 322.1470.

6-(3-Bromophenyl)-7-methylindolo[1,2-*a***]quinoxaline (7j):** The product was obtained as a pale-yellow solid; m.p. 102–104 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 8.49$ (dd, J = 3.4, 8.4 Hz, 2 H), 7.99 (d, J = 7.5 Hz, 1 H), 7.92 (d, J = 8.1 Hz, 1 H), 7.81 (s, 1 H), 7.69–7.58 (m, 4 H), 7.49–7.39 (m, 3 H), 2.11 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 156.0, 141.4, 135.5, 132.0, 131.7, 130.6, 130.2, 130.0, 128.6, 12.7.3, 125.5, 125.0, 123.9, 122.5, 122.2, 120.8, 114.4, 110.7, 11.3 ppm. HRMS (ESI): calcd. for C₂₂H₁₅BrN₂ [M + H]⁺ 386.0419; found 386.0427.$

7-Methyl-6-[4-(trifluoromethyl)phenyl]indolo[1,2-*a***]quinoxaline (7k):** The product was obtained as a white solid; m.p. 220–224 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.40 (d, *J* = 6 Hz, 2 H), 7.90 (d, *J* = 8.1 Hz, 1 H), 7.80 (d, *J* = 8.1 Hz, 1 H), 7.70 (d, *J* = 8hz, 4 H), 7.54–7.52 (m, 2 H), 7.40 (t, *J* = 7.4 Hz, 1 H), 7.36 (t, *J* = 7.4 Hz, 1 H), 2.00 (s, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 155.9, 142.9, 135.4, 134.7, 132.1, 130.5, 130.2, 130.2, 129.1, 128.7, 125.5, 125.4, 125.0, 123.9, 122.3, 120.8, 114.4, 114.4, 110.6, 11.3 ppm. HRMS (ESI): calcd. for C₂₃H₁₅F₃N₂ [M + H]⁺ 376.1187; found 376.1187.

6-(4-Bromophenyl)-7-methylindolo[1,2-*a***]quinoxaline (71):** The product was obtained as a yellow solid; m.p. 200–202 °C. ¹H NMR (300 MHz, CDCl₃): δ = 8.48 (dd, *J* = 3.4, 7.7 Hz, 2 H), 7.99 (dd, *J* = 1.1, 7.8 Hz, 1 H), 7.91 (d, *J* = 8 Hz, 1 H), 7.69 (d, *J* = 8.3 Hz, 2 H), 7.60 (t, *J* = 7.4 Hz, 2 H), 7.54 (d, *J* = 8.2 Hz, 2 H), 7.49 (t, *J* = 7.6 Hz, 1 H), 7.41 (t, *J* = 7.8 Hz, 1 H), 2.12 (s, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 156.6, 138.7, 135.8, 132.3, 131.8, 130.7, 130.5, 130.4, 130.3, 128.7, 125.6, 125.1, 124.1, 123.8, 122.4, 121.0, 114.6, 110.3, 11.7 ppm. HRMS (ESI): calcd. for C₂₂H₁₅BrN₂ [M + H]⁺ 386.0419; found 386.0425.

6-(4-Chlorophenyl)-2-fluoro-7-methylindolo[1,2-*a***]quinoxaline (7m):** The product was obtained as a pale-yellow solid; m.p. 220–222 °C. ¹H NMR (300 MHz, CDCl₃): δ = 8.37 (d, *J* = 8.7 Hz, 1 H), 8.16 (dd, *J* = 2.4, 8.1 Hz, 1 H), 7.96–7.89 (m, 2 H), 7.64–7.46 (m, 6 H), 7.10 (td, *J* = 2.7, 5.7 Hz, 1 H), 2.09 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 155.3, 137.6, 135.3, 132.0, 131.8, 131.5, 131.3, 130.2, 125.0, 124.8, 122.4, 120.7, 113.9, 111.6, 110.9, 110.7, 101.7, 101.4, 11.2 ppm. HRMS (ESI): calcd. for C₂₂H₁₄ClFN₂ [M + H]⁺ 360.0830; found 360.0839.

6-[4-(Trifluoromethyl)phenyl]indolo[1,2-*a***]quinoxaline (7n):** The product was obtained as a pale-yellow solid; m.p. 140–142 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.50 (d, *J* = 8 Hz, 2 H), 8.10 (d, *J* = 8.1 Hz, 2 H), 8.03 (d, *J* = 8.1 Hz, 1 H), 7.80 (d, *J* = 8.1 Hz, 1 H), 7.78 (d, *J* = 8 Hz, 2 H), 7.60 (td, *J* = 8.7 Hz, 1 H), 7.50 (td, *J* = 8.1 Hz, 1 H), 7.40 (td, *J* = 3.7 Hz, 2 H), 7.20 (s, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 154.6, 139.8, 135.9, 134.6, 133.0, 130.5, 130.1, 130.0, 129.9, 129.5, 129.0, 128.7, 128.6, 126.7, 124.5, 124.2, 122.7, 124.7, 114.6, 114.5, 102.2 ppm. HRMS (ESI): calcd. for C₂₂H₁₃F₃N₂ [M + H]⁺ 362.1031; found 362.1036.

9-Methoxy-6-[4-(trifluoromethyl)phenyl]indolo[1,2-*a***]quinoxaline** (70): The product was obtained as a pale-yellow solid; m.p. 200–205 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.40 (d, *J* = 8 Hz, 1 H), 8.30 (d, *J* = 9.4 Hz, 1 H), 8.10 (d, *J* = 8.1 Hz, 2 H), 8.01 (d, *J* = 7.4 Hz, 1 H), 7.70 (d, *J* = 8.1 Hz, 2 H), 7.60 (td, *J* = 7.4, 1.4 Hz, 1 H), 7.40 (t, *J* = 7.1 Hz, 1 H), 7.20 (d, *J* = 2 Hz, 1 H), 7.20 (d, *J* = 14.7 Hz, 1 H), 7.05 (s, 1 H), 3.8 (s, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 155.8, 154.1, 141.9, 136.0, 131.6, 131.1, 130.7, 130.2, 129.9, 129.2, 129.0, 128.8, 125.6, 125.6, 124.2, 116.1, 115.6, 114.3, 102.2, 101.5, 55.5 ppm. HRMS (ESI): calcd. for C₂₃H₁₅F₃N₂O [M + H]⁺ 392.1136; found 392.1140.

6-(3-Chlorophenyl)-9-methoxyindolo[1,2-*a***]quinoxaline (7p):** The product was obtained as a yellow solid; m.p. 190–192 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.40 (d, *J* = 7.4 Hz, 1 H), 8.36 (d, *J* = 8.7 Hz, 1 H), 8.04 (d, *J* = 8 Hz, 1 H), 7.9 (d, *J* = 1.3 Hz, 1 H), 7.8 (dt, *J* = 7.4, 2 Hz, 1 H), 7.6 (td, *J* = 7.1, 1.3 Hz, 1 H), 7.51–7.48 (m, 2 H), 7.44–7.40 (m, 1 H), 7.2 (d, *J* = 2.7 Hz, 1 H), 7.2 (d, *J* = 8.7 Hz, 1 H), 7.12 (s, 1 H), 3.9 (s, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 155.7, 154.5, 140.0, 135.6, 134.2, 130.6, 130.4, 130.2, 130.0, 129.9, 129.8,129.3, 128.7, 128.4, 126.7, 124.1, 115.9, 115.5, 114.3, 102.2, 101.6, 55.6 ppm. HRMS (ESI): calcd. for C₂₂H₁₅ClN₂O [M + H]⁺ 358.0873; found 358.0876.

3-Methyl-4-(4-nitrophenyl)imidazo[1,5-*a*]quinoxaline (7r): The product was obtained as a pale-yellow solid; m.p. 126–128 °C. ¹H NMR (300 MHz, CDCl₃): δ = 8.60 (s, 1 H), 8.31 (d, *J* = 8.3 Hz, 2 H), 8.00 (d, *J* = 8.7 Hz, 2 H), 7.67–7.65 (m, 1 H), 7.45–7.39 (m, 1 H), 7.27–7.22 (m, 1 H), 6.96 (s, 1 H), 2.29 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 158.6, 149.5, 144.0, 140.9, 138.2, 137.5, 131.8, 129.7, 128.4, 127.9, 125.0, 124.1, 119.2, 116.8, 13.6 ppm. HRMS (ESI): calcd. for C₁₇H₁₂N₄O₂ [M + H]⁺ 304.0960; found 304.0960.

7-Methyl-6-(3-nitrophenyl)-2-(4-phenylpiperazin-1-yl)indolo[1,2-*a***]-quinoxaline (7s):** The product was obtained as a orange solid; m.p. 248–250 °C. ¹H NMR (300 MHz, CDCl₃): δ = 8.55 (t, *J* = 2 Hz, 1 H), 8.45–8.37 (m, 2 H), 8.03–7.98 (m, 2 H), 7.93–7.88 (m, 2 H), 7.75–7.50 (m, 1 H), 7.64–7.62 (m, 1 H), 7.52–7.47 (m, 1 H), 7.35–7.34 (m, 2 H), 7.09–7.03 (m, 3 H), 6.97–6.94 (m, 1 H), 3.64 (t, *J* = 5 Hz, 4 H), 3.49–3.46 (m, 4 H), 2.10 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 151.7, 150.9, 148.1, 141.4, 134.9, 131.8, 131.6, 130.9, 130.5, 129.4, 129.3, 128.9, 125.4, 124.5, 124.2, 123.8, 122.3, 120.7, 120.3, 116.4, 114.2, 112.8, 112.2, 109.2, 100.3, 49.3, 48.9, 11.6 ppm. HRMS (ESI): calcd. for C₃₂H₂₇N₅O₂ [M + H]⁺ 513.2165; found 513.2168.

6-(4-Fluorophenyl)-7-methyl-2-(4-phenylpiperazin-1-yl)indolo-[**1**,2-*a*]**quinoxaline (7t):** The product was obtained as a yellowish orange crystals; m.p. 254–256 °C. ¹H NMR (300 MHz, CDCl₃): δ = 8.44 (d, J = 8.7 Hz, 1 H), 8.00 (d, J = 2.4 Hz, 1 H), 7.94–7.90 (m, 2 H), 7.66–7.59 (m, 2 H), 7.49 (t, J = 7.2 Hz, 1 H), 7.39–7.33 (m, 2 H), 7.28–7.21 (m, 3 H), 7.10–7.05 (m, 3 H), 6.96 (t, J = 7.2 Hz, 1 H), 3.63 (t, J = 2.7 Hz, 4 H), 3.48 (t, J = 4.5 Hz, 4 H), 2.10 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 153.0, 151.4, 151.1, 138.2, 135.1, 131.7, 131.5, 130.7, 130.6, 129.3, 129.2, 126.0, 124.3, 122.05, 120.6, 120.3, 116.4, 115.6, 115.3, 114.2, 112.2, 109.7, 100.6, 49.4, 49.1, 11.3 ppm. HRMS (ESI): calcd. for C₃₂H₂₇FN₄ [M + H]⁺ 486.2220; found 486.2226.

6-(4-Chlorophenyl)-7-methyl-2-(4-phenylpiperazin-1-yl) indolo[1,2*a***|quinoxaline (7u):** The product was obtained as a yellow solid; m.p. 272–275 °C. ¹H NMR (300 MHz, CDCl₃): δ = 8.43 (d, *J* = 8.7 Hz, 1 H), 7.99 (d, *J* = 1.2 Hz, 1 H), 7.94–7.89 (m, 2 H), 7.64–7.58 (m, 3 H), 7.54–7.47 (m, 3 H), 7.35 (t, *J* = 7.8 Hz, 2 H), 7.09–7.05 (m, 3 H), 6.95 (t, *J* = 7.2 Hz, 1 H), 3.63 (t, *J* = 4.6 Hz, 4 H), 3.48 (t, *J* = 5.1 Hz, 4 H), 2.11 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ

= 152.8, 151.4, 151.1, 138.3, 135.0, 131.7, 131.5, 130.8, 130.6, 130.2, 129.3, 129.1, 128.6, 125.8, 124.3, 122.1, 120.6, 120.3, 116.4, 114.2, 112.2, 109.6, 100.6, 49.4, 49.1, 11.4 ppm. HRMS (ESI): calcd. for $C_{32}H_{27}CIN_4 [M + H]^+$ 502.1924; found 502.1928.

2-{4-[Bis(4-fluorophenyl]methyl]piperazin-1-yl}-6-(4-bromophenyl)-7-methylindolo[1,2-*a***]quinoxaline (7v): The product was obtained as a yellow solid; m.p. 264–266 °C. ¹H NMR (300 MHz, CDCl₃): \delta = 8.33 (d, J = 8.4 Hz, 1 H), 7.89–7.83 (m, 3 H), 7.65 (d, J = 8.4 Hz, 2 H), 7.55–7.40 (m, 8 H), 7.05–6.99 (m, 5 H), 4.31 (s, 1 H), 3.46 (s, 4 H), 2.65 (s, 4 H), 2.10 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): \delta = 153.3, 131.7, 131.6, 130.7, 130.5, 129.3, 129.2, 129.1, 128.7, 128.1, 127.8, 125.9, 125.8, 124.0, 123.4, 122.1, 115.7, 115.5, 114.9, 114.1, 111.8, 109.5, 100.0, 51.7, 48.9, 29.7, 11.4 ppm. HRMS (ESI): calcd. for C₃₉H₃₁BrF₂N₄ [M + H]⁺ 672.1700; found 672.1708.**

2-{4-[Bis(4-fluorophenyl)methyl]piperazin-1-yl}-7-methyl-6-(4nitrophenyl)indolo[1,2-*a***]quinoxaline (7w): The product was obtained as a pale-yellow solid; m.p. 269–271 °C. ¹H NMR (300 MHz, CDCl₃): \delta = 8.33 (d,** *J* **= 8.4 Hz, 1 H), 7.88–7.83 (m, 3 H), 7.58–7.41 (m, 10 H), 7.05–6.96 (m, 5 H), 4.31 (s, 1 H), 3.46 (s, 4 H), 2.65 (s, 4 H), 2.08 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): \delta = 167.0, 161.0, 152.6, 151.4, 137.9, 135.0, 131.7, 130.7, 130.2, 129.3, 128.8, 128.6, 125.8, 124.2, 122.0, 120.6, 115.7, 115.4, 114.1, 111.8, 109.5, 99.9, 78.0, 51.7, 48.9, 29.7, 11.4 ppm. HRMS (ESI): calcd. for C₃₉H₃₁F₂N₅O₂ [M + H]⁺ 639.2417; found 639.2420.**

2-{4-[Bis(4-fluorophenyl]methyl]piperazin-1-yl}-6-(4-fluorophenyl)-7-methylindolo[1,2-*a***]quinoxaline (7x): The product was obtained as a yellow solid; m.p. 258–260 °C. ¹H NMR (300 MHz, CDCl₃): \delta = 8.34 (d, J = 8.4 Hz, 1 H), 7.87 (t, J = 9.3 Hz, 3 H), 7.60 (d, J = 8.4 Hz, 2 H), 7.5 (t, J = 7.5 Hz, 1 H), 7.47–7.41 (m, 4 H), 7.21 (t, J = 8.7 Hz, 3 H), 7.05–6.96 (m, 5 H), 4.32 (s, 1 H), 3.47 (t, J = 4.5 Hz, 4 H), 2.66 (t, J = 4.5 Hz, 4 H), 2.09 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): \delta = 165.2, 159.7, 148.7, 146.3, 145.1, 138.3, 137.6, 135.4, 131.7, 130.7, 129.3, 124.8, 120.5, 115.7, 115.4, 115.2, 114.8, 112.7, 111.8, 109.5, 105.1, 100.4, 80.2, 51.7, 48.9, 29.7, 11.6 ppm. HRMS (ESI): calcd. for C₃₉H₃₁F₃N₄ [M + H]⁺ 612.2501; found 612.2507.**

General Procedure for the Synthesis of Indolo- and Pyrrolo[1,2*a***]quinoxalinones (9a–d):** To a well-stirred solution of 1-(2-aminophenyl) pyrrole or 2-(3-methylindol-1-yl)phenylamine (1.0 mmol) in toluene (2.0 mL), benzotriazole (1.0 equiv.) and 2carboxybenzaldehyde (1.0 equiv.) were added followed by addition of a catalytic amount of TsOH (10 mol-%). The reaction was heated to reflux in a Dean–Stark apparatus for 2–4 h until no more starting material was detectable by TLC analysis. The reaction mixture was extracted with ethyl acetate and water and the organic layer was washed with brine and dried with Na₂SO₄. The solvent was removed in vacuo and the crude material was purified by column chromatography (hexane/ethyl acetate) using silica mesh (100– 200). The desired product was recrystallied from diethyl ether.

Isoindolo[1,2-*c***]pyrrolo[1,2-***a***]quinoxalin-10(14b***H***)-one (9a): The product was obtained as a pale-yellow solid; m.p. 220–224 °C. ¹H NMR (300 MHz, CDCl₃): \delta = 8.20–8.17 (m, 1 H), 7.98 (d,** *J* **= 7.5 Hz, 1 H), 7.86 (d,** *J* **= 7.8 Hz, 1 H), 7.72 (t,** *J* **= 7.5 Hz, 1 H), 7.59 (t,** *J* **= 7.5 Hz, 1 H), 7.53–7.50 (m, 1 H), 7.30–7.25 (m, 3 H), 6.35–6.30 (m, 2 H), 5.81 (s, 1 H) ppm. ¹³C NMR (75 MHz, CDCl₃): \delta = 168.7, 145.0, 136.1, 134.3, 130.8, 128.6, 128.4, 128.3, 127.1, 125.5, 123.5, 101.0, 71.5 ppm. HRMS (ESI): calcd. for C₁₈H₁₂N₂O [M + H]⁺ 272.0950; found 272.0954.**

14*b***·Methylisoindolo**[1,2-*c*]pyrrolo[1,2-*a*]quinoxalin-10(14b*H*)-one (9b): The product was obtained as a yellow solid; m.p. 228–230 °C. ¹H NMR (300 MHz, CDCl₃): δ = 8.04–8.01 (m, 1 H), 7.86 (d, *J* =

7.8 Hz, 1 H), 7.76 (d, J = 7.8 Hz, 1 H), 7.63 (t, J = 7.2 Hz, 1 H), 7.49–7.41 (m, 2 H), 7.24–7.16 (m, 2 H), 7.10–7.09 (m, 1 H), 6.19 (t, J = 3.3 Hz, 1 H), 6.11–6.10 (m, 1 H), 1.51 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 165.6$, 147.1, 132.8, 130.6, 130.0, 128.9, 128.8, 125.9, 124.8, 124.7, 124.5, 124.1, 122.2, 116.0, 115.0, 110.6, 104.0, 61.6, 28.0 ppm. HRMS (ESI): calcd. for C₁₉H₁₄N₂O [M + H]⁺ 286.1106; found 286.1109.

16-Methylindolo[1,2-*a*]isoindolo[1,2-*c*]quinoxalin-11(15b*H*)-one (9c): The product was obtained as a pale-yellow solid; m.p. 140–142 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.12 (dd, *J* = 1.3, 7.8 Hz, 1 H), 8.06–7.97 (m, 4 H), 7.72 (td, *J* = 1.4, 6.4 Hz, 1 H), 7.64–7.57 (m, 2 H), 7.38 (td, *J* = 1.3, 7.8 Hz, 1 H), 7.31–7.28 (m, 2 H), 7.27–7.22 (m, 1 H), 5.9 (s, 1 H), 2.39 (s, 3 H) ppm. ¹³C NMR (100 MHz): δ = 164.7, 138.6, 133.7, 133.1, 131.3, 130.7, 130.2, 129.3, 127.9, 127.2, 126.3, 125.6, 124.7, 123.9, 123.6, 122.5, 120.9, 119.3, 117.5, 111.1, 108.5, 58.2, 9.8 ppm. HRMS (ESI): calcd. for C₂₃H₁₆N₂O [M + H]⁺ 336.1263; found 336.1267.

15b,16-Dimethylindolo[**1**,**2**-*a*]isoindolo[**1**,**2**-*c*]quinoxalin-11(**15b***H*)one (**9d**): The product was obtained as a yellow solid; m.p. 192– 194 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.04–7.95 (m, 5 H), 7.72 (t, *J* = 7.8 Hz, 1 H), 7.58 (t, *J* = 7.3 Hz, 1 H), 7.54 (d, *J* = 5.6 Hz, 1 H), 7.40 (t, *J* = 6.8 Hz, 1 H), 7.30–7.26 (m, 2 H), 7.18 (t, *J* = 7 Hz, 1 H), 2.35 (s, 3 H), 1.65 (s, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 164.6, 144.5, 133.3, 132.6, 131.8, 131.5, 130.6, 130.5, 129.1, 126.0, 125.6, 125.0, 124.7, 124.4, 123.9, 123.5, 120.9, 119.1, 117.1, 111.1, 107.2, 63.6, 25.7, 10.1 ppm. HRMS (ESI): calcd. for C₂₄H₁₈N₂O [M + H]⁺ 350.4125; found 350.1479.

General Procedure for the Synthesis of Compounds 10–11: To a vial was added 4-(4-bromophenyl)pyrrolo[1,2-*a*]quinoxaline (1.0 mmol), boronic acid (1.2 equiv.), [Pd(PPh_3)₂Cl₂] (10 mol-%), K_2CO_3 (2.5 equiv.), and DMF/H₂O (4:1, 2.0 mL). The solution was flushed with argon and then heated to 80 °C for 1 h until TLC revealed complete conversion of the starting material. The solution was allowed to cool and diluted with H₂O and then extracted with EtOAc. The combined organic layers were dried with Na₂SO₄, concentrated, and purified by column chromatography to afford the corresponding product.

4-(4'-Methoxybiphenyl-4-yl)pyrrolo[1,2-*a***]quinoxaline (10):** The product was obtained as a white solid; m.p. 187–190 °C. ¹H NMR (300 MHz, CDCl₃): δ = 8.06 (d, *J* = 7.5 Hz, 4 H), 7.90 (d, *J* = 8.1 Hz, 1 H), 7.73 (d, *J* = 7.8 Hz, 2 H), 7.60 (d, *J* = 8.4 Hz, 2 H), 7.50–7.40 (m, 2 H), 7.07–7.01 (m, 3 H), 6.90 (s, 1 H), 3.90 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 159.3, 154.0, 142.2, 136.7, 136.2, 133.0, 130.1, 129.0, 128.2, 127.0, 126.8, 125.3, 125.2, 114.6, 114.3, 114.0, 113.6, 108.6, 55.3 ppm. HRMS (ESI): calcd. for C₂₄H₁₈N₂O [M + H]⁺ 350.1419; found 350.1421.

4-[4'-(Methylthio)biphenyl-4-yl]pyrrolo[1,2-*a*]quinoxaline (11): The product was obtained as a off-white solid; m.p. 173–175 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.10-8.00$ (m, 3 H), 7.99–7.98 (m, 1 H), 7.88–7.86 (m, 1 H), 7.73 (d, J = 8 Hz, 2 H), 7.60 (d, J = 8 Hz, 2 H), 7.51–7.45 (m, 2 H), 7.34 (d, J = 8.8 Hz, 2 H), 7.04 (m, 1 H), 6.90 (t, J = 3.3 Hz, 1 H), 2.53 (s, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 153.8$, 141.8, 138.1, 137.2, 136.2, 130.2, 129.1, 127.4, 127.1, 127.0, 126.9, 126.8, 125.2, 114.6, 113.9, 113.6, 108.5, 15.7 ppm. HRMS (ESI): calcd. for C₂₄H₁₈N₂S [M + H]⁺ 366.1191; found 366.1193.

General Procedure for the Synthesis of Compounds 12 and 13: To a vial was added 4-(4-bromophenyl)pyrrolo[1,2-a]quinoxalin (1.0 mmol), acrylate (1.2 equiv.), $[Pd(PPh_3)_2Cl_2]$ (10 mol-%), K₃PO₄ (2.5 equiv.), and DMF (2.0 mL). The solution was flushed with argon, and then heated to 120 °C for 4 h until TLC revealed

complete conversion of the starting material. The solution was allowed to cool and diluted with H_2O and then extracted with EtOAc. The combined organic layers were dried with Na_2SO_4 , concentrated, and purified by column chromatography to afford the corresponding product.

Ethyl (*E***)-3-[4-(Pyrrolo]1,2-***a***]quinoxalin-4-yl)phenyl]acrylate (12):** The product was obtained as a white solid; m.p. 89–91 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.05–8.01 (m, 4 H), 7.90 (d, *J* = 8 Hz, 1 H), 7.80 (d, *J* = 16.1 Hz, 1 H), 7.70 (d, *J* = 8 Hz, 2 H), 7.50 (td, *J* = 8 Hz, 1 H), 7.49 (td, *J* = 9.5 Hz, 1 H), 7.01–6.99 (m, 1 H), 6.90 (t, *J* = 3 Hz, 1 H), 6.53 (d, *J* = 16.1 Hz, 1 H), 4.29 (q, *J* = 8 Hz, 2 H), 1.35 (t, *J* = 7.3 Hz, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 166.8, 153.3, 143.8, 140.0, 136.1, 135.7, 130.2, 129.1, 128.2, 127.7, 127.1, 125.3, 125.1, 119.1, 114.7, 114.1, 113.6, 108.4, 60.6, 14.3 ppm. HRMS (ESI): calcd. for C₂₂H₁₈N₂O₂ [M + H]⁺ 342.1368; found 342.1371.

Methyl (*E*)-3-[4-(Pyrrolo[1,2-*a*]quinoxalin-4-yl)phenyl]acrylate (13): The product was obtained as a pale-yellow solid; m.p. 102–104 °C. ¹H NMR (300 MHz, CDCl₃): δ = 8.04 (d, *J* = 7.8 Hz, 4 H), 7.90 (d, *J* = 7.8 Hz, 1 H), 7.80–7.70 (m, 3 H), 7.50–7.40 (m, 2 H), 7.03 (d, *J* = 18.3 Hz, 2 H), 6.50 (d, *J* = 15.9 Hz, 1 H), 3.80 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 167.3, 153.3, 144.2, 140.2, 136.1, 135.7, 130.3, 129.2, 128.3, 127.8, 127.2, 125.4, 125.1, 119.7, 114.8, 114.1, 113.7, 108.5, 51.8 ppm. HRMS (ESI): calcd. for C₂₁H₁₆N₂O₂ [M + H]⁺ 328.1212; found 328.1212.

Supporting Information (see footnote on the first page of this article): Copies of ¹H and ¹³C NMR spectra of all new compounds.

Acknowledgments

We thank the Defence Research & Development Organization (DRDO), the Department of Science and Technology (DST), the University Grants Commission (UGC), and the University of Delhi (DU-DST PURSE) for financial support, and USIC for instrumentation facilities. R. R. J and T. A. are thankful to the DU-DST for a PURSE grant and the DST for Fellowships.

- [1] S. Antoniotti, E. Dunach, *Tetrahedron Lett.* **2002**, *43*, 3971–3973.
- [2] S. Alleca, P. Corona, M. Lorigo, G. Paglietti, R. Loddo, V. Mascia, B. Busonera, P. La Colla, *Farmaco* 2003, 58, 639–650, and references cited therein.
- [3] a) M. Patel, R. J. Mc Hugh, B. C. Cordova, R. M. Klabe, S. Erickson-Vitanen, G. L. Trainor, J. D. Rodger, *Bioorg. Med. Chem. Lett.* 2000, 10, 1729–31; b) J. Guillon, P. Dallemagne, B. Pfeiffer, P. Renard, D. Manechez, A. Kervran, S. Rault, *Eur. J. Med. Chem.* 1998, 33, 293–308; c) K. S. Kim, L. Qian, J. E. Bird, K. E. J. Dickinson, S. Moreland, T. R. Schaeffer, T. L. Waldron, C. L. Delaney, H. N. Weller, A. V. Miller, *J. Med. Chem. Soc.* 1951, 73, 5687–5699.
- [4] a) E. J. Jacobsen, L. S. Stelzer, K. L. Belonga, D. B. Carter, W. B. Im, V. H. Sethy, A. H. Tang, P. F. VonVoigtlander, J. D. Petke, J. Med. Chem. 1996, 39, 3820–3836; b) D. D. Davey, P. W. Erhardt, E. H. Cantor, S. S. Greenberg, W. R. Ingebretsen, J. Wiggins, J. Med. Chem. 1991, 34, 2671–2677; c) V. Colotta, L. Cecchi, D. Catarzi, G. Filacchioini, C. Martini, P. Tacchi, A. Lucacchini, Eur. J. Med. Chem. 1995, 30, 133–139.
- [5] a) G. Sakata, K. Makino, Y. Kurasawa, *Heterocycles* 1998, 27, 2481–2515; b) L. E. Seitz, W. J. Suling, R. C. Reynolds, *J. Med. Chem.* 2002, 45, 5604–5606; c) A. Gzit, H. App, G. Mcmohan, J. Chen, A. Levtzki, F. D. Bohmer, *J. Med. Chem.* 1996, 39, 2170–2177; d) M. M. Ali, M. M. F. Ismail, M. S. A. El-Gaby, M. A. Zahran, Y. A. Ammar, *Molecules* 2000, 5, 864–873; e)

G. Campiani, V. Nacci, F. Corelli, M. Anzini, Synth. Commun. 1991, 21, 1567–1576.

- [6] a) J. C. Crossley, L. A. Johnston, *Chem. Commun.* 2002, 1122–1123; b) C. Escude, C. H. Nguyen, S. Kukreti, Y. Janin, J. S. Sun, E. Bisagni, T. Garestier, C. Helene, *Proc. Natl. Acad. Sci. USA* 1998, 95, 3591–3596; c) L. W. Deady, A. J. Kaye, G. J. Finlay, B. C. Baguley, W. A. Denny, *J. Med. Chem.* 1997, 40, 2040–2046; d) A. Pictet, T. Spengler, *Ber. Dtsch. Chem. Ges.* 1911, 44, 2030–2036.
- [7] a) B. Kundu, D. Sawant, P. Partani, A. P. Kesarwani, J. Org. Chem. 2005, 70, 4889–4892; b) N. Srinivasan, A. Ganesan, Chem. Commun. 2003, 916–917; c) K. Manabe, D. Nobutou, S. Kobayashi, Bioorg. Med. Chem. 2005, 13, 5154–5158; d) S. W. Youn, J. Org. Chem. 2006, 71, 2521–2523; e) S. Tussetschläger, A. Baro, S. Lashat, W. Frey, Eur. J. Org. Chem. 2007, 5590–5602.
- [8] a) C. Venkatesh, B. Singh, P. K. Mahata, H. Ila, H. Junjappa, Org. Lett. 2005, 7, 2169–2172; b) F. Juncai, L. Yang, M. Qinghua, L. Bin, Synth. Commun. 1998, 28, 193–196; c) S. A. Raw, C. D. Wilfred, R. J. K. Taylor, Chem. Commun. 2003, 2286–2287; d) G. Kaupp, M. R. Naimi-Jamal, Eur. J. Org. Chem. 2002, 8, 1368–1373; e) P. Chen, J. C. Barrish, E. Iwanowicz, J. Lin, M. S. Bednarz, B. C. Chen, Tetrahedron Lett. 2001, 42, 4293–4311; f) B. C. G. Soderberg, J. M. Wallace, J. Tamariz, Org. Lett. 2002, 4, 1339–1342; g) M. Suginome, S. Collet, Y. Ito, Org. Lett. 2002, 4, 351–354; h) R. Mukhopadhyay, N. G. Kundu, Tetrahedron Lett. 2000, 41, 9927–9930; i) R. A. Bunce, D. M. Herron, M. L. Ackerman, J. Org. Chem. 2000, 65, 2847–2850; j) B. K. Banik, I. Banik, L. Hackfeld, F. F. Becker, Heterocycles 2002, 56, 467–470; k) S. Goswami, A. K. Adak, Chem. Lett. 2003, 32, 678–679.
- [9] a) O. A. Attanasi, L. De Crescentini, P. Filippone, F. Mantellini, S. Santeusanio, *Synlett* 2003, 1183–1185; b) K. Tanaka, H. Takahashi, K. Takimoto, M. Sugita, K. Mitsuhashi, *J. Heterocycl. Chem.* 1992, *29*, 771–786; c) K. H. Popat, K. S. Nimavat, K. M. Thaker, H. S. Joshi, *J. Indian Chem. Soc.* 2003, *80*, 709–710; d) K. V. S. Rao, M. Subrahmanyam, *Chem. Lett.* 2002, 234–235; e) J. T. Reeves, D. R. Fandrick, Z. Tan, J. J. Song, H. Lee, N. K. Yee, C. H. Senanayake, *J. Org. Chem.* 2010, *75*, 992–994.
- [10] a) S. Raines, S. Y. Chai, F. P. Palopoli, J. Heterocycl. Chem. 1976, 13, 711–716; b) X. C. Zhang, W. Y. Huang, Tetrahedron Lett. 1997, 38, 4827–4830 and refrences thereinc) S. Veeraraghavan, F. D. Popp, J. Heterocycl. Chem. 1981, 18, 775–777; d) H. S. Kim, Y. Kurasawa, C. Yoshii, M. Masuyama, A. Takada, Y. Okamoto, J. Heterocycl. Chem. 1990, 27, 1115–1117; e) G. W. H. Cheeseman, M. Rafiq, J. Chem. Soc. C 1971, 2732– 2734.
- [11] a) A. Atfah, M. Y. Abu-Shuheil, J. Hill, *Tetrahedron* 1990, 46, 6483–6500; b) C. S. Yi, S. Y. Yun, *J. Am. Chem. Soc.* 2005, 127, 17000–17006; c) B. Kundu, D. Sawant, R. Chhabra, *J. Comb. Chem.* 2005, 7, 317–321.
- [12] A. R. Katritzky, X. F. Lan, J. Z. Yang, O. V. Denisko, *Chem. Rev.* 1998, 98, 409–548.
- [13] a) A. R. Katritzky, A. K. Verma, H. He, R. Chandra, J. Org. Chem. 2003, 68, 4938–4940; b) R. K. Tiwari, D. Singh, J. Singh, V. Yadav, A. K. Phatak, R. Dabur, A. Chhillar, R. Singh, G. L. Sharma, R. Chandra, A. K. Verma, Bioorg. Med. Chem. Lett. 2006, 16, 413–416; c) R. K. Tiwari, D. Singh, J. Singh, A. Chhillar, R. Chandra, A. K. Verma, Eur. J. Med. Chem. 2006, 41, 40–49; d) R. K. Tiwari, J. Singh, D. Singh, A. K. Verma, R. Chandra, Tetrahedron 2005, 61, 9513–9518; e) P. Chaudhary, R. Kumar, A. K. Verma, D. Singh, J. Yadav, A. Chillar, G. L. Sharma, R. Chandra, Bioorg. Med. Chem. 2006, 14, 1819–1826; f) A. K. Verma, J. Singh, V. K. Sankar, R. Chaudhary, R. Chandra, Tetrahedron Lett. 2007, 48, 4207–4210; g) A. K. Verma, J. Singh, R. Chaudhary, Tetrahedron Lett. 2007, 48, 7199–7202.
- [14] a) A. K. Verma, T. Keshwarwani, J. Singh, V. Tandon, R. C. Larock, Angew. Chem. 2009, 121, 1158; Angew. Chem. Int. Ed.

2009, *48*, 1138–1143; b) A. K. Verma, T. Aggarwal, V. Rustagi, R. C. Larock, *Chem. Commun.* **2010**, *46*, 4064–4066; c) A. K. Verma, V. Rustagi, T. Aggarwal, A. P. Singh, *J. Org. Chem.* **2010**, *75*, 7691–7703; d) A. K. Verma, M. Joshi, V. P. Singh, *Org. Lett.* **2011**, *13*, 1630–1633; e) V. Rustagi, T. Aggarwal, A. K. Verma, *Green Chem.* **2011**, *13*, 1640–1643; f) A. K. Verma, S. P. Shukla, J. Singh, V. Rustagi, *J. Org. Chem.* **2011**, *76*, 5670–5684.

[15] a) S. Butini, R. Budriesi, M. Hamon, E. Morelli, S. Gemma, M. Brindisi, G. Borrelli, E. Novellino, I. Fiorini, P. Ioan, A. Chiarini, A. Cagnotto, T. Mennini, C. Fracasso, S. Caccia, G. Campiani, *J. Med. Chem.* **2009**, *52*, 6946–6950; b) R. A. Smits, M. Adami, E. P. Istyastono, O. P. Zuiderveld, C. M. E. V. Dam, F. J. J. de Kanter, A. Jongejan, G. Coruzzi, R. Leurs, I. J. P. de Esch, *J. Med. Chem.* **2010**, *53*, 2390–2400.

[16] a) N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457–2483; b)
A. Suzuki, J. Organomet. Chem. 1999, 576, 147–168.

[17] R. F. Heck, Org. React. 1982, 27, 345–390. Received: July 12, 2011

Published Online: October 10, 2011