

Subscriber access provided by EDINBURGH UNIVERSITY LIBRARY | @ http://www.lib.ed.ac.uk

Article

Radical Dehydroxylative Alkylation of Tertiary Alcohols by Ti Catalysis

Hao Xie, Jiandong Guo, Yu-Quan Wang, Ke Wang, Peng Guo, Pei-Feng Su, Xiaotai Wang, and Xing-Zhong Shu

J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.0c07492 • Publication Date (Web): 04 Sep 2020

Downloaded from pubs.acs.org on September 4, 2020

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Radical Dehydroxylative Alkylation of Tertiary Alcohols by Ti Catalysis

Hao Xie,^{†,a} Jiandong Guo,^{†,b} Yu-Quan Wang,^a Ke Wang,^a Peng Guo,^a Pei-Feng Su,^a Xiaotai Wang,^{*,b,c} Xing-Zhong Shu^{*,a}

^aState Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China.

^bHoffmann Institute of Advanced Materials, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, China

^cDepartment of Chemistry, University of Colorado Denver, Campus Box 194, P. O. Box 173364, Denver, Colorado 80217-3364, United States

KEYWORDS. Radical, Alkylation, Tertiary Alcohol, Quaternary Carbon, Titanium

ABSTRACT: Deoxygenative radical C–C bond-forming reactions of alcohols are a long-standing challenge in synthetic chemistry, and the current methods rely on multistep procedures. Herein, we report a direct dehydroxylative radical alkylation reaction of tertiary alcohols. This new protocol shows the feasibility of generating tertiary carbon radicals from alcohols and offers an approach for the facile and precise construction of all-carbon quaternary centers. The reaction proceeds with a broad substrate scope of alcohols and activated alkenes. It can tolerate a wide range of electrophilic coupling partners, including allylic carboxylates, aryl and vinyl electrophiles, and primary alkyl chlorides/bromides, making the method complementary to the cross-coupling procedures. The method is highly selective for the alkylation of tertiary alcohols (benzyl alcohols included) and phenols intact. The synthetic utility of the method is highlighted by its 10-gram-scale reaction and the late-stage modification of complex molecules. A combination of experiments and DFT calculations establishes a plausible mechanism implicating a tertiary carbon radical generated via Ti-catalyzed homolysis of the C–OH bond.

1. INTRODUCTION

All-carbon quaternary centers are a key structural element of a wide range of pharmaceuticals and natural products. However, the construction of such quaternary carbon centers remains a formidable challenge in synthetic chemistry due to the steric repulsion between the four carbon substituents.¹ Among the various approaches that can be used to achieve this construction, the bimolecular reaction of tertiary carbon radicals with carbon fragments is a straightforward method.² These alkyl radicals are usually generated from halide precursors.^{2,3} However, the synthesis of complex tertiary alkyl halides can be complicated by competing side reactions (e.g., elimination, rearrangement). Consequently, the development of alternative strategies for producing carbon radicals using stable, readily available, and especially naturally occurring functional groups could have a substantial impact on organic synthesis.4,5

Alcohols are among the most accessible organic compounds, and they occur widely in medicines and natural products. The development of new radical C–C bond-forming reactions from tertiary alcohols has synthetic appeal, yet it remains a long-term challenge (Scheme 1a).⁶ The feasibility of this chemistry was first

Scheme 1. Deoxygenative Radical C-C Bond-Forming Reactions of Tertiary Alcohols

(a) Previous work: Reactions with preactivated alcohols

(b) This work: Catalytic deydroxylative alkylation of tertiary alcohols

$$\begin{array}{c} R^{2} & \text{OH} \\ R^{3} I \\ R^{1} \end{array} \xrightarrow{[Ti]} Zn, \text{ TESCI} \end{array} \begin{bmatrix} R^{1} & \begin{array}{c} R^{2} \\ R^{2} \\ R^{2} \end{bmatrix} \xrightarrow{\begin{subarray}{c} E \\ R^{2} \\ R^{3} \end{bmatrix} \xrightarrow{\begin{subarray}{c} E \\ R^{3} \\ R^{3} \end{bmatrix} } \begin{array}{c} R^{2} \\ R^{3} \\ R^{3} \\ R^{3} \end{bmatrix}$$

established in 1985 by Barton using tert-alkyl Nhydroxypyridine-2-thionyl oxalates to generate radicals from alcohols.⁷ Later on, the deoxygenative alkylation of hydroxyl groups via xanthates was reported by Togo.⁸ In 2013, Overman et al. introduced N-phthalimidoyl oxalate derivatives of tertiary alcohols for catalytic radical alkylation with activated alkenes.⁹ Inspired by these discoveries, the groups of Overman and MacMillan as well as Gong have recently achieved the formation of tertiary

60

carbon radicals from alkyl cesium oxalates¹⁰ and methyl oxalates,¹¹ respectively. These methods have also found promising applications in the total synthesis of natural products.¹² Despite the advances over the years, the existing methods for generating carbon radicals from alcohols typically require multistep synthetic procedures.

Herein, we report, for the first time to our knowledge, a catalytic radical dehydroxylative C–C bond-forming reaction of tertiary alcohols and alkenes.¹³ This new method is simple and efficient in comparison with the previous protocols. It demonstrates usefulness for the construction of all-carbon quaternary centers, with a broad substrate scope of alcohols and activated alkenes.

2. RESULTS AND DISCUSSION

2.1 Reaction Optimization. We recently achieved the reductive functionalization of several aliphatic C–O electrophiles, including benzyl oxalates,^{14a} primary and secondary alkyl sulfonates,^{14b} and allylic alcohols.^{14c} We then set out to explore whether it would be possible to use tertiary alcohols for reductive C–C bond formation. We focused on making use of titanium catalysis because titanium complexes are powerful reducing catalysts for a broad range of radical reactions of conventional C–O electrophiles (e.g., epoxides and ketones).¹⁵ There are also several reports on the Cp₂TiCl₂-catalyzed deoxygenation of alcohols¹⁶ and dehydroxylative alkylation of activated substrates such as hemiaminals and benzylic alcohols.^{13,17} Nevertheless, the dehydroxylative reaction of unactivated tertiary alcohols has not yet been achieved.

We began our investigation by studying the reaction of alcohol 1a with ethyl acrylate 2a (Table 1). After screening a range of reaction conditions, we determined that the combination of Cp*TiCl₃ (10 mol %), TESCl (3.0 equiv) and Zn (3.0 equiv) in THF (0.4 M) afforded the best results (entry 1). A combination of electronic and steric factors appeared to govern the efficiency of the titanium catalysts. The sterically hindered Cp*2TiCl2 decreased the yield to 43%, whereas its less electron-rich counterpart Cp₂TiCl₂ lowered the yield further to 26% (entries 2 and 3). CpTiCl₃ $[E_{1/2}(IV/III) = -0.82 V]$, which is less reducing than Cp*TiCl₃ $[E_{1/2}(IV/III) = -1.12 V]$,¹⁸ resulted in the lowest yield of 3a and recovery of alcohol 1a (entry 4). The trialkylsilyl halide additive plays an essential role in this catalytic process. The reaction afforded 3a in 58% yield using TESBr (entry 5). When TBSCl was used, only 22% of 3a was obtained, with most of alcohol 1a recovered (entry 6). DFT calculations suggest that the large steric hindrance of TBSCl would hinder the regeneration of Cp*TiCl₃ from Cp*Ti(OH)Cl₂ (See Figure S1 in SI for details), the rate-determine step of this reaction (see below). The use of TMSCI afforded 3a in 41% yield, with a large quantity of dehydration byproduct generated (entry 7). We speculated that TMSCl could react with nucleophilic species to produce HCl that promotes the dehydration of the tertiary alcohols. A combination of Cp*TiCl₃ with Et₃N·HCl in toluene proved to be effective in the radical alkylation of tertiary chlorides.^{3h} However, in our reaction system, the use of Et₃N·HCl or Coll·HCl

instead of TESCl led to the facile dehydration of the alcohol substrate (entries 8 and 9). Only the dehydration byproduct was obtained when toluene was used as a solvent (entry 10). The reaction in DME afforded **3a** in 58% yield (entry 11). The yield of **3a** decreased to 6% when the reaction was performed at 30 °C (entry 12). No desired product was obtained when Mn was used as a reductant (entry 13). The addition of 5 Å molecular sieves probably helped remove H_2O or HCl generated in situ, thus inhibiting the dehydration side reaction and improving the desired product yield (entry 14). The control experiments revealed that TESCl, the Ti catalyst, and Zn are all required for the dehydroxylative alkylation of tertiary alcohols (entries 15–17).

Table 1 Ti-Catalyzed Dehydroxylative Alkylation of 1a and $2\mathbf{a}^a$

OH Me	Cp*TiCl ₃ (10 mol%) TESCI (3.0 equiv)	Me	CO ₂ Et	Me
1a	Zn (3.0 equiv), 5 Å (30 mg) 2a (1.5 equiv) THF (0.4 M), 60 °C, 12 h	3a		4a
entry	change of conditions	3a (%)	4a (%)	1a (%)
1	None	65 (62) ^b	24	6
2	Cp* ₂ TiCl ₂ instead of Cp*TiCl ₃	43	32	10
3	$Cp_{2}TiCl_{2} instead \ of \ Cp^{*}TiCl_{3}$	26	35	16
4	CpTiCl ₃ instead of Cp*TiCl ₃	24	12	61
5	TESBr instead of TESCl	58	23	trace
6	TBSCl instead of TESCl	22	16	50
7	TMSCl instead of TESCl	41	57	trace
8	Et_3N ·HCl instead of TESCl	0	73	9
9	Coll·HCl instead of TESCl	0	85	13
10	toluene instead of THF	0	82	0
11	DME instead of THF	58	31	trace
12	30 °C instead of 60 °C	6	19	57
13	Mn instead of Zn	0	21	76
14	No 5 Å molecular sieves	51	43	0
15	No TESCl	trace	trace	91
16	No Ti catalyst	0	31	65
17	No Zn	0	24	73

^{*a*}**1a** (0.2 mmol) was used, reaction time was 12 h, and the yields were determined by GC analysis with hexadecane as internal standard. ^{*b*}Isolated yield.

2.2 The Substrate Scope of Tertiary Alcohols and Activated Alkenes. With the optimal conditions in hand, we studied the scope of the reaction for tertiary alcohols (Table 2). Cyclic alcohols, ranging from four- to eightmembered rings, were coupled with 2a to afford the target products in moderate to good yields (1b–1f). A larger ringsized alcohol, cyclododecanol, afforded an alkylated product in moderate yield (1g). A polycyclic alcohol, 2-methyl-2-adamantanol, afforded an alkylated product in 92% yield (1h). It is noteworthy that the reaction could be

2

3

4

5

6

7

run on a 10-g scale to afford 13.6 g of the desired product (78% yield) (1h).

^{*a*}Alcohol **1** (0.2 mmol) was used, reaction time was 12 h; the yields were isolated yields. ^{*b*}The reaction was run on a 10-g scale, and Cp*TiCl₃ (8 mol%) and 5 Å (10.5 g) were used. ^ctert-Butanol (**1i**, 2.0 equiv) and benzyl acrylate (**2b**, 0.2 mmol) were used. ^{*d*}**3aa** (13:1 d.r.). ^{*e*}The stereochemistry was not assigned. ^{*f*}**3ab** (> 20:1 d.r.). ^{*g*}Gomisin A (**1ad**, 6 mg) was used, **3ad** (1.8:1 d.r.).

A wide range of acyclic tertiary alcohols underwent this coupling reaction with high efficiency (**1i**-**1v**). The reaction proved to be insensitive to the steric hindrance around the site of radical generation. Tertiary alcohols, ranging from the smallest tertiary butanol (**1i**) to sterically hindered substrates (**1j**-**1n**), all provided the respective products in good yields. The functionalities present in electron-rich arenes (**10**, **1p**, **1ad**), terminal alkene (**1q**), esters (**1r**, **1v**), organosilane (**1t**), and aryl fluoride (**1u**), were all tolerated.

The reactions of secondary alcohols **1w** and **1x** did not give any desired product, but resulted in R–OTES in 17% and 23% yield, respectively. Benzyl alcohols could be reactive towards low-valent titanium reagents;¹³ however, under our reaction conditions, no coupling product was obtained from **1y** and R–OTES was produced in 36% yield. The unreacted alcohols **1w**-**1y** were mostly recovered. The reaction of secondary benzyl alcohol **1z** afforded the coupling product in 32% yield, with the unreacted alcohol mostly recovered.

The tertiary alcohol functionality is a common structural motif found in various biologically active compounds. It can also be readily introduced during the total synthesis of natural products. This motivated us to apply our method to the late-stage construction of quaternary carbons in the tertiary alcohols **1aa–1ad**, which are natural products or their derivatives. The (-)-menthone and pregnenolonederived alcohols **1aa** and **1ac** gave synthetically useful yields. (+)-cedrol (**1ab**) and Gomisin A (**1ad**) were converted to quaternary products in a single step. It is worth noting that the sterically hindered **1aa** and **1ab** were alkylated with high diastereoselectivity.

The scope of activated alkenes is shown in Table 3. As expected, various acrylates were useful acceptors and afforded the desired coupling products in approximately 90% yields (entries 1 and 2). The allylic carboxylates are highly reactive towards low-valent transition metal complexes and have been widely applied in the Tsuji-Trost reaction.19 This moiety was compatible with our Ticatalyzed reaction (entry 2). The reactions of α -aryl, -fluoro, or -alkyl substituted acrylates afforded quaternary products in 84-93% yields (entries 3-7). The use of the fluoro-substrate **2f** provided a facile installation of the α fluoro ester group at the quaternary carbon (entry 4).²⁰ The enol carboxylate and alkyl chloride moieties were tolerated (entries 6 and 7). Unsaturated ketone 2j and vinyl sulfone **2k** did not give any desired product (entries 8 and 9). The reactions of unsaturated amide 2l and styrene 2m afforded the desired products in low yields (entries 10 and 11). Other electron-deficient alkenes, such as acrylonitrile 2n, 1,1diphenylethylene 20, and vinyl phosphonates 2p, all worked well (entries 12-14).

Although rarely reported in the literature, β -alkyl substituted acrylate **2q** could be used as a coupling partner in this reaction (entry 15). Cyclic acceptors could also be utilized (entries 16-19). The reactions of cyclic tertiary alcohol **1e** with furan-2(5H)-one **2s** and 5,6-dihydro-2H-pyran-2-one **2t** enabled Csp³–Csp³ bond formation between two rings, generating a new quaternary stereocenter, which otherwise would be hard to realize in organic synthesis (entries 17 and 18).^{2c} An attempt at forging a Csp³–Csp³ bond between the two quaternary carbons has not been successful as yet (entry 20). Acrylates derived from 1-hydroxypyrene and (+)- α -tocopherol both worked well (entries 21 and 22).

^{*a*}Conditions as shown in Table 1, isolated yields. ^{*t*}BuOH (11, 2.0 equiv) was used for alkenes **2p–2r**, **2w**, and **2x**. Alcohol **1h** (0.2 mmol, 1.0 equiv) was used for reactions with volatile alkenes. Cyclic alcohol **1e** (0.2 mmol, 1.0 equiv) was used for the formation of bicyclic products. ^{*b*}Acrylonitrile (2.0 equiv) was used. ^{*c*}tert-Butanol (11, 4.0 equiv) was used.

2.3 The Chemoselectivity. Transition metal-catalyzed cross-coupling represents one of the most powerful tools for C–C bond formation.²¹ Our studies demonstrate that this Ti-catalyzed dehydroxylative alkylation of tertiary alcohol offers a selectivity that is complementary to other cross-coupling methods (Table 4). Aryl electrophiles, including chlorides, bromides, iodides, triflates, and pivalates, are frequently used in the cross-coupling reactions.^{3,21} These functionalities were all tolerated under

our reaction conditions (entries 1–5). The same was also true of vinyl electrophiles, including a highly reactive triflate, and the tertiary alcohols were selectively alkylated (entries 6–8). Terminal alkynes, although known to be reactive towards many transition metal complexes,²² were compatible with our reaction (entry 9). The primary alkyl chloride **1ak** was tolerated well (entry 10). The alkyl bromide **1al** was partly activated to afford the bis-alkylated byproduct in 29% yield,²³ along with 41% of the desired product (entry 11). Secondary alkyl chlorides generally performed poorly, as shown by entry 12 giving only traces of the desired product alongside the bis-alkylated byproduct (52%).

Polyalcohols are a ubiquitous structural motif found in a wide range of natural products. This encouraged us to explore the possibility of selectively functionalizing a tertiary alcohol in the presence of other hydroxyl groups, such as primary/secondary alcohols and phenols (Table 5). The high selectivity was observed when different diols were employed, where the primary and secondary alcohols remained intact (entries 1–7). In these cases, moderate yields of desired products were generally obtained, and dehydration of the tertiary alcohols was the major side reaction. It was possible that the less sterically hindered OH group reacted with TESCI to produce traces of HCl, which then promoted the dehydration of tertiary alcohols.

 Table 4. Chemoselectivity Complementary to the

 Transition Metal-Catalyzed Cross-Couplings.^a

^aConditions as shown in Table 1, isolated yields. Ethyl acrylate **2a** was used for reactions with alcohols, and ^tBuOH **1i** (2.0 equiv) was used for reactions with alkenes. ^bMethyl acrylate **2c** was used. ^cAlcohol **1h** was used.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

60

Table 5. Selective Alkylation of Diols.^a

^{*a*}Conditions as shown in Table 1, TESCI (5.0 equiv) and THF (0.3 M) was used, isolated yields. ^{*b*}Conditions as shown in Table 1, ^{*t*}BuOH 1i (4.0 equiv) was used.

Indeed, a small amount of RO–SiEt₃ was detected, where the RO moiety derived from primary and secondary alcohols. Activated secondary alcohols such as benzylic/ allylic/propargylic alcohols were not tolerated. The benzylic alcohol **1au** gave only trace of the desired product and 43% of the bis-alkylated byproduct (entry 8), and the allylic and propargylic alcohols **1av** and **1aw** were totally incompatible, resulting in unidentifiable mixtures (entries 9 and 10). The presence of phenol groups was tolerated by the reaction (entries 11 and 12). The incorporation of phenol and alcohol groups into alkene substrates was also tolerated (entries 12 and 13). The unique selectivity shown by this method makes up for the Ti-catalyzed alkylation of tertiary chlorides, where the presence of an alcohol or phenol group would impede the reaction.^{3h}

2.4 Mechanistic Studies. The radical clock experiments were performed to determine whether a radical process was involved in this dehydroxylative alkylation reaction. The reaction of 'BuOH with the α -cyclopropylstyrene 5, a well-known radical clock substrate probe,²⁴ gave ring-expanded product 6 under the standard conditions (Scheme 2a). In addition, the reaction of the cyclopropyl alcohol 9 with 2e exclusively produced the ring opening product 10 (Scheme 2b). These results suggest that the

tertiary alcohols were activated by the Ti catalyst via a radical mechanism.

Scheme 2. Radical Clock Experiments.

The substitution reaction of a tertiary alcohol with a chloride could yield the corresponding tertiary alkyl chloride that is prone to radical formation.^{3h} Thus, we considered the possible chlorination reaction of 1c with each chloride species (i.e., Cp*TiCl₃, Cp*TiCl₂, and Et₃SiCl), which would produce 1-methylcyclopentyl chloride (Scheme 3a). Thermodynamically these reactions would have no driving force, as shown by the computed free energy changes (> o), and kinetically no pathways could be found. Experimentally, no tertiary alkyl chlorides could be observed by GC-MS analysis during the reactions. Furthermore, under the standard conditions without a reductant, the reactions of a range of alcohols did not yield any chlorination product even after 12 h (Scheme 3b). Taken together, these results essentially rule out a mechanism involving the intermediacy of tertiary alkyl chlorides.

Scheme 3. Chlorination Pathway Ruled Out by DFT Calculations and Controlled Experiments.

(a) The DFT calculations

11a, <mark>0</mark>%

11b, <mark>0</mark>%

The density functional theory (DFT) calculations support the mechanistic proposal that a carbon radical is generated from the alcohol substrate via a single-electron transfer (SET) reaction with a Ti(III) species (Figure 1). The precatalyst Cp*TiCl₃ is reduced by zinc to Cp*TiCl₂, which binds the alcohol substrate **1c** through the oxygen donor

11c, <mark>0</mark>%

11d, <mark>0</mark>%

11e, 0%

Figure 1. Free energy profile for the Ti(III)-catalyzed generation of 1-methylcyclopentyl radical from 1methylcyclopentyl alcohol. Selected bond distances in blue font are given in Å. The numbers in red font on selected atoms in IM1 and TS1 denote spin densities.

atom to form **IM1**. **IM1** undergoes a facile intramolecular titanium-to-hydroxy SET via **TS1** (Δ G[‡] = 11.3 kcal/mol relative to **IM1**). The spin densities on the selected atoms in **TS1** indicate that it contains an emerging 1methylcyclopentyl radical with a spin density of 0.39 on the tertiary carbon. With release of the radical, **TS1** proceeds to the titanium(IV) complex Cp*Ti(OH)Cl₂ (**IM2**), which is turned over to Cp*TiCl₃ by metathesis with Et₃SiCl via the four-member transition state **TS2**. This is the ratedetermining step with a free energy of activation of 28.1 kcal/mol. Reduction of Cp*TiCl₃ by zinc regenerates the active catalyst Cp*TiCl₂ for the next cycle of catalysis.

The DFT-calculated energy barrier for converting $Cp^{*}Ti(OH)Cl_{2}$ into $Cp^{*}TiCl_{3}$ for subsequent reduction to $Cp^{*}TiCl_{2}$ is 28.1 kcal/mol (**TS2** – **IM2**) and rate-limiting. This is considerably higher than the energy barrier of 11.3

Scheme 4. Stoichiometric Reaction at Room Temperature^a

^aIsolated yields.

1 2

3

4

5

6

7

8

9

10

11

12

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51 52

53

54

55

60

kcal/mol required for the radical-forming C-OH homolysis (TS1 – IM1). To check with this calculation, we performed stoichiometric reactions of randomly selected alcohols with Cp*TiCl₂ (Scheme 4). In contrast to the catalytic reactions that require an elevated temperature of 60 °C (Table 1, entries 1 vs 12), these stoichiometric reactions proceeded well at 30 °C. Furthermore, kinetic measurements showed that the reaction was significantly accelerated by increasing the amount of TESCI (Scheme S₃), suggesting TESCl involvement in the rate-determining step. In summary, the DFT computational results generally agree with experiments, showing good experimental-theoretical synergy.

On the basis of the above findings and the literature reports, we propose a catalytic cycle as shown in Scheme 5. Coordination of an alcohol to Cp^*TiCl_2 gives the complex **A**, which undergoes an intramolecular single-electron transfer, affording a carbon radical and $Cp^*Ti(OH)Cl_2$.^{13,16} Reaction of the carbon radical with an activated alkene generates the radical **B**, which is subsequently reduced and protonated to deliver the desired product, probably assisted by Ti catalysis.^{3h} TESCl is used to regenerate Cp^*TiCl_3 from $Cp^*Ti(OH)Cl_2$.¹⁵ Reduction of Cp^*TiCl_3 by Zn generates the active Cp^*TiCl_2 species.

Scheme 5. Proposed Mechanism

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

3. CONCLUSION

In conclusion, we have developed the first dehydroxylative radical C-C bond-forming reaction of unactivated tertiary alcohols and therefore established a new method for constructing all-carbon quaternary centers directly from an alcohol. The protocol is distinguished by its broad substrate scope, excellent chemoselectivity, high diastereoselectivity in the modification of sterically hindered complex molecules, and 10-gram-scale reaction. The reaction is highly selective for the alkylation of tertiary alcohols, leaving secondary/primary alcohols and phenols intact. It therefore constitutes a new and complementary bond disconnection strategy that is likely to find broad synthetic applications, particularly because of the easy availability of alcohols in both the natural world and the synthetic realm. The mechanistic probe reveals a plausible pathway involving a tertiary carbon radical generated via Ticatalyzed homolysis of the C-OH bond. Work on the further expansion of the scope of coupling partners is in progress in our laboratory.

ASSOCIATED CONTENT

Supporting Information

Parts of the mechanistic studies, detailed experimental procedures, characterization data, copies of 'H and '³C NMR spectra for new compounds, and computational methods and data are available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Authors

shuxingzh@lzu.edu.cn xiaotai.wang@ucdenver.edu

Author Contributions

+ These authors contributed equally.

Notes

The authors declare no competing financial interests.

ACKNOWLEDGMENTS

We acknowledge financial support for this work from the National Natural Science Foundation of China (21772072 and 21502078); the Lanzhou University; the Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic; and the University of Colorado Denver. We are grateful to Professors Xue-Yuan Liu and Wei Yu (Lanzhou University) for helpful discussions.

REFERENCES

(1) (a) Quaternary Stereocenters – Challenges and Solutions for Organic Synthesis; Christoffers, J., Baro, A., Eds.; Wiley-VCH: Weinheim, 2005. (b) Quasdorf, K. W.; Overman, L. E. Catalytic enantioselective synthesis of quaternary carbon stereocentres. *Nature* 2014, 516, 181.

(2) (a) Radical Reactions in Organic Synthesis; Zard, S. Z., Eds.; Oxford: New York, 2003. (b) Srikanth, G. S. C.; Castle, S. L. Advances in radical conjugate additions. *Tetrahedron* 2005, *61*, 10377. (c) Jamison, C. R.; Overman, L. E. Fragment Coupling with Tertiary Radicals Generated by Visible-Light Photocatalysis. *Acc. Chem. Res.* **2016**, *49*, 1578. (d) Yan, M.; Lo, J. C.; Edwards, J. T.; Baran, P. S. Radicals: Reactive Intermediates with Translational Potential. *J. Am. Chem. Soc.* **2016**, *138*, 12692.

(3) Selected reviews: (a) Frisch, A. C., Beller, M. Catalysts for cross-coupling reactions with non-activated alkyl halides. Angew. Chem. Int. Ed. 2005, 44, 674. (b) Iwasaki, T., Kambe, N. Nicatalyzed C-C couplings using alkyl electrophiles. Top Curr Chem (Z), 2016, 374, 66. (c) Gu, J.; Wang, X.; Xue, W.; Gong, H. Nickelcatalyzed reductive coupling of alkyl halides with other electrophiles: concept and mechanistic considerations. Org. Chem. Front. 2015, 2, 1411. (d) Fu, G. C. Transition-Metal Catalysis of Nucleophilic Substitution Reactions: A Radical Alternative to SN1 and SN2 Processes. ACS Cent. Sci. 2017, 3, 7692. Selected examples: (e) Zultanski, S. L.; Fu, G. C. Nickel-Catalyzed Carbon-Carbon Bond-Forming Reactions of Unactivated Tertiary Alkyl Halides: Suzuki Arylations. J. Am. Chem. Soc. 2013, 135, 624. (f) Nishikata, T.; Noda, Y.; Fujimoto, R.; Sakashita, T. An Efficient Generation of a Functionalized Tertiary-Alkyl Radical for Coppercatalyzed Tertiary-Alkylative Mizoroki-Heck type Reaction. J. Am. Chem. Soc. 2013, 135, 16372. (g) Wang, X.; Wang, S.; Xue, W.; Gong, H. Nickel-Catalyzed Reductive Coupling of Aryl Bromides with Tertiary Alkyl Halides. J. Am. Chem. Soc. 2015, 137, 11562. (h) Wu, X.; Hao, W.; Ye, K.-Y.; Jiang, B.; Pombar, G.; Song, Z.; Lin, S. Ti-Catalyzed Radical Alkylation of Secondary and Tertiary Alkyl Chlorides Using Michael Acceptors. J. Am. Chem. Soc. 2018, 140, 14836.

(4) Selected examples on forming carbon radicals from carboxylic acids: (a) Schnermann, M. J.; Overman, L. E. A Concise Synthesis of (-) - Aplyviolene Facilitated by a Strategic Tertiary Radical Conjugate Addition. Angew. Chem., Int. Ed. 2012, 51, 9576. (b) Chu, L.; Ohta, C.; Zuo, Z.; MacMillan, D. W. C. Carboxylic Acids as A Traceless Activation Group for Conjugate Additions: A Three-Step Synthesis of (±)-Pregabalin. J. Am. Chem. Soc. 2014, 136, 10886. (c) Qin, T.; Cornella, J.; Li, C.; Malins, L. R.; Edwards, J. T.; Kawamura, S.; Maxwell, B. D.; Eastgate, M. D.; Baran, P. S. A general alkyl-alkyl cross-coupling enabled by redox-active esters and alkylzinc reagents. Science 2016, 352, 801. (d) Huihui, K. M. M.; Caputo, J. A.; Melchor, Z.; Olivares, A. M.; Spiewak, A. M.; Johnson, K. A.; DiBenedetto, T. A.; Kim, S.; Ackerman, L. K. G.; Weix, D. J. Decarboxylative Cross-Electrophile Coupling of N-Hydroxyphthalimide Esters with Aryl Iodides. J. Am. Chem. Soc. 2016, 138, 5016. (e) Edwards, J. T.; Merchant, R. R.; McClymont, K. S.; Knouse, K. W.; Qin, T.; Malins, L. R.; Vokits, B.; Shaw, S. A.; Bao, D.-H.; Wei, F.-L.; Zhou, T.; Eastgate, M. D.; Baran, P. S. Decarboxylative alkenylation. Nature 2017, 545, 213.

(5) Selected examples on forming carbon radicals from amines: (a) Basch, C. H.; Liao, J.; Xu, J.; Piane, J. J.; Watson, M. P. Harnessing Alkyl Amines as Electrophiles for Nickel-Catalyzed Cross Couplings via C–N Bond Activation. *J. Am. Chem. Soc.* 2017, *139*, 5313. (b) Klauck, F. J. R.; James, M. J.; Glorius, F. Deaminative Strategy for the Visible - Light - Mediated Generation of Alkyl Radicals. *Angew. Chem., Int. Ed.* 2017, *56*, 12336. (c) Wu, J.; He, L.; Noble, A.; Aggarwal, V. K. Photoinduced Deaminative Borylation of Alkylamines. *J. Am. Chem. Soc.* 2018, *140*, 10700. (d) He, R.-D.; Li, C.-L.; Pan, Q.-Q.; Guo, P.; Liu, X.-Y.; Shu, X.-Z. Reductive Coupling between C–N and C–O Electrophiles. *J. Am. Chem. Soc.* 2019, *141*, 12481.

(6) McCombie, S. W.; Motherwell, W. B.; Tozer, M. J. The Barton-McCombie Reaction. In Organic Reactions; John Wiley & Sons, Inc.: Hoboken, NJ, 2012, 77, 161-591.

(7) Barton, D. H. R.; Crich, D. Formation of Quaternary Carbon Centers from Tertiary Alcohols by Free Radical Methods. *Tetrahedron Lett.* **1985**, *26*, 757. (8) (a) Togo, H.; Matsubayashi, S.; Yamazaki, O.; Yokoyama, M. Deoxygenative Functionalization of Hydroxy Groups via Xanthates with Tetraphenyldisilane. *J. Org. Chem.* **2000**, *65*, 2816. (b) Vara, B. A.; Patel, N. R.; Molander, G. A. O-Benzyl Xanthate Esters under Ni/Photoredox Dual Catalysis: Selective Radical Generation and Csp³–Csp² Cross-Coupling. *ACS Catal.* **2017**, *7*, 3955.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

(9) Lackner, G. L.; Quasdorf, K. W.; Overman, L. E. Direct Construction of Quaternary Carbons from Tertiary Alcohols via Photoredox-Catalyzed Fragmentation of tert-Alkyl N-Phthalimidoyl Oxalates. *J. Am. Chem. Soc.* **2013**, *135*, *15342*.

(10) (a) Nawrat, C. C.; Jamison, C. R.; Slutskyy, Y.; MacMillan,
D. W. C.; Overman, L. E. Oxalates as Activating Groups for Alcohols in Visible Light Photoredox Catalysis: Formation of Quaternary Centers by Redox-Neutral Fragment Coupling. *J. Am. Chem. Soc.* 2015, *137*, 11270. (b) Zhang, X.; MacMillan, D. W. C.
Alcohols as Latent Coupling Fragments for Metallaphotoredox Catalysis: sp3-sp2 Cross-Coupling of Oxalates with Aryl Halides. *J. Am. Chem. Soc.* 2016, *138*, 13862.

(11) (a) Ye, Y.; Chen, H.; Sessler, J. L.; Gong, H. Zn-Mediated Fragmentation of Tertiary Alkyl Oxalates Enabling Formation of Alkylated and Arylated Quaternary Carbon Centers. *J. Am. Chem. Soc.* **2019**, *141*, 820. (b) Gao, M.; Sun, D.; Gong, H. Ni-Catalyzed Reductive C–O Bond Arylation of Oxalates Derived from α -Hydroxy Esters with Aryl Halides. *Org. Lett.* **2019**, *21*, 1645. (c) Friese, F. W.; Studer, A. Deoxygenative Borylation of Secondary and Tertiary Alcohols. *Angew. Chem., Int. Ed.* **2019**, *58*, 9561.

(12) (a) Sunazuka, T.; Yoshida, K.; Kojima, N.; Shirahata, T.; Hirose, T.; Handa, M.; Yamamoto, D.; Harigaya, Y.; Kuwajima, I.; Ōmura, S. Total synthesis of (-)-physovenine from (-)-3ahydroxyfuroindoline. *Tetrahedron Lett.* 2005, *46*, 1459. (b) Slutskyy, Y.; Jamison, C. R.; Lackner, G. L.; Müller, D. S.; Dieskau, A. P.; Untiedt, N. L.; Overman, L. E. Short Enantioselective Total Syntheses of trans-Clerodane Diterpenoids: Convergent Fragment Coupling Using a trans-Decalin Tertiary Radical Generated from a Tertiary Alcohol Precursor. *J. Org. Chem.* 2016, *81*, 7029. (c) Slutskyy, Y.; Jamison, C. R.; Zhao, P.; Lee, J.; Rhee, Y. H.; Overman, L. E. Versatile Construction of 6-Substituted cis-2,8-Dioxabicyclo[3.3.0]octan-3-ones: Short Enantioselective Total Syntheses of Cheloviolenes A and B and Dendrillolide C. *J. Am. Chem. Soc.* 2017, *139*, 7192.

(13) Ukaji and co-workers have recently reported an example of stoichiometric radical alkylation of a benzylic tertiary alcohol using TiCl₄(collidine) (2.0 equiv). see: Suga, T.; Shimazu, S.; Ukaji, Y. Low-Valent Titanium-Mediated Radical Conjugate Addition Using Benzyl Alcohols as Benzyl Radical Sources. *Org. Lett.* 2018, 20, 5389.

(14) (a) Yan, X. B.; Li, C. L.; Jin, W. J.; Guo, P.; Shu, X.-Z. Reductive coupling of benzyl oxalates with highly functionalized alkyl bromides by nickel catalysis. *Chem. Sci.* **2018**, *9*, 4529. (b) Duan, J.; Du, Y.-F.; Pang, X.; Shu, X.-Z. Ni-catalyzed crosselectrophile coupling between vinyl/aryl and alkyl sulfonates: synthesis of cycloalkenes and modification of peptides. *Chem. Sci.* **2019**, *10*, 8706. (c) Jia, X. G.; Guo, P.; Duan, J.; Shu, X.-Z. Dual nickel and Lewis acid catalysis for cross-electrophile coupling: the allylation of aryl halides with allylic alcohols. *Chem. Sci.* **2018**, *9*, 640.

(15) For selected recent reviews, see: (a) Morcillo, S. P.; Miguel, D.; Campaña, A. G.; Álvarez de Cienfuegos, L.; Justicia, J.; Cuerva, J. M. Recent applications of Cp₂TiCl in natural product synthesis. *Org. Chem. Front.* 2014, 1, 15. (b) Streuff, J.; Gansäuer, A. Metal-Catalyzed b-Functionalization of Michael Acceptors through Reductive Radical Addition Reactions. *Angew. Chem. Int. Ed.* 2015, 54, 14232. (c) Castro Rodríguez, M.; Rodríguez García, I.; Rodríguez Maecker, R. N.; Pozo Morales, L.; Oltra, J. E.; Rosales Martínez, A. Cp₂TiCl: An Ideal Reagent for Green Chemistry? *Org. Process Res. Dev.* 2017, 21, 91. (d) Botubol-Ares, J. M.; Durán-Peña,

M. J.; Hanson, J. R.; Hernández-Galán, R.; Collado, I. G. $Cp_2Ti(III)Cl$ and Analogues as Sustainable Templates in Organic Synthesis. *Synthesis* **2018**, 50, 2163.

(16) Diéguez, H. R.; López, A.; Domingo, V.; Arteaga, J. F.; Dobado, J. A.; Herrador, M. M.; Quílez del Moral, J. F.; Barrero, A. F. Weakening C-O Bonds: Ti(III), a New Reagent for Alcohol Deoxygenation and Carbonyl Coupling Olefination. *J. Am. Chem. Soc.* **2010**, *132*, 254.

(17) Zheng, X.; Dai, X.-J.; Yuan, H.-Q.; Ye, C.-X.; Ma, J.; Huang, P.-Q. Umpolung of Hemiaminals: Titanocene-Catalyzed Dehydroxylative Radical Coupling Reactions with Activated Alkenes. *Angew. Chem. Int. Ed.* **2013**, *52*, 3494.

(18) Cp*TiCl₃ has seldom been investigated in Ti catalysis. For recent elegant work, see: Hao, W.; Wu, X.; Sun, J. Z.; Siu, J. C.; MacMillan, S. N.; Lin, S. Radical Redox-Relay Catalysis: Formal [3+2] Cycloaddition of N-Acylaziridines and Alkenes. *J. Am. Chem. Soc.* **2017**, *139*, 12141. Also, see ref. 3h.

(19) Trost, B. M.; Crawley, M. L. Asymmetric Transition-Metal-Catalyzed Allylic Alkylations: Applications in Total Synthesis. *Chem. Rev.* **2003**, *103*, 2921.

(20)Rozen, S.; Hagooly, A.; Harduf, R. Synthesis of r-Fluorocarboxylates from the Corresponding Acids Using Acetyl Hypofluorite. *J. Org. Chem.* **2001**, *66*, 7464.

(21) (a) Metal-Catalyzed Cross-coupling Reactions; Diederich, F., Stang, P. G., Eds.; Wiley-VCH: New York, **1998**. (b) Ref **3**.

(22) Modern Alkyne Chemistry. Catalytic and Atom-Economic Transformations, Trost, B.M. and Li, C.-J., Eds., Weinheim: Wiley, 2015.

(23) The structures of the bis-alkylated products (**3bk-1** from **1al**, **3bl-1** from **1am**, **3bt-1** from **1au**) can be found in the Supporting Information (pages S56, S57, and S61).

(24) (a) Liwosz, T. W.; Chemler, S. R. Copper-Catalyzed Oxidative Heck Reactions between Alkyltrifluoroborates and Vinyl Arenes. *Org. Lett.*, **2013**, *15*, 3034. (b) Feng, Z.; Min, Q.-Q.; Zhao, H.-Y.; Gu, J.-W.; Zhang, X. A General Synthesis of Fluoroalkylated Alkenes by Palladium - Catalyzed Heck - Type Reaction of Fluoroalkyl Bromides. *Angew. Chem. Int. Ed.* **2015**, *54*, 1270. (c) Ref 5d.

