Tetrahedron Letters 54 (2013) 1897-1898

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

An easy synthesis of α -trifluoromethyl-amines from aldehydes or ketones using the Ruppert-Prakash reagent

Dmytro S. Radchenko^{a,b}, Oleg M. Michurin^{a,b}, Anton V. Chernykh^{a,c}, Oleg Lukin^{d,*}, Pavel K. Mykhailiuk^{a,e,*}

^a Enamine Ltd, Aleksandr Matrosov St. 23, 01103 Kiev, Ukraine

^b The Institute of High Technologies, Kiev National Taras Shevchenko University, 4 Glushkov St., Building 5, 03187 Kiev, Ukraine

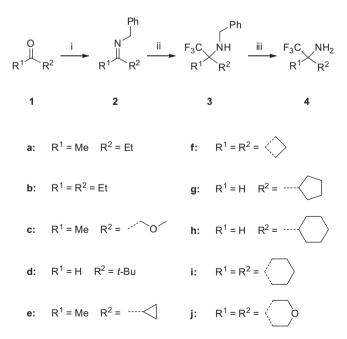
^c Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska St. 5, 02660 Kiev, Ukraine

^d ChemBioCenter, Kiev National Taras Shevchenko University, Volodymyrska St. 62, 01033 Kiev, Ukraine

^e Department of Chemistry, Kiev National Taras Shevchenko University, Volodymyrska St. 64, 01033 Kiev, Ukraine

ARTICLE INFO

Article history: Received 17 December 2012 Revised 21 January 2013 Accepted 31 January 2013 Available online 6 February 2013


Keywords: Trifluoromethylation Amines Imines Silicon One-pot synthesis

ABSTRACT

A small library of structurally diverse primary amines bearing a geminal CF₃ group was synthesized on a preparative scale. The synthesis starts with an aldehyde or ketone that reacts with benzylamine yielding the corresponding imine. The latter is then trifluoromethylated with Me₃SiCF₃ under acidic conditions to give a benzylalkylamine. In the last step the Pd-mediated hydrogenation of the benzylalkylamines furnishes the title compounds. All synthetic steps are high-yielding; neither the isolation of the intermediates nor the chromatographic purification of the products is necessary.

© 2013 Elsevier Ltd. All rights reserved.

Amines with a geminal trifluoromethyl group have attracted considerable attention in biochemistry as they are metabolically stable bioisosteres of the corresponding amides.¹ The majority of available synthetic approaches to α -trifluoromethylated amines involves the use of trifluoromethyl-substituted imines.² However, the preparation of the latter often constitutes a synthetic challenge on its own. An acid-catalyzed nucleophilic trifluoromethylation of various imines with Me₃SiCF₃, described in a recent report by Dilman and co-workers,³ provides a better alternative to the aforementioned method. A number of structurally diverse secondary amines³ (including cyclic examples⁴) bearing a geminal trifluoromethyl group were synthesized through this reaction. We have recently expanded the scope of Dilman's method to CF₃-functionalized primary amines by preparing two cyclobutane-based amino acids through the catalytic de-benzylation of the corresponding benzylalkylamine precursors.⁵ However, the procedure involved chromatographic purification of the imine and benzylalkylamine intermediates. In the present Letter, we report an improved procedure giving an easy access to primary amines possessing a geminal trifluoromethyl group from readily available carbonyl compounds and benzylamine. As shown in

Scheme 1. The preparation of primary amines possessing a geminal trifluoromethyl group. Reagents and conditions: (i) benzylamine, rt, (ii) Me_3SiCF_3 , KHF_2 , TFA, (iii) H_2 , 10% Pd/C.⁶

^{*} Corresponding authors. Tel.: +38 044 537 3218; fax: +38 044 537 3253.

E-mail addresses: oleg.lukin@univ.kiev.ua (O. Lukin), Pavel.Mykhailiuk@gmail. com (P.K. Mykhailiuk).

^{0040-4039/\$ -} see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2013.01.132

Scheme 1, the reaction of carbonyl compounds 1 with benzylamine readily gave imines 2. The latter undergo an addition of Me_3SiCF_3 to yield benzylalkylamine 3.

Notably, the two reaction steps can be carried out in one pot since the preparation of intermediate **2** only requires evaporation of the solvent and drying in vacuum.

The work-up after the second synthetic step was also straightforward (see SI for details). The crude benzylalkylamines **3** were then subjected to a Pd-mediated hydrogenolysis resulting in *gem*-trifluoromethylamines **4**. Compounds **4** were easily purified by recrystallization of their hydrochloride salts from acetonitrile. ¹H, ¹³C, ¹⁹F NMR, LC–MS, and elemental analyses data of compounds **4** confirmed their structures and high purity. The possibility to combine the two-step preparation of benzylalkylamines in one-pot along with no need for chromatographic purification of both the intermediates and the products make the described approach to these amines with a geminal trifluoromethyl group extremely straightforward. Multigram amounts of the target amines can be easily synthesized via this approach.

Acknowledgment

We thank Dr. A. D. Dilman for helpful discussions.

Supplementary data

Supplementary data (experimental procedures and spectral data) associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2013.01.132.

References and notes

- (a) Faraci, W. S.; Walsh, C. T. *Biochemistry* **1989**, *28*, 431–437; (b) Volonterio, A.; Bellosta, S.; Bravin, F.; Bellucci, M. C.; Bruché, L.; Colombo, G.; Malpezzi, L.; Mazzini, S.; Meille, S. V.; Meli, M.; de Arellano, C. R.; Zanda, M. *Chem. Eur. J.* **2003**, 9, 4510–4522; (c) Grunewald, G. L.; Lu, J.; Criscione, K. R.; Okoro, C. O. *Bioorg. Med. Chem. Lett.* **2005**, *15*, 5319–5323; (d) Sani, M.; Volonterio, A.; Zanda, M. *ChemMedChem* **2007**, *2*, 1693–1700.
- (a) Bégué, J.-P.; Bonnet-Delpon, D.; Crousse, B.; Legros, J. Chem. Soc. Rev. 2005, 34, 562–572;
 (b) Hughes, G.; Devine, P. N.; Naber, J. R.; O'Shea, P. D.; Foster, B. S.; McKay, D. J.; Volante, R. P. Angew. Chem., Int. Ed. 2007, 46, 1839–1842;
 (c) Dilman, A. D.; Levin, V. V. Eur. J. Org. Chem. 2011, 831–841.
- Levin, V. V.; Dilman, A. D.; Belyakov, P. A.; Struchkova, M. I.; Tartakovsky, V. A. Eur. J. Org. Chem. 2008, 5226–5230.
- Shevchenko, N. E.; Vlasov, K.; Nenajdenko, V. G.; Röschenthaler, G.-V. Tetrahedron 2011, 67, 69–74.
- 5. Tkachenko, A. N.; Radchenko, D. S.; Mykhailiuk, P. K.; Shishkin, O. V.; Tolmachev, A. A.; Komarov, I. V. Synthesis **2012**, 44, 903–908.
- 6. In a typical reaction 0.243 mol of Ruppert-Prakash reagent was combined with 0.162 mol of freshly prepared imine **2** dissolved in CH₃CN/DMF (10:1) in the presence of a slight molar excess of TFA and a catalytic amount of KHF₂ at 0 °C. After 12 h of stirring at ambient temperature the mixture was triturated with saturated aqueous Na₂CO₃, diluted with H₂O and then extracted several times with EtOAc. Evaporation of the solvent resulted in crude benzylalkylamine **3** which was further purified by transformation into its hydrochloride salt followed by recrystallization from acetonitrile. Benzylalkylamine **3** was successfully de-benzylated through hydrogenation over Pd/C at 50 bar. For full experimental details see SI.