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Design, synthesis, and evaluation of 1-(N-benzylamino)-2-phenyl-3-
(1H-1,2,4-triazol-1-yl)propan-2-ols as antifungal agents
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Abstract—A series of 1-(N-benzylamino)-2-phenyl-3-(1H-1,2,4-triazol-1-yl)propan-2-ols 6a–c, 7a–c, 8a, and 9a were prepared in five
steps and evaluated for their antifungal activity. The most active compound 7b was docked into a home-made 3D model of the tar-
geted enzyme confirming the importance of Tyr118, His377, and Ser378 residues in its binding mode.
� 2008 Elsevier Ltd. All rights reserved.
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Invasive fungal infections are frequently observed in im-
mune-compromised patients suffering from AIDS or
subjected to invasive surgery, anti-cancer therapy or
graft receivers. Several treatments have been developed
to reduce the impact of fungal diseases such as azoles
(fluconazole, itraconazole, voriconazole, posaconazole),
amphotericin B, 5-fluorocytosine, and caspofungin.
Each molecule is targeting diverse biological pathways
which are essential for the fungi. Unfortunately, massive
use of those compounds as a curative or prophylactic
approach has favored the emergence of resistance show-
ing the need of the discovery of new antifungal
compounds.

Our group is involved in the design and synthesis of
azole antifungals for several years now.1,2 We decided
to use molecular modeling tools with the aim to ratio-
nalize our previous results and to suggest original struc-
tures to the synthesis. A homology model would help us
to identify potential inhibitors of the lanosterol 14a-
demethylase (CYP51) of Candida albicans and
Aspergillus fumigatus.
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Recent works were published by the group of Sheng
et al.3 who mentioned a promising approach for the
design CYP51 inhibitors from C. albicans. They studied
a large library of derivatives from the azole family and
suggested a pharmacophoric model. They noticed the
importance of Tyr118 and Ser378 key residues in the sta-
bilization of the inhibitors within the channel 2 which is
oriented to the FG loop.

Thus to verify their hypotheses and to confirm our own
observations, we decided to build chlorinated analogues
Y : NO2, CN, CF3, NH2

R : H or CH3

Scheme 1. General structure of compounds 6a–c, 7a–c, 8a and 9a and

targeted interactions.
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of their benzylamine series (Scheme 1). A new synthetic
strategy was performed for the design of our 1-(N-ben-
zylamino)-2-phenyl-3-(1H-1,2,4-triazol-1-yl)propan-2-ols.
Introduction of adequate substituents in position Y such
as nitro, nitrile or trifluoromethyl groups would create
potential H-bond interactions with key amino acids.
On the other hand, the aromatic ring would generate
the p–p stacking with the Tyr118. We chose to compare
the biological activity of the nitro compounds with their
analogues bearing an amino group in Y.

We herein describe the synthesis of benzylamine
derivatives and their antifungal activities on C. albicans
and A. fumigatus strains. Additionally SAR studies will
be discussed with the help of molecular modeling.

Our laboratory already synthesized several families of
azole compounds and the use of microwave irradiation
provided us with an efficient procedure to access to the
key intermediate 3 (Scheme 2).4,5 So in the first step,
1H-1,2,4-triazole was alkylated with 2,2 0,4 0-trichloroace-
tophenone (1) in the presence of potassium carbonate as
a base, affording the 2-(1H-1,2,4-triazol-1-yl)-2 0,4 0-
dichloroacetophenone (2) in a 88% yield. Then, Cor-
ey–Chaykovsky reaction was performed using the reac-
tion couple sodium hydroxide/trimethylsulfoxonium
iodide (TMSOI) and led to the desired oxirane 3 in
excellent yield.

Whereas the group of Sheng used the nucleophilicity of
N-methylbenzylamines to open the oxirane ring,3 we
developed an original synthetic route to prepare our
compounds (Schemes 2 and 3).

In the third step, the ring of epoxide 3 is opened by the
use of sodium azide in the presence of ammonium chlo-
ride in methanol and after one night under reflux, inter-
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Scheme 2. General synthetic route for the preparation of intermediate

5. Reagents and conditions: (a) 1H-1,2,4-triazole, K2CO3, CH3CN,

MW, 50W, 85 �C, 50 min; (b) NaOHaq, TMSOI, toluene, MW, 10W,

80 �C, 50 min; (c) NaN3, NH4Cl, MeOH, reflux, 15 h; (d) H2 (5 bars),

Pd/C 5% (10% weight), EtOH, rt, 16 h.
mediate 4 was isolated in a 95% yield.6 Reduction of the
azide moiety to amine is described in several papers.
Fringuelli et al.7 developed a copper-catalyzed prepara-
tion of amino-alcohols, Kempf et al.6 and Shiozaki
et al.8 showed that the use of ammonium chloride could
reduce azides into amines. Other systems like the couple
zinc powder/ammonium formiate in methanol can in-
duce in situ generation of hydrogen to reduce the azide
moiety.9 Moreover the use of triphenylphosphine
according to Staudinger conditions could lead to the
formation of the amino-alcohol.10 Usually most of these
techniques need an aqueous work-up. We noticed that
amino-alcohol 3 was partially soluble in water, thus
we used an easier procedure based on a hydrogenated
reduction and we were able to isolate 1-amino-2-(2,4-
dichlorophenyl)-3-(1H-1,2,4-triazol-1-yl)propan-2-ol (5)
using a simple filtration of the reaction medium in quan-
titative yield.11

The following steps of the synthesis are described in
Scheme 3. The main reaction is a nucleophilic substitu-
tion of amino-alcohol 5 with appropriate substituted
benzyl bromides in the presence of the Hünig base.
Experimental protocol was optimized to afford the
mono-N-substituted derivatives. Two equivalents of
amino-alcohol 5 was placed in the presence of the base
in a diluted medium and a solution of one equivalent
of bromide was slowly added via a syringe. Depending
on the volume added, several hours are needed for the
complete addition.12 We isolated three original deriva-
tives 6a–c in moderate to good yields. Furthermore, a
methyl group was introduced on the amine spacer using
formaldehyde and reductive amination conditions.13

This led to the preparation of three additional deriva-
tives 7a–c in satisfactory yields.14 Amino compounds
8a and 9a were obtained from their nitro analogues 6a
and 7a using reducing conditions.15

Compounds 6a–c, 7a–c, 8a, and 9a were screened for
their antifungal activity on C. albicans CA98001 and
A. fumigatus AF98003 strains. Inhibition growth was
measured according to the protocol described in a previ-
ous journal.16 Fluconazole and itraconazole were used
as positive controls. The minimum inhibitory concentra-
tion (MIC80) values (in ng mL�1) are summarized in
Table 1.

On the C. albicans strain, our compounds showed a
high level of activity with MIC values 6- to 500-fold
lower than that of fluconazole. The 4-{N-[2-(2,4-
dichlorophenyl)-2-hydroxy-3-(1H-1,2,4-triazol-1-yl)pro-
pyl]-N-methyl}aminomethylbenzonitrile (7b) showed a
MIC80 value of 0.37 ng mL�1 and was the most ac-
tive compound of the series whereas compound 8a
(Y = NH2, linker N–H, MIC80 = 18,830.0 ng mL�1)
was inactive. A simple comparison of the two sub-
series (linker N–CH3 or N–H) showed that, excepted
for compounds 6c and 7c, the methyl group would
be favorable for the activity. For example, compound
9a bearing an amino group in position Y and a N–
CH3 linker showed a MIC80 value of 29.0 ng mL�1.
It was almost 1000-fold more active than its analogue
8a. Comparison of 7b (MIC80 = 0.37 ng mL�1) which
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Table 1. In vitro antifungal activity of benzylamine derivatives 6a–c, 7a–c, 8a, and 9a

Compound R Y MIC80 values (ng mL�1)

Candida albicans CA98001 Aspergillus fumigatus AF98003

6a H NO2 6.0 ± 1.3 27,020.0 ± 840.00

6b H CN 2.8 ± 0.4 4020.0 ± 800.00

6c H CF3 24.0 ± 2.0 24,040.0 ± 2230.00

8a H NH2 18,830.0 ± 2750.00 3060.0 ± 120.00

7a CH3 NO2 0.6 ± 1.3 1960.0 ± 170.00

7b CH3 CN 0.37 ± 0.16 2410.0 ± 40.00

7c CH3 CF3 30.0 ± 3.0 21,130.0 ± 1380.00

9a CH3 NH2 29.0 ± 2.0 2320.0 ± 120.00

Fluconazole 190.0 ± 6.0 —

Itraconazole — 420.0 ± 40.0
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was 10-fold more active than its analogue 6b which
has a nitrile group and a non-substituted spacer
(MIC80 = 2.8 ng mL�1) led to the same conclusion.
The presence of a methyl group would play a major
role in the orientation of the inhibitors within the ac-
tive site.

In addition the most suitable groups in position Y are H-
bond acceptor entities. Indeed compounds 6a (Y =
NO2, MIC80 = 6.0 ng mL�1), 6b (Y = CN, MIC80 =
2.8 ng mL�1), and 6c (Y = CF3, MIC80 = 24.0 ng mL�1)
are almost 1000-fold more active than their amine
analogue 8a.

In our precedent series, (S)-isomers were the most active
compounds.5,17 Based on this observation, we realized
the docking of the most active compound 7b under this
configuration in our model of CYP51-C. albicans
(Scheme 4).18 These studies helped us to understand
the structure–activity relationship of this compound
within the active site. The nitrile group should share
two H-bonds with the key amino acids His377 and
Ser378 whereas the N-methyl group of the linker would
be oriented to a hydrophobic pocket (Tyr118, Leu121,
Phe126, and Phe228).

These results are in accordance with the conclusions of
the group of Sheng and additionally we identified a
new residue which seems to be essential for the binding
of inhibitors: His377.

Furthermore, biological results showed the emergence of
activity of our compounds on the Aspergillus strain with
MIC80 values ranging from 1960.0 to 2410.0 ng mL�1.
The N-methyl group seems to be also important here.
Indeed, 2-(2,4-dichlorophenyl)-1-[N-methyl-N-(4-nitro-



Scheme 4. Docking of compound (S)-7b in the active site of CYP51-

Candida albicans. Hip377 is the protonated form of histidine residue.
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benzyl)amino]-3-(1H-1,2,4-triazol-1-yl)propan-2-ol (7a)
was the most active compound on the A. fumigatus strain
and showed the lowest MIC80 value of 1960.0 ng mL�1.

All these compounds could bind to the active site by H-
bond interactions.

To verify our conclusions, an HPLC separation of com-
pounds 6a–c, 7a–c, 8a, and 9a should be undertaken to
check if the most active isomers are in the (S)-configura-
tion as previously observed. Moreover, a homology
model of the CYP51-A. fumigatus enzyme should be
build according to the same procedure. More insightful
observations of the active site would give us some key
informations for further design of broad-spectrum anti-
fungal agents.
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