

A Highly Selective Manganese-Catalyzed Synthesis of Imines under **Phosphine-Free Conditions**

Huining Chai,*^{,†,||} Kun Yu,^{‡,||} Bo Liu,^{‡,||} Weiqiang Tan,[†] and Guangyao Zhang[§]

[†]School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, People's Republic of China

[‡]School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences; Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, People's Republic of China [§]Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao 266071, People's Republic of China

Supporting Information

ABSTRACT: An efficient and highly selective phosphine-free NNmanganese(I) complex catalyst system was developed for the acceptorless dehydrogenative coupling of alcohols with amines to form imines. The coupling reactions underwent at 3 mol % catalyst loading, and a large range of alcohols and amines with diverse functional groups was applied, including challenging diol and diamine. The target imine products were obtained in good to excellent yields. The present work provides an alternative method to construct highly active nonprecious metal complex catalysts based on phosphine-free ligands.

INTRODUCTION

Substituted imines and their derivatives are important building blocks in pharmaceuticals and agricultural chemicals.¹ Moreover, imine-based compounds can act as effective ligands in coordination chemistry to construct versatile transition-metal complex catalysts for catalysis.² Typically, imines are synthesized via the reaction of carbonyl compounds, such as aldehydes or ketones, with amines.³ Significant progress has been made in acceptorless dehydrogenation reactions of alcohols in rencent years. Alcohols can be obtained from lignocellulose, which is a renewable biomass.⁴ The catalytic synthesis of imines by acceptorless dehydrogenative coupling (ADC) reactions of alcohols with amines is an attractive green and sustainable route, in which H₂ and H₂O are produced as byproducts. In this direction, pioneering work was reported by Milstein and co-workers⁵ in 2010, and they used a PNPruthenium pincer complex as the catalyst. Following this report, several catalytic systems for imine synthesis have been developed with precious-metal catalysts.⁶ In 2012, Zhang and Hanson introduced the first synthesis of imines catalyzed by the PNP-pincer cobalt complex catalyst A (Scheme 1). In 2013, Kumar/Singh et al. employed a Fe-phthalocyanine complex B (Scheme 1) as the catalyst to synthesize imines from alcohols and amines.⁸ Notably, in 2016 Milstein's group reported the unprecedented dehydogenative coupling of alcohols and amines catalyzed by pincer-type Mn-PNP complex C (Scheme 1).9 Subsequently, Kirchner and coworkers showed the similar PNP ligand-supported manganese complex D (Scheme 1) can also catalyze this reaction.¹⁰ ' Verv recently, Kempe's group reported the base-switchable synthesis of amines or imines from the same alcohol and amine combinations catalyzed by the versatile PNP-type manganese complex E (Scheme 1).¹¹ Despite the significance of such coupling reactions, homogeneous cheap metal complex catalysts mostly contain posphine ligands that are sensitive to air and moisture and difficult to be prepared on a large scale. The development of nonprecious metal complex catalysts possessing phosphine-free ligands is urgent. Intrigued by these studies,¹² we paid much attention to the complexes bearing bidentate phosphine-free ligands. During our investigation of transition-metal complex catalysts, we disclose an efficient and highly selective phosphine-free NN-manganese(I) complex catalyst system, which enables the synthesis of imines from alcohols and amines efficiently and selectively (Scheme 1).

RESULTS AND DISCUSSION

Synthesis and Characterization of Complexes. Initially, we prepared two NN-manganese(I) complexes (2a, 2b) by using ligands 1a, 1b with $Mn(CO)_{s}Br$ in MeOH at room temperature under a nitrogen atmosphere, giving corresponding Mn complexes 2a and 2b in 85% and 83% yields,

Received: November 10, 2019

Scheme 1. Synthesis of Imines by Nonprecious Metal Complex Catalysts

respectively (Scheme 2). The NMR analyses of the ligands and their complexes are consistent with the compositions. In the

^aConditions: 1a or 1b (1.0 mmol), $Mn(CO)_5Br$ (1.0 mmol), CH_3OH (25 mL), 0.1 M Pa N₂, 25 °C, 24 h, 85% (2a), 83% (2b).

¹³C NMR spectrum, the three coordinating CO groups in complexes appeared at 222.5, 222.1, and 221.6 ppm for 2a and at 223.3, 223.0, and 220.6 ppm for 2b. In the infrared spectrum (IR) of complex 2a, the stretching vibrations of CO ligands gave rise to bands at 1927 and 2036 cm⁻¹. Similarly, carbonyl ligands in complex **2b** were revealed at 1888 and 2013 cm⁻¹ in the IR spectral analysis. We attempted to obtain the single crystals of complex 2a for the X-ray structural analysis, but no success was achieved. To our delight, the molecular structure of methyl-substituted complex 2b was confirmed by the X-ray single-crystal crystallographic determination (Figure 1, see Supporting Information for details). The structure of complex 2b exhibits a distorted octahedral geometry, and the central manganese atom of complex 2b is surrounded by bidentate NN ligand 1b, three CO groups, and a bromo atom positioning trans to one of the carbonyls (Figure 1). The three coordinating CO ligands are orthogonal to each other and locate in three different chemical environments, in line with the ¹³C NMR spectrum.

Synthesis of Imines. In an exploration of the optimum conditions, the reaction of phenylmethanol with aniline was studied as a model system for the acceptorless dehydrogenative coupling to form imines (Table 1). The catalytic activities of complex 2a and 2b were examined in refluxing toluene of phenylmethanol (0.22 mmol), aniline (0.20 mmol), and *t*BuOK (0.10 mmol) under a nitrogen atmosphere (see Table 1, entries 1 and 2). In the presence of 3 mol % complex

Figure 1. Molecular structure of complex 2b.

catalyst 2a, 97% conversion was obtained for 4a with a higher selectivity (98.1:1.9) for product imine 5a and product amine 5a' (see Table 1, entry 1), while complex 2b yielded 90% conversion for 4a and 77:23 selectivity for 5a:5a' (see Table 1, entry 2). The high catalytic activity and selectivity of complex 2a may be derived from the NH functionality.¹³ In the same reactions of entry 1, heating the solution in a closed system resulted in only 41% conversion for 4a (see Table 1, entry 3). Next, the base effect on the reaction was evaluated. Use of tBuONa obviously deteriorated the conversion (77%) (see Table 1, entry 4). The case of utilizing KOH under similar conditions gave 93% conversion for 4a and 29:71 selectivity for 5a:5a' (see Table 1, entry 5), while the reaction proceeded less efficiently with 80% conversion for 4a employing NaOH as a base (see Table 1, entry 6). When Na_2CO_3 and K_2CO_3 were used as the bases, the conversions for 4a were dropped from 14% to 3.2% (see Table 1, entries 7 and 8). Different solvents were also screened for the reaction. In refluxing 1,4-dioxane, both the conversion and the selectivity were decreased greatly (see Table1, entry 9). In tetrahydrofuran (thf) or 2-Me-thf, the substrates hardly reacted (see Table 1, entries 10 and 11). Decreasing the catalyst loading to 2 mol % reduced the conversion of 4a with deteriorated selectivity of 5a/5a' (see Table 1, entry 12). With 4 mol % catalyst loading, there's no evident improvement in conversion of 4a and selectivity of 5a/

Table 1. Screening of Reaction Conditions^a

	COH +	NH ₂ conditions		+	
	3a	4a	5a	5a'	
entry	catalyst loading (mol %)	base (0.5 equiv)	solvent (1.5 mL)	$\operatorname{conv}^{b}(\%)$	5a/5a' (molar ratio) ^b (%)
1	3	<i>t</i> BuOK	toluene	97	98.1:1.9
2 ^{<i>c</i>}	3	<i>t</i> BuOK	toluene	90	77:23
3 ^{<i>d</i>}	3	<i>t</i> BuOK	toluene	41	99:1
4	3	<i>t</i> BuONa	toluene	77	99.5:0.5
5	3	КОН	toluene	93	29:71
6	3	NaOH	toluene	80	99.6:0.4
7	3	Na ₂ CO ₃	toluene	14	81:19
8	3	K ₂ CO ₃	toluene	3.2	100
9	3	<i>t</i> BuOK	1,4-dioxane	42	79.4:20.6
10	3	<i>t</i> BuOK	thf	0.7	100
11	3	<i>t</i> BuOK	2-Me-thf	0.4	100
12	2	<i>t</i> BuOK	toluene	85	80:20
13	4	<i>t</i> BuOK	toluene	98	98:2
14 ^e	3	tBuOK	toluene	97	99.5:0.5(93) ^f

^{*a*}Conditions: **3a** (0.22 mmol), **4a** (0.20 mmol), complex catalyst **2a** (0.006 mmol), 110 °C, 0.1 MPa N₂, 24 h. ^{*b*}Determined by gas chromatography analysis. ^{*c*}Using complex catalyst **2b**. ^{*d*}Screening in sealed tube. ^{*e*}Adding 5 mg of 4 Å MS. ^{*f*}Isolated yield of **5a** given in parentheses.

Table 2. Scope of Primary Alcohols 3^a

^{*a*}Conditions: 3 (0.55 mmol), 4a (0.50 mmol), complex 2a (0.015 mmol), *t*BuOK (0.25 mmol), 4 Å MS (12.5 mg), toluene (2 mL), 110 °C, 0.1 MPa N_2 , 24 h. Yields refer to the isolated products.

5a' (see Table 1, entry 13). To our delight, the selectivity for 5a/5a' was further improved if 5 mg of 4 Å MS was added, and

product imine **5a** was isolated in 93% yield (see Table 1, entry 14). Different amounts of 4 Å MS, base loading, and the ratio

Article

Table 3. Scope of Amines 4^a

of 3a/4a were also screened for the reaction (see Supporting Information for details).

Under the optimal conditions, the scope of primary alcohols 3 was explored by means of their reactions with aniline (4a) (Table 2). Methyl-substituted benzyl alcohol substrates reacted with 4a to afford the target products 5b-5d in 73%-94% isolated yields and exhibited obvious steric impact on the yields. The reactions of methoxy- and isopropylsubstituted benzyl alcohols with 4a afforded products 5e-5i in excellent yields (80-94%). It is noted that 2-MeO substituent showed a negative effect on the reaction efficiency. F-, Cl-, and Br- substituents on the aryl group of the benzyl alcohol substrate did not demonstrate distinct electronic effect on the product yields of 5g-5l (84%-95%). o-, m-, and p-Brsubstituted benzyl alcohols reacted efficiently with 4a to give the corresponding products 51-5n, showing a slight steric effect on the yields (89%-93%). Importantly, the pharmaceutically active trifluoromethyl-substituted benzyl alcohol gave the corresponding product 50 with excellent isolated yield (85%). Similarly, heteroaromatic substrates, that is, thiophen-2ylmethanol, and furan-2-ylmethanol, also efficiently underwent the reactions to generate 5p-5q (90%-96%). However, 2pyridinemethanol reacted with 4a less efficiently, giving 5r in 73% yield. Benzyl alcohol-containing imidazol moiety also reacted with 4a to give 5s in good yield (82%). 1-Naphthylmethanol efficiently reacted with 4a to afford 5t

(91%), exhibiting no steric effect. In a similar manner, piperonyl alcohol and 4a were efficiently converted to 5u in good isolated yield (81%). We also explored the reactivity of alkyl alcohols, but the substrates were hardly reacted.

Next, the generality of the protocol was investigated by using diverse amines 4 as the coupling partners (Table 3). With methyl substituent anilines as the substrates, their reactions with benzyl alcohol afforded 5v (75%), 5w (90%), and 5x (91%). An evident steric effect was revealed on the reactivity of the o-Me-substituted aniline. Similarly, the o-, m-, and pmethoxyls showed an obvious impact on the formation of 5y-**5aa** (77%–95%) with the order o < m < p-methoxyl aniline. The 2-ethyl group diminished the yield of 5ab (63%). Halogen-substituted anilines also reacted well with 3a to afford 5ac-5af in 90%-95% yields. Use of pyridin-2-amine as the substrate slightly deteriorated the yield of 5ag (82%). However, when pyridin-3-amine was used as the substrate, the product yield dropped to 75% for 5ah. In the case of naphthalen-2-amine, a decent yield was obtained to generate 5ai (83%). Benzylamine also efficiently reacted with benzyl alcohol **3a**, but its reaction gave the product **5aj** in yield (77%) lower than the corresponding reaction by using aniline 4a (93%). Alkylamines, such as hexylamine and cyclohexylamine, promoted the reactions to yield the target products 5ak and 5al in good yields (80%-88%).

Scheme 3. Synthesis of Diimines

As an important structural unite, diimine compounds play a vital role in constructing ligands in catalytic chemistry and material applications.^{14,15} Further, to explore the synthetic potential of the complex catalyst, attempts at synthesis of diimine products were performed (Scheme 3). Benzene-1,3-diamine or benzene-1,4-diamine similarly reacted well with benzyl alcohol to afford diimine products **5am** and **5an** (80% and 85%). For the disubstituted benzyl alcohol 1,3-benzene-dimethanol, the product diimine was also acquired in 49% yield.

The control experiments were conducted by reacting 3a with two different steric effect anilines (aniline 4a, *o*-toluidine 4v), and reacting 4a with two different electronic effect benzyl alcohols ((4-methoxyphenyl)methanol 3g, (4-(trifluorometh-yl)-phenyl)methanol 3o) under the standard conditions (Scheme 4). With aniline and *o*-methyl substituent aniline as the substrates, their reactions with benzyl alcohol gave 87% conversion and 73:27 selectivity for 5a/5v, and *o*-methyl

^aConditions: 3a (0.55 mmol), 4a (0.25 mmol), 4v (0.25 mmol) for eq (1); 3g (0.275 mmol), 3o (0.275 mmol), 4a (0.50 mmol) for eq (2). complex 2a (0.015 mmol), tBuOK (0.25 mmol), 4 Å MS (12.5 mg), toluene (2 mL), 110 °C, 0.1 MPa N₂, 24 h. Determined by gas chromatography analysis.

substituent exhibited a negative steric effect. When **4a** reacted with electron-donating and -withdrawing substituented benzyl alcohols, 98% conversion and 71:29 selectivity for 5g/5o were obtained. The 4-trifluoromethyl substituent demonstrated an obvious negative electronic impact compared to the 4-methoxy group.

To further probe into the catalyst activity, gram-scale reaction was also performed under the optimized conditions. The target product **5a** was obtained in 65% yield (Scheme 5).

Scheme 5. Gram-Scale Reaction^a

This protocol may offer a potential application for large-scale production. It is noteworthy that the reaction mechanism was explored (Scheme 6) based on those reported work.^{9–11,13e,f} Initially, the acceptorless dehydrogenation of a primary alcohol catalyzed by the manganese complex generates the corresponding aldehyde. Considering that the present catalyst is Mn(I), the reaction may involve (1) extrusion of 1 equiv of hydrogen bromide with the base *t*BuOK, forming unsaturated 16-electron mangenese complex, (2) 16-electron mangenese complex interacts with BnOH to form [Mn]-OBn, (3) beta-H elimination of [Mn]-OBn to form [Mn]-H and aldehyde, and (4) the H₂ releases from [Mn]-H and regenerates 16-electron mangenese complex. Subsequent formation of the imine product was achieved by condensation of the in situ generated aldehyde and amine.

CONCLUSIONS

In summary, we have developed an efficient and highly selective phosphine-free NN-manganese(I) complex catalyst system for the ADC of alcohols with amines to form imines. Functional diimines also can be synthesized by this methodology. The present work provides an alternative method to construct highly active nonprecious metal complex catalysts based on bidentate phosphine-free ligands.

Scheme 6. Proposed Mechanism of the Reaction

EXPERIMENTAL SECTION

General Considerations. ¹H and ¹³C{¹H} NMR spectra were recorded on a 600 MHz spectrometer, and all chemical shift values refer to CDCl₃ (δ (¹H), 7.26 ppm; δ (¹³C), 77.16 ppm), deuterated dimethyl sulfoxide (DMSO- d_6) (δ (¹H), 2.50 ppm; δ (¹³C), 39.52 ppm), CD₃COCD₃ (δ (¹H), 2.05 ppm; δ (¹³C), 206.26 and 29.84 ppm), and CD₃OD (δ (¹H), 3.31 ppm; δ (¹³C), 49.00 ppm). X-ray crystallographic analysis was achieved by Shiyanjia Lab (www. shiyanjia.com). Analytical thin-layer chromatography (TLC) plates were viewed by UV light (254 nm). Column chromatographic purifications were performed on silica gel 160. All the chemical reagents were purchased from commercial sources and used as received unless otherwise indicated.

X-ray Crystallographic Studies. The X-ray diffraction studies for complex 2b were performed on a SMART APEX diffractometer with graphite-monochromated Mo radiation ($\lambda = 0.71073$ Å). Cell parameters were obtained by global refinement of the positions of all collected reflections. Intensities were corrected for Lorentz and polarization effects and empirical absorption. The structures were solved by direct methods and refined by full-matrix least-squares on F^2 . All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in calculated positions. Structure solution and refinement were performed by using the SHELXL-97 package. The Xray crystallographic files, in CIF format, are available from the Cambridge Crystallographic Data Centre on quoting the deposition number CCDC 1920267 for 2b. Additional crystallographic information is available in the Supporting Information.

General Procedure for the Synthesis of Imines. Under a nitrogen atmosphere a mixture of phenylmethanol (3a) (56.9 μ L, 0.55 mmol), aniline (4a) (45.6 μ L, 0.5 mmol), complex 2a (5.5 mg, 0.015 mmol), 4 Å MS (12.5 mg), and *t*BuOK (28.1 mg, 0.25 mmol) in 2.0 mL of toluene was stirred at 110 °C for 24 h. After it cooled to ambient temperature, the reaction was quenched with 10 mL of water and extracted with ethyl acetate (EtOAc) (3 × 10 mL). The combined organic phase was concentrated under reduced pressure. The resultant residue was subject to purification by column chromatography on silica gel (eluent: *n*-hexane/ethyl ether = 20:1, v/v) to afford 5a as a white solid (84.3 mg, 93%).

Synthesis of Ligand 1a. Under a nitrogen atmosphere a mixture of (*E*)-3-(dimethylamino)-1-(pyridin-2-yl)prop-2-en-1-one (176.2 mg, 1

mmol) and hydrazine hydrate (1.8 mL) in 5 mL of EtOH was stirred at 80 °C for 2 h. After it cooled to ambient temperature, the reaction was quenched with 20 mL of water and extracted with EtOAc (3 × 15 mL). The combined organic phase was concentrated under reduced pressure. The resultant residue was subject to purification by column chromatography on silica gel (eluent: $CH_2Cl_2/CH_3OH = 20:1$, v/v) to afford 1a. 127.7 mg, 88% yield, white solid, ¹H NMR (CDCl₃, 600 MHz): δ 11.81 (s, 1H), 8.68 (dt, *J* = 4.9, 1.4 Hz, 1H), 7.76 (d, *J* = 7.9 Hz, 1H), 7.69 (td, *J* = 7.6, 1.5 Hz, 1H), 7.65 (d, *J* = 2.1 Hz, 1H), 7.19 (ddd, *J* = 7.5, 4.9, 1.2 Hz, 1H), 6.80 (d, *J* = 2.2 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 150 MHz): δ 149.8, 149.4, 145.5, 137.0, 136.6, 122.8, 120.4, 103.6.

Synthesis of Ligand 1b. Under a nitrogen atmosphere a mixture of **1a** (145.2 mg, 1 mmol) and sodium hydride (120 mg, 5 mmol) in 20 mL of THF was stirred at 0 °C for 30 min. And iodomethane (124 μ L, 2 mmol) was added to reaction system; after it was stirred for 5 h, the reaction was quenched with 10 mL of methanol and mixed with 20 mL of water, then extracted with EtOAc (3 × 15 mL). The combined organic phase was concentrated under reduced pressure. The resultant residue was subjected to purification by column chromatography on silica gel (eluent: CH₂Cl₂/CH₃OH = 50:1, v/v) to afford **1b**. 143.3 mg, 90% yield, white solid, ¹H NMR (CDCl₃, 600 MHz): δ 8.62 (ddd, *J* = 4.8, 1.8, 1.0 Hz, 1H), 7.90 (dt, *J* = 7.8, 1.0 Hz, 1H), 7.70 (td, *J* = 7.7, 1.8 Hz, 1H), 7.41 (d, *J* = 2.2 Hz, 1H), 7.18 (ddd, *J* = 7.4, 4.8, 1.2 Hz, 1H), 6.86 (d, *J* = 2.3 Hz, 1H), 3.98 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 150 MHz): δ 152.2, 151.7, 149.4, 136.6, 131.6, 122.3, 119.9, 104.4, 39.2.

Synthesis of Complex 2a. Under a nitrogen atmosphere a mixture of 1a (145.2 mg, 1 mmol) and manganese pentacarbonyl bromide (274.9 mg, 1 mmol) in 30 mL of MeOH was stirred at 25 °C for 24 h. All the volatiles were removed under reduced pressure, and the resultant residue was subject to purification by recrystallization in CHCl₂/CH₃OH/*n*-hexane (1/0.1/3, v/v/v) at 25 °C, affording the complex as a yellow solid (309.43 mg, 85%). mp > 320 °C dec. ¹H NMR (CD₃SOCD₃, 600 MHz): δ 14.62 (s, 1H), 9.06 (d, *J* = 5.4 Hz, 1H), 8.22–8.19 (m, 2H), 8.13 (t, *J* = 7.6 Hz, 1H), 7.56 (t, *J* = 6.4 Hz, 1H), 7.29 (d, *J* = 2.4 Hz, 1H). ¹³C{¹H} NMR (CD₃SOCD₃, 150 MHz): δ 222.5, 222.1, 221.6, 153.9, 151.8, 151.4, 139.7, 135.5, 125.3, 122.3, 104.9. IR (KBr pellets, cm⁻¹): 2036 (ν CO), 1927 (ν CO).

Organometallics

Anal. Calcd for C₁₁H₇BrMnN₃O₃: C, 36.29; H, 1.94; N, 11.54. Found: C, 36.36; H, 1.98; N, 11.50%.

Synthesis of Complex 2b. Under a nitrogen atmosphere a mixture of **1b** (159.2 mg, 1 mmol) and manganese pentacarbonyl bromide (274.9 mg, 1 mmol) in 30 mL of MeOH was stirred at 25 °C for 24 h. All the volatiles were removed under reduced pressure, and the resultant residue was subject to purification by recrystallization in CHCl₂/CH₃OH/*n*-hexane (1/0.1/3, v/v/v) at 25 °C, affording the complex as a yellow solid (313.8 mg, 83%). mp > 320 °C dec. ¹H NMR (CD₃SOCD₃, 600 MHz): δ 9.08 (s, 1H), 8.18 (d, *J* = 42.8 Hz, 3H), 7.59 (s, 1H), 7.27 (s, 1H), 4.21 (s, 3H). ¹³C{¹H} NMR (CD₃SOCD₃, 150 MHz): δ 223.3, 223.0, 220.6, 153.7, 152.0, 151.6, 139.8, 138.4, 125.5, 122.2, 105.0, 40.4. IR (KBr pellets, cm⁻¹): 2013 (ν CO), 1887 (ν CO). Anal. Calcd for C₁₂H₉BrMnN₃O₃: C, 38.12; H, 2.40; N, 11.11. Found: C, 38.08; H, 2.37; N, 11.17%.

(E)-N,1-Diphenylmethanimine (5a). 84.3 mg, 93% yield, white solid, ¹H NMR (CD₃OD, 600 MHz): δ 8.55 (s, 1H), 7.93–7.92 (m, 2H), 7.53–7.50 (m, 3H), 7.42–7.39 (m, 2H), 7.26–7.24 (m, 3H). ¹³C{¹H} NMR (CD₃OD, 150 MHz): δ 162.8, 153.0, 137.4, 132.7, 130.3, 129.9, 129.9, 127.3, 122.0.

(E)-N-Phenyl-1-(o-tolyl)methanimine (5b). 71.3 mg, 73% yield, orange oil, ¹H NMR (CD₃COCD₃, 600 MHz): δ 8.84 (s, 1H), 8.10–8.07 (m, 1H), 7.43–7.25 (m, 8H), 2.64 (s, 3H). ¹³C{¹H} NMR (CD₃COCD₃, 150 MHz): δ 159.7, 153.6, 139.7, 135.2, 131.9, 131.8, 130.0, 128.7, 127.0, 126.6, 121.8, 19.5.

(E)-N-Phenyl-1-(m-tolyl)methanimine (5c). 87.9 mg, 90% yield, orange oil, ¹H NMR (CD₃COCD₃, 600 MHz): δ 8.54 (s, 1H), 7.79 (s, 1H), 7.75 (d, *J* = 7.5 Hz, 1H), 7.42–7.38 (m, 3H), 7.35 (d, *J* = 7.6 Hz, 1H), 7.25–7.22 (m, 3H), 2.41 (s, 3H). ¹³C{¹H} NMR (CD₃COCD₃, 150 MHz): δ 161.2, 153.1, 139.2, 137.5, 132.9, 130.0, 129.9, 129.5, 127.0, 126.6, 121.7, 21.3.

(E)-N-Phenyl-1-(p-tolyl)methanimine (5d). 91.8 mg, 94% yield, yellow oil, ¹H NMR (CD₃OD, 600 MHz): δ 8.49 (s, 1H), 7.80 (d, J = 8.1 Hz, 2H), 7.40–7.38 (m, 2H), 7.32–7.31 (m, 2H), 7.24–7.21 (m, 3H), 2.41 (s, 3H). ¹³C{¹H} NMR (CD₃OD, 150 MHz): δ 162.9, 153.1, 143.6, 134.8, 130.6, 130.3, 130.0, 127.1, 122.0, 21.6.

(E)-1-(2-Methoxyphenyl)-N-phenylmethanimine (5e). 84.5 mg, 80% yield, white solid, ¹H NMR (CD₃OD, 600 MHz): δ 8.91 (s, 1H), 8.02 (dd, *J* = 7.7, 1.8 Hz, 1H), 7.50–7.47 (m, 1H), 7.40–7.37 (m, 2H), 7.24–7.21 (m, 1H), 7.20–7.19 (m, 2H), 7.10–7.08 (m, 1H), 7.05–7.02 (m, 1H), 3.91 (s, 3H). ¹³C{¹H} NMR (CD₃OD, 150 MHz): δ 161.2, 158.7, 153.6, 134.4, 130.3, 128.3, 127.1, 125.4, 122.0, 121.8, 112.6, 56.2.

(E)-1-(3-Methoxyphenyl)-N-phenylmethanimine (5f). 98.2 mg, 93% yield, white solid, ¹H NMR (CD₃OD, 600 MHz): δ 8.50 (s, 1H), 7.54–7.52 (m, 1H), 7.46–7.43 (m, 1H), 7.41–7.38 (m, 3H), 7.26–7.23 (m, 3H), 7.09–7.07 (m, 1H), 3.86 (s, 3H). ¹³C{¹H} NMR (CD₃OD, 150 MHz): δ 162.8, 161.6, 152.9, 138.7, 130.9, 130.3, 127.3, 123.2, 122.0, 119.2, 113.5, 55.8.

(E)-1-(4-Methoxyphenyl)-N-phenylmethanimine (5g). 89.8 mg, 85% yield, white solid, ¹H NMR (CD₃OD, 600 MHz): δ 8.45 (s, 1H), 7.86 (d, *J* = 8.8 Hz, 2H), 7.40–7.37 (m, 2H), 7.23–7.20 (m, 3H), 7.04 (d, *J* = 8.8 Hz, 2H), 3.86 (s, 3H). ¹³C{¹H} NMR (CD₃OD, 150 MHz): δ 164.2, 162.4, 153.2, 131.8, 130.3, 130.1, 126.9, 122.0, 115.3, 56.0.

(E)-1-(2,4-Dimethoxyphenyl)-N-phenylmethanimine (5h). 108.6 mg, 90% yield, white solid, ¹H NMR (CD₃COCD₃, 600 MHz): δ 8.79 (s, 1H), 8.06 (d, *J* = 8.3 Hz, 1H), 7.38 (t, *J* = 7.6 Hz, 2H), 7.20–7.16 (m, 3H), 6.66–6.64 (m, 2H), 3.94 (s, 3H), 3.89 (s, 3H). ¹³C{¹H} NMR (CD₃COCD₃, 150 MHz): δ 165.0, 162.1, 155.8, 154.2, 129.9, 129.3, 126.0, 121.7, 118.7, 107.1, 98.7, 56.2, 55.9.

(E)-1-(4-lsopropylphenyl)-N-phenylmethanimine (5i). 105.0 mg, 94% yield, yellow liquid, ¹H NMR (CD₃COCD₃, 600 MHz): δ 8.54 (s, 1H), 7.89 (d, *J* = 8.2 Hz, 2H), 7.41–7.39 (m, 4H), 7.24–7.21 (m, 3H), 3.01–2.96 (m, 1H), 1.27 (d, *J* = 7.0 Hz, 6H). ¹³C{¹H} NMR (CD₃COCD₃, 150 MHz): δ 160.9, 153.4, 153.2, 135.4, 129.9, 129.7, 127.6, 126.5, 121.7, 34.9, 24.1.

(E)-1-(4-Fluorophenyl)-N-phenylmethanimine (5j). 83.7 mg, 84% yield, white solid, ¹H NMR (CD₃COCD₃, 600 MHz): δ 8.59 (s, 1H), 8.05–8.03 (m, 2H), 7.42–7.40 (m, 2H), 7.30–7.23 (m, 5H).

 $^{13}{\rm C}{^{1}H}$ NMR (CD₃COCD₃, 150 MHz): δ 166.3, 164.6, 159.7, 152.8, 134.1, 131.8 (d, $J_{\rm C-F}$ = 8.8 Hz), 130.0, 126.8, 121.7, 116.6 (d, $J_{\rm C-F}$ = 22.3 Hz).

(E)-1-(2-Chlorophenyl)-N-phenylmethanimine (5k). 102.5 mg, 95% yield, yellow liquid, ¹H NMR (CD₃COCD₃, 600 MHz): δ 8.94 (s, 1H), 8.26–8.24 (m, 1H), 7.55–7.54 (m, 2H), 7.49–7.43 (m, 3H), 7.30–7.27 (m, 3H). ¹³C{¹H} NMR (CD₃COCD₃, 150 MHz): δ 157.0, 152.7, 136.5, 134.1, 133.5, 130.9, 130.1, 129.3, 128.3, 127.3, 121.9.

(E)-1-(2-Bromophenyl)-N-phenylmethanimine (5l). 115.8 mg, 89% yield, white solid, ¹H NMR (CD₃COCD₃, 600 MHz): δ 8.87 (s, 1H), 8.23 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.71 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.52-7.42 (m, 4H), 7.29-7.28 (m, 3H). ¹³C{¹H} NMR (CD₃COCD₃, 150 MHz): δ 159.3, 152.6, 135.4, 134.1, 133.7, 130.1, 129.7, 128.8, 127.3, 126.4, 121.8.

(E)-1-(3-Bromophenyl)-N-phenylmethanimine (5m). 119.7 mg, 92% yield, white solid, ¹H NMR (CD₃COCD₃, 600 MHz): δ 8.58 (s, 1H), 8.16 (t, *J* = 1.8 Hz, 1H), 7.95–7.93 (m, 1H), 7.70–7.68 (m, 1H), 7.47 (t, *J* = 7.8 Hz, 1H), 7.43–7.41 (m, 2H), 7.29–7.25 (m, 3H). ¹³C{¹H} NMR (CD₃COCD₃, 150 MHz): δ 159.4, 152.3, 139.7, 134.8, 131.8, 131.6, 130.0, 128.6, 127.1, 123.3, 121.8.

(E)-1-(4-Bromophenyl)-N-phenylmethanimine (5n). 121.0 mg, 93% yield, yellow solid, ¹H NMR (CD₃OD, 600 MHz) δ 8.51 (s, 1H), 7.83 (d, *J* = 8.5 Hz, 2H), 7.66 (d, *J* = 8.5 Hz, 2H), 7.41–7.38 (m, 2H), 7.25–7.23 (m, 3H). ¹³C{¹H} NMR (CD₃OD, 150 MHz): δ 161.2, 152.7, 136.6, 133.1, 131.4, 130.3, 127.5, 126.9, 122.0.

(E)-N-Phenyl-1-(4-(trifluoromethyl)phenyl)methanimine (50). 105.9 mg, 85% yield, yellow oil, ¹H NMR (CD₃COCD₃, 600 MHz): δ 8.72 (s, 1H), 8.19 (d, *J* = 8.0 Hz, 2H), 7.87–7.86 (m, 2H), 7.45–7.43 (m, 2H), 7.32–7.27 (m, 3H). ¹³C{¹H} NMR (CD₃COCD₃, 150 MHz): δ 159.7, 152.3, 140.9, 132.9 (q, *J*_{C-F} = 32.2 Hz), 130.1, 130.1, 127.4, 126.5, 126.5, 121.9.

(*E*)-*N*-Phenyl-1-(thiophen-2-yl)methanimine (5p). 89.9 mg, 96% yield, yellow oil, ¹H NMR (CD₃COCD₃, 600 MHz): δ 8.74 (s, 1H), 7.71 (d, *J* = 5.0 Hz, 1H), 7.65 (dd, *J* = 3.6, 1.0 Hz, 1H), 7.41–7.38 (m, 2H), 7.26–7.20 (m, 4H). ¹³C{¹H} NMR (CD₃COCD₃, 150 MHz): δ 154.1, 152.4, 144.1, 133.7, 131.3, 130.0, 128.7, 126.8, 121.8.

(E)-1-(Furan-2-yl)-N-phenylmethanimine (5q). 77.0 mg, 90% yield, white solid, ¹H NMR (CD₃COCD₃, 600 MHz): δ 8.41 (s, 1H), 7.80 (s, 1H), 7.41–7.38 (m, 2H), 7.25–7.23 (m, 3H), 7.10 (d, J = 2.7 Hz, 1H), 6.66 (dd, J = 3.4, 1.8 Hz, 1H). ¹³C{¹H} NMR (CD₃COCD₃, 150 MHz): δ 153.7, 152.7, 148.9, 146.7, 130.0, 126.8, 121.7, 116.5, 113.1.

(E)-N-Phenyl-1-(pyridin-2-yl)methanimine (5r). 66.5 mg, 73% yield, white liquid, ¹H NMR (CD₃COCD₃, 600 MHz): δ 8.71 (m, 1H), 8.59 (s, 1H), 8.23–8.22 (m, 1H), 7.94 (td, *J* = 7.7, 1.7 Hz, 1H), 7.51–7.44 (m, 3H), 7.34–7.28 (m, 3H). ¹³C{¹H} NMR (CD₃COCD₃, 150 MHz): δ 161.7, 155.7, 152.1, 150.6, 137.6, 130.1, 127.5, 126.2, 121.9, 121.8.

(*E*)-1-(4-(1*H*-Imidazol-1-yl)phenyl)-*N*-phenylmethanimine (5s). 101.4 mg, 82% yield, white solid, ¹H NMR (CD₃COCD₃, 600 MHz): δ 8.65 (s, 1H), 8.21 (s, 1H), 8.13–8.11 (m, 2H), 7.79 (d, *J* = 8.6 Hz, 2H), 7.70 (t, *J* = 1.5 Hz, 1H), 7.44–7.41 (m, 2H), 7.29–7.24 (m, 3H), 7.16 (s, 1H). ¹³C{¹H} NMR (CD₃COCD₃, 150 MHz): δ 159.8, 152.7, 140.4, 136.3, 136.0, 131.4, 131.2, 130.0, 126.9, 121.8, 121.5, 118.5.

(*E*)-1-(*Naphthalen-1-yl*)-*N-phenylmethanimine* (5t). 105.2 mg, 91% yield, yellow solid, ¹H NMR (CD₃OD, 600 MHz): δ 9.16 (s, 1H), 9.00 (d, *J* = 8.5 Hz, 1H), 8.08–8.07 (dd, *J* = 7.2, 1.2 Hz, 1H), 8.01–7.93 (m, 2H), 7.62–7.53 (m, 3H), 7.44–7.41 (m, 2H), 7.31–7.25 (m, 3H). ¹³C{¹H} NMR (CD₃OD, 150 MHz): δ 161.9, 153.6, 135.4, 133.1, 132.8, 132.7, 130.6, 130.3, 129.8, 128.5, 127.3, 127.2, 126.3, 125.2, 122.0.

(E)-1-(Benzo[d][1,3]dioxol-5-yl)-N-phenylmethanimine (5u). 91.2 mg, 81% yield, white solid, ¹H NMR (CD₃OD, 600 MHz): δ 8.40 (s, 1H), 7.48 (s, 1H), 7.39–7.34 (m, 3H), 7.23–7.19 (m, 3H), 6.92 (d, J = 8.0 Hz, 1H), 6.04 (s, 2H). ¹³C{¹H} NMR (CD₃OD, 150 MHz): δ 162.1, 153.0, 152.3, 150.0, 132.2, 130.3, 127.4, 127.0, 122.0, 109.2, 107.4, 103.2.

(E)-1-Phenyl-N-(o-tolyl)methanimine (5v). 73.2 mg, 75% yield, orange oil, ¹H NMR (CD₃COCD₃, 600 MHz): δ 8.48 (s, 1H), 8.00–7.98 (m, 2H), 7.53–7.52 (m, 3H), 7.24–7.21 (m, 2H), 7.12 (t, *J* = 7.4 Hz, 1H), 7.02–7.01 (m, 1H), 2.34 (s, 3H). ¹³C{¹H} NMR (CD₃COCD₃, 150 MHz): δ 160.2, 151.9, 137.7, 132.6, 132.1, 131.0, 129.6, 129.5, 127.6, 126.5, 118.4, 17.9.

(E)-1-Phenyl-N-(m-tolyl)methanimine (5w). 87.9 mg, 90% yield, yellow liquid, ¹H NMR (CD₃COCD₃, 600 MHz): δ 8.57 (s, 1H), 7.97–7.96 (m, 2H), 7.52–7.51 (m, 3H), 7.28 (t, *J* = 7.7 Hz, 1H), 7.08–7.04 (m, 3H), 2.36 (s, 3H). ¹³C{¹H} NMR (CD₃COCD₃, 150 MHz): δ 160.7, 153.0, 139.6, 137.6, 132.1, 129.8, 129.6, 129.5, 127.4, 122.4, 118.8, 21.4.

(E)-1-Phenyl-N-(p-tolyl)methanimine (5x). 88.8 mg, 91% yield, yellow liquid, ¹H NMR (CD₃COCD₃, 600 MHz): δ 8.59 (s, 1H), 7.96–7.94 (m, 2H), 7.51–7.50 (m, 3H), 7.22–7.17 (m, 4H), 2.34 (s, 3H). ¹³C{¹H} NMR (CD₃COCD₃, 150 MHz): δ 160.1, 150.4, 137.7, 136.4, 132.0, 130.5, 129.6, 129.5, 121.7, 21.0.

(E)-N-(2-Methoxyphenyl)-1-phenylmethanimine (5y). 81.3 mg, 77% yield, yellow oil, ¹H NMR (CD₃COCD₃, 600 MHz): δ 8.53 (s, 1H), 7.96–7.95 (m, 2H), 7.52–7.50 (m, 3H), 7.19–7.16 (m, 1H), 7.06–7.02 (m, 2H), 6.96 (td, *J* = 7.5, 1.2 Hz, 1H), 3.83 (s, 3H). ¹³C{¹H} NMR (CD₃COCD₃, 150 MHz): δ 161.8, 153.1, 142.9, 137.8, 132.0, 129.5, 127.2, 121.8, 121.5, 113.0, 56.1.

(E)-N-Benzylidine-3-methoxyaniline (5z). 94.0 mg, 89% yield, yellow liquid, ¹H NMR (CD₃COCD₃, 600 MHz): δ 8.58 (s, 1H), 7.97–7.96 (m, 2H), 7.52–7.49 (m, 3H), 7.32–7.29 (m, 1H), 6.85–6.81 (m, 3H), 3.83 (s, 3H). ¹³C{¹H} NMR (CD₃COCD₃, 150 MHz): δ 161.4, 161.1, 154.4, 137.4, 132.1, 130.7, 129.6, 129.5, 113.9, 112.4, 107.2, 55.6.

(E)-N-(4-Methoxyphenyl)-1-phenylmethanimine (5aa). 100.4 mg, 95% yield, white solid, ¹H NMR (CD₃OD, 600 MHz): δ 8.53 (s, 1H), 7.89–7.87 (m, 2H), 7.48–7.46 (m, 3H), 7.26–7.24 (m, 2H), 6.95–6.94 (m, 2H), 3.79 (s, 3H). ¹³C{¹H} NMR (CD₃OD, 150 MHz): δ 160.7, 160.1, 145.6, 137.6, 132.3, 129.8, 129.7, 123.3, 115.5, 55.9.

(E)-N-(2-Ethylphenyl)-1-phenylmethanimine (5ab). 65.9 mg, 63% yield, yellow oil, ¹H NMR (CD₃COCD₃, 600 MHz): δ 8.51 (s, 1H), 8.00–7.98 (m, 2H), 7.53–7.52 (m, 3H), 7.26–7.15 (m, 3H), 7.03 (dd, J = 7.7, 1.3 Hz, 1H), 2.79 (q, J = 7.5 Hz, 2H), 1.17 (t, J = 7.6 Hz, 3H). ¹³C{¹H} NMR (CD₃COCD₃, 150 MHz): δ 160.3, 151.3, 138.8, 137.7, 132.1, 129.6, 129.5, 129.5, 127.7, 126.8, 118.5, 25.5, 15.5.

(E)-N-(4-Fluorophenyl)-1-phenylmethanimine (5ac). 94.6 mg, 95% yield, white solid, ¹H NMR (CD₃COCD₃, 600 MHz): δ 8.60 (s, 1H), 7.97–7.96 (m, 2H), 7.53–7.50 (m, 3H), 7.33–7.31 (m, 2H), 7.19–7.16 (m, 2H). ¹³C{¹H} NMR (CD₃COCD₃, 150 MHz): δ 162.8, 161.1 (d, J_{C-F} = 1.8 Hz), 149.2, 137.4, 132.2, 129.6 (d, J_{C-F} = 3.3 Hz), 123.5 (d, J_{C-F} = 8.3 Hz), 116.6, 116.5.

(E)-N-(4-Chlorophenyl)-1-phenylmethanimine (5ad). 98.1 mg, 91% yield, white solid, ¹H NMR (CD₃COCD₃, 600 MHz): δ 8.60 (s, 1H), 7.97 (d, *J* = 6.2 Hz, 2H), 7.54–7.50 (m, 3H), 7.43 (d, *J* = 8.7 Hz, 2H), 7.28 (d, *J* = 8.7 Hz, 2H). ¹³C{¹H} NMR (CD₃COCD₃, 150 MHz): δ 161.8, 151.7, 137.2, 132.4, 131.7, 130.0, 129.7, 129.6, 123.4.

N-(3-Chlorophenyl)-1-phenylmethanimine (5ae). 97.1 mg, 90% yield, yellow oil, ¹H NMR (CD₃COCD₃, 600 MHz): δ 8.60 (s, 1H), 7.99–7.97 (m, 2H), 7.55–7.51 (m, 3H), 7.42 (t, *J* = 7.9 Hz, 1H), 7.29–7.26 (m, 2H), 7.22–7.20 (m, 1H). ¹³C{¹H} NMR (CD₃COCD₃, 150 MHz): δ 162.6, 154.5, 137.1, 135.1, 132.5, 131.4, 129.8, 129.6, 126.4, 121.6, 120.6.

(E)-N-(4-Bromophenyl)-1-phenylmethanimine (5af). 122.3 mg, 94% yield, white solid, ¹H NMR (CD₃COCD₃, 600 MHz): δ 8.60 (s, 1H), 7.97 (d, J = 6.6 Hz, 2H), 7.58–7.51 (m, 5H), 7.22 (d, J = 8.5 Hz, 2H). ¹³C{¹H} NMR (CD₃COCD₃, 150 MHz): δ 161.4, 151.7, 136.8, 132.5, 132.0, 129.3, 129.2, 123.4, 119.1.

(E)-1-Phenyl-N-(pyridin-2-yl)methanimine (5ag). 74.7 mg, 82% yield, white solid, ¹H NMR (CD₃COCD₃, 600 MHz): δ 9.23 (s, 1H), 8.50–8.49 (m, 1H), 8.06–8.05 (m, 2H), 7.86 (td, *J* = 7.6, 1.9 Hz, 1H), 7.57–7.53 (m, 3H), 7.34 (dt, *J* = 7.9, 1.0 Hz, 1H), 7.27 (ddd, *J* = 7.4, 4.8, 1.1 Hz, 1H). ¹³C{¹H} NMR (CD₃COCD₃, 150 MHz): δ 163.2, 161.8, 149.8, 139.1, 137.1, 132.8, 130.2, 129.7, 122.9, 120.9.

(E)-1-Phenyl-N-(pyridin-3-yl)methanimine (5ah). 68.3 mg, 75% yield, white liquid, ¹H NMR (CD₃COCD₃, 600 MHz): δ 8.66 (s,

1H), 8.50 (d, *J* = 2.6 Hz, 1H), 8.46 (dd, *J* = 4.7, 1.5 Hz, 1H), 8.01–7.99 (m, 2H), 7.66–7.64 (m, 1H), 7.57–7.53 (m, 3H), 7.42–7.40 (m, 1H). $^{13}C^{1}H$ NMR (CD₃COCD₃, 150 MHz): δ 163.2, 148.6, 148.0, 143.8, 137.1, 132.6, 129.8, 129.7, 128.1, 124.6.

(E)-N-(Naphthalen-2-yl)-1-phenylmethanimine (5ai). 96.0 mg, 83% yield, white solid, ¹H NMR (CD₃COCD₃, 600 MHz): δ 8.75 (s, 1H), 8.04–8.02 (m, 2H), 7.96–7.91 (m, 3H), 7.71 (d, *J* = 1.8 Hz, 1H), 7.56–7.46 (m, 6H). ¹³C{¹H} NMR (CD₃COCD₃, 150 MHz): δ 161.4, 150.6, 137.6, 135.2, 133.0, 132.2, 129.8, 129.7, 129.7, 128.7, 128.6, 127.3, 126.2, 122.0, 118.6.

(E)-N-Benzyl-1-phenylmethanimine (5aj). 75.2 mg, 77% yield, orange oil, ¹H NMR (CD₃COCD₃, 600 MHz): δ 8.50 (s, 1H), 7.84–7.82 (m, 2H), 7.46–7.44 (m, 3H), 7.37–7.33 (m, 4H), 7.26–7.23 (m, 1H), 4.80 (s, 2H). ¹³C{¹H} NMR (CD₃COCD₃, 150 MHz): δ 162.4, 140.9, 137.6, 131.4, 129.4, 129.2, 129.0, 128.8, 127.6, 65.4.

(E)-N-Hexyl-1-phenylmethanimine (5ak). 83.3 mg, 88% yield, white oil, ¹H NMR (CD₃COCD₃, 600 MHz): δ 8.33 (s, 1H), 7.78–7.76 (m, 2H), 7.43–7.42 (m, 3H), 3.58 (td, *J* = 6.9, 1.5 Hz, 2H), 1.68–1.63 (m, 2H), 1.39–1.29 (m, 6H), 0.90–0.87 (m, 3H). ¹³C{¹H} NMR (CD₃COCD₃, 150 MHz): δ 161.0, 137.8, 131.2, 129.4, 128.7, 62.0, 32.4, 31.7, 27.8, 23.3, 14.3.

(E)-N-Cyclohexyl-1-phenylmethanimine (5al). 74.9 mg, 80% yield, yellow liquid, ¹H NMR (CD₃OD, 600 MHz): δ 8.38 (s, 1H), 7.74–7.73 (m, 2H), 7.44–7.43 (m, 3H), 3.28–3.23 (m, 1H), 1.87–1.84 (m, 2H), 1.77–1.70 (m, 3H), 1.62–1.55 (m, 2H), 1.46–1.38 (m, 3H). ¹³C{¹H} NMR (CD₃OD, 150 MHz): δ 162.3, 137.3, 132.0, 129.7, 129.3, 71.3, 35.3, 26.7, 25.9.

(1E,1'E)-N,N'-(1,3-Phenylene)bis(1-phenylmethanimine) (5am). 113.7 mg, 80% yield, yellow solid, ¹H NMR (CD₃COCD₃, 600 MHz): δ 8.67 (s, 2H), 8.01–7.99 (m, 4H), 7.54–7.53 (m, 6H), 7.46–7.43 (m, 1H), 7.16–7.15 (m, 3H). ¹³C{¹H} NMR (CD₃COCD₃, 150 MHz): δ 161.5, 154.0, 137.5, 132.2, 130.6, 129.6, 119.5, 113.9.

(1*E*,1'*E*)-*N*,*N*'-(1,4-Phenylene)bis(1-phenylmethanimine) (5an). 120.9 mg, 85% yield, pale yellow solid, ¹H NMR (CD₃COCD₃, 600 MHz): 8.67 (s, 2H), 8.00–7.98 (m, 4H), 7.54–7.52 (m, 6H), 7.36 (s, 4H). ¹³C{¹H} NMR (CD₃COCD₃, 150 MHz): δ 160.4, 150.9, 137.6, 132.1, 129.6, 129.6, 122.8.

(1*E*,1'*E*)-1,1'-(1,3-Phenylene)bis(N-phenylmethanimine) (5ao). 69.7 mg, 49% yield, yellow solid, ¹H NMR (CD₃COCD₃, 600 MHz): δ 8.71 (s, 2H), 8.57 (s, 1H), 8.13 (dd, *J* = 7.6, 1.4 Hz, 2H), 7.68 (t, *J* = 7.6 Hz, 1H), 7.44 (t, *J* = 7.8 Hz, 4H), 7.33–7.31 (m, 4H), 7.28–7.25 (m, 2H). ¹³C{¹H} NMR (CD₃COCD₃, 150 MHz): δ 160.5, 152.8, 138.1, 132.2, 130.1, 130.0, 129.5, 127.0, 121.8.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.organomet.9b00769.

NMR spectra of the new compounds and the X-ray crystallographic data for **2b** (PDF)

Crystallographic X-ray data for 2b (XYZ)

Accession Codes

CCDC 1920267 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

*E-mail: chaihuining@qut.edu.cn. ORCID [©]

JRCID

Huining Chai: 0000-0002-7267-2952 Kun Yu: 0000-0001-7342-8938 Article

Organometallics

Bo Liu: 0000-0003-4526-714X Weiqiang Tan: 0000-0003-2737-2018 Guangyao Zhang: 0000-0002-7159-5166

Author Contributions

^{II}These authors contributed equally to this work.

Notes

The authors declare the following competing financial interest(s): The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful to the National Natural Science Foundation of China (21801158) and the Open Project Fund of Qingdao University of Technology (QUTSEME201934) for support of this research. We thank Prof. Z.-K. Yu (DICP) for helpful discussion.

REFERENCES

(1) (a) Hadjipavlou-Litina, D. J.; Geronikaki, A. A. Thiazolyl and Benzothiazolyl Schiff Bases as Novel Possible Lipoxygenase Inhibitors and Anti Inflammatory Agents. Synthesis and Biological Evaluation. Drug Des. Discovery 1998, 15, 199. (b) Lawrence, A. Amine: Synthesis Properties and Applications; Cambridge University Press: Cambridge, UK, 2004. (c) Brown, B. R. The Organic Chemistry of Aliphatic Nitrogen Compounds; Cambridge University Press: Cambridge, UK, 2004. (d) Rappoport, Z. J.; Liebman, F. The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids; Wiley: New York, 2009; p609. (e) Guillena, G.; Ramon, D. J.; Yus, M. Hydrogen Autotransfer in the N-Alkylation of Amines and Related Compounds using Alcohols and Amines as Electrophiles. Chem. Rev. 2010, 110, 1611-1641. (f) Chakraborty, S.; Dai, H.; Bhattacharya, P.; Fairweather, N. T.; Gibson, M. S.; Krause, J. A.; Guan, H. Iron-Based Catalysts for the Hydrogenation of Esters to Alcohols. J. Am. Chem. Soc. 2014, 136, 7869-7872.

(2) (a) Guo, J.; Cheng, B.; Shen, X.; Lu, Z. Cobalt-catalyzed Asymmetric Sequential Hydroboration/Hydrogenation of Internal Alkynes. J. Am. Chem. Soc. 2017, 139, 15316–15319. (b) Chen, C.; Shen, X.; Chen, J.; Hong, X.; Lu, Z. Iron-Catalyzed Hydroboration of Vinylcyclopropanes. Org. Lett. 2017, 19, 5422–5425. (c) Chen, J.; Lu, Z. Asymmetric Hydrofunctionalization of Minimally Functionalized Alkenes via Earth Abundant Transition Metal Catalysis. Org. Chem. Front. 2018, 5, 260–272.

(3) (a) Noisier, A. F. M.; Brimble, M. A. C-H Functionalization in the Synthesis of Amino Acids and Peptides. *Chem. Rev.* **2014**, *114*, 8775–8806. (b) Eftekhari-Sis, B.; Zirak, M. α -Imino Esters in Organic Synthesis: Recent Advances. *Chem. Rev.* **2017**, *117*, 8326–8419. (c) Yeung, K.; Talbot, F. J. T.; Howell, G. P.; Pulis, A. P.; Procter, D. J. Copper-Catalyzed Borylative Multicomponent Synthesis of Quaternary α -Amino Esters. *ACS Catal.* **2019**, *9*, 1655–1661.

(4) Vispute, T. P.; Zhang, H.; Sanna, A.; Xiao, R.; Huber, G. W. Renewable Chemical Commodity Feedstocks from Integrated Catalytic Processing of Pyrolysis Oils. *Science* **2010**, *330*, 1222–1227.

(5) Gnanaprakasam, B.; Zhang, J.; Milstein, D. Direct Synthesis of Imines from Alcohols and Amines with Liberation of H_2 . Angew. Chem., Int. Ed. **2010**, 49, 1468–1471.

(6) (a) Esteruelas, M. A.; Honczek, N.; Oliván, M.; Oñate, E.; Valencia, M. Direct Access to POP-Type Osmium(II) and Osmium-(IV) Complexes: Osmium a Promising Alternative to Ruthenium for the Synthesis of Imines from Alcohols and Amines. Organometallics **2011**, 30, 2468–2471. (b) Xu, C.; Goh, L. Y.; Pullarkat, S. A. Efficient Iridium-Thioether-Dithiolate Catalyst for β -Alkylation of Alcohols and Selective Imine Formation via N-Alkylation Reactions. Organometallics **2011**, 30, 6499–6502. (c) Maggi, A.; Madsen, R. Dehydrogenative Synthesis of Imines from Alcohols and Amines Catalyzed by a Ruthenium N-Heterocyclic Carbene Complex. Organometallics **2012**, 31, 451–455. (d) Rigoli, J. W.; Moyer, S. A.; Pearce, S. D.; Schomaker, J. M. α , β -Unsaturated Imines via Rucatalyzed Coupling of Allylic Alcohols and Amines. Org. Biomol. Chem. 2012, 10, 1746-1749. (e) Nakajima, Y.; Okamoto, Y.; Chang, Y. H.; Ozawa, F. Synthesis, Structures, and Reactivity of Ruthenium Complexes with PNP-pincer Type Phosphaalkene Ligands. Organometallics 2013, 32, 2918-2925. (f) Musa, S.; Fronton, S.; Vaccaro, L.; Gelman, D. Bifunctional Ruthenium(II) PCP Pincer Complexes and Their Catalytic Activity in Acceptorless Dehydrogenative Reactions. Organometallics 2013, 32, 3069-3073. (g) Srimani, D.; Ben-David, Y.; Milstein, D. Direct Synthesis of Pyrroles by Dehydrogenative Coupling of β -Aminoalcohols with Secondary Alcohols Catalyzed by Ruthenium Pincer Complexes. Angew. Chem., Int. Ed. 2013, 52, 4012-4015. (h) Saha, B.; Wahidur Rahaman, S. M.; Daw, P.; Sengupta, G.; Bera, J. K. Metal-Ligand Cooperation on a Diruthenium Platform: Selective Imine Formation through Acceptorless Dehydrogenative Coupling of Alcohols with Amines. Chem. - Eur. J. 2014, 20, 6542-6511. (i) Bain, J.; Cho, P.; Voutchkova-Kostal, A. Recyclable Hydrotalcite Catalysts for Alcohol Imination via Acceptorless Dehvdrogenation. Green Chem. 2015, 17, 2271-2280. (j) Esteruelas, M. A.; Lezáun, V.; Martínez, A.; Oliván, M.; Oñate, E. Osmium Hydride Acetylacetonate Complexes and Their Application in Acceptorless Dehydrogenative Coupling of Alcohols and Amines and for the Dehydrogenation of Cyclic Amines. Organometallics 2017, 36, 2996-3004.

(7) Zhang, G.; Hanson, S. K. Cobalt-Catalyzed Acceptorless Alcohol Dehydrogenation: Synthesis of Imines from Alcohols and Amines. *Org. Lett.* **2013**, *15*, 650–653.

(8) Bala, M.; Verma, P. K.; Kumar, N.; Sharma, U.; Singh, B. Highly Efficient Iron Phthalocyanine Catalyzed Oxidative Synthesis of Imines from Alcohols and Amines. *Can. J. Chem.* **2013**, *91*, 732–737.

(9) Mukherjee, A.; Nerush, A.; Leitus, G.; Shimon, L. J. W.; Ben-David, Y.; Espinosa Jalapa, N. A.; Milstein, D. Manganese-Catalyzed Environmentally Benign Dehydrogenative Coupling of Alcohols and Amines to Form Aldimines and H_2 : A Catalytic and Mechanistic Study. J. Am. Chem. Soc. **2016**, 138, 4298–4301.

(10) Mastalir, M.; Glatz, M.; Gorgas, N.; Stöger, B.; Pittenauer, E.; Allmaier, G.; Veiros, L. F.; Kirchner, K. Divergent Coupling of Alcohols and Amines Catalyzed by Isoelectronic Hydride Mn¹ and Fe^{II} PNP Pincer Complexes. *Chem. - Eur. J.* **2016**, *22*, 12316–12320. (11) Fertig, R.; Irrgang, T.; Freitag, F.; Zander, J.; Kempe, R. Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen or Dehydrogenative Condensation. *ACS Catal.* **2018**, *8*, 8525–8530.

(12) (a) Gunanathan, C.; Milstein, D. Metal-Ligand Cooperation by Aromatization-Dearomatization: A New Paradigm in Bond Activation and "Green" Catalysis. Acc. Chem. Res. 2011, 44, 588-602. (b) Choi, J.; MacArthur, A. H.; Brookhart, M.; Goldman, A. S. Dehydrogenation and Related Reactions Catalyzed by Iridium Pincer Complexes. Chem. Rev. 2011, 111, 1761-1779. (c) Gunanathan, C.; Milstein, D. Applications of Acceptorless Dehydrogenation and Related Transformations in Chemical Synthesis. Science 2013, 341, 249. (d) Obora, Y. Recent Advances in α -Alkylation Reactions using Alcohols with Hydrogen Borrowing Methodologies. ACS Catal. 2014, 4, 3972-3981. (e) Shimizu, K. I. Heterogeneous Catalysis for the Direct Synthesis of Chemicals by Borrowing Hydrogen Methodology. Catal. Sci. Technol. 2015, 5, 1412-1427. (f) Yang, Q.; Wang, Q. F.; Yu, Z. K. Substitution of Alcohols by N-nucleophiles via Transition Metalcatalyzed Dehydrogenation. Chem. Soc. Rev. 2015, 44, 2305-2329. (g) Zell, T.; Milstein, D. Hydrogenation and Dehydrogenation Iron Pincer Catalysts Capable of Metal-Ligand Cooperation by Aromatization/Dearomatization. Acc. Chem. Res. 2015, 48, 1979-1994. (h) Quintard, A.; Rodriguez, J. A Step into an Eco-Compatible Future: Iron- and Cobalt-Catalyzed Borrowing Hydrogen Transformation. ChemSusChem 2016, 9, 28-30. (i) Kallmeier, F.; Kempe, R. Manganese Complexes for (De)Hydrogenation Catalysis: A Comparison to Cobalt and Iron Catalysts. Angew. Chem., Int. Ed. 2018, 57, 46-60. (j) Mukherjee, A.; Milstein, D. Homogeneous Catalysis by Cobalt and Manganese Pincer Complexes. ACS Catal. 2018, 8, 11435-11469. (k) Liu, T. T.; Wang, L. D.; Wu, K. K.; Yu, Z.

Organometallics

K. Manganese-Catalyzed β -Alkylation of Secondary Alcohols with Primary Alcohols under Phosphine-Free Conditions. *ACS Catal.* **2018**, *8*, 7201–7207. (1) Irrgang, T.; Kempe, R. 3d-Metal Catalyzed N- and C-Alkylation Reactions via Borrowing Hydrogen or Hydrogen Autotransfer. *Chem. Rev.* **2019**, *119*, 2524–2549.

(13) (a) Zhao, B. G.; Han, Z. B.; Ding, K. L. The N-H Functional Group in Organometallic Catalysis. Angew. Chem., Int. Ed. 2013, 52, 4744-4788. (b) Du, W. M.; Wu, P.; Wang, O. F.; Yu, Z. K. Ruthenium(II) Complex Catalysts Bearing a Pyridyl-Based Benzimidazolyl-Benzotriazolyl Ligand for Transfer Hydrogenation of Ketones. Organometallics 2013, 32, 3083-3090. (c) Bizet, V.; Pannecoucke, X.; Renaud, J. L.; Cahard, D. Ruthenium-Catalyzed Redox Isomerization of Trifluoromethylated Allylic Alcohols: Mechanistic Evidence for an Enantiospecific Pathway. Angew. Chem., Int. Ed. 2012, 51, 6467-6470. (d) Strotman, N. A.; Baxter, C. A.; Brands, K. M. J.; Cleator, E.; Krska, S. W.; Reamer, R. A.; Wallace, D. J.; Wright, T. J. Reaction Development and Mechanistic Study of a Ruthenium Catalyzed Intramolecular Asymmetric Reductive Amination en Route to the Dual Orexin Inhibitor Suvorexant (MK-4305). J. Am. Chem. Soc. 2011, 133, 8362-8371. (e) Zeng, F. L.; Yu, Z. K. Construction of Highly Active Ruthenium(II) NNN Complex Catalysts Bearing a Pyridyl-Supported Pyrazolyl-Imidazolyl Ligand for Transfer Hydrogenation of Ketones. Organometallics 2009, 28, 1855-1862. (f) Jin, W. W.; Wang, L. D.; Yu, Z. K. A Highly Active Ruthenium (II) Pyrazolyl-Pyridyl-Pyrazole Complex Catalyst for Transfer Hydrogenation of Ketones. Organometallics 2012, 31, 5664-5667. (g) Chai, H. N.; Liu, T. T.; Yu, Z. K. NHTs Effect on the Enantioselectivity of Ru(II) Complex Catalysts Bearing a Chiral Bis(NHTs)-Substituted Imidazolyl-Oxazolinyl-Pyridine Ligand for Asymmetric Transfer Hydrogenation of Ketones. Organometallics 2017, 36, 4136-4144.

(14) (a) Hoogervorst, W. J.; Elsevier, C. J.; Lutz, M.; Spek, A. L. New *cis*- and *trans*-Arylplatinum(II) Acetylide Compounds Containing a Bis(imino)aryl [NCN] Ligand. *Organometallics* **2001**, *20*, 4437–4440. (b) Hoogervorst, W. J.; Koster, A. L.; Lutz, M.; Spek, A. L.; Elsevier, C. J. *trans*-Arylplatinum(II) Methyl Compounds Containing a Bis(imino)aryl [NCN] Ligand. *Organometallics* **2004**, *23*, 1161–1164. (c) Gao, W.; Cui, D. Highly *cis*-1,4 Selective Polymerization of Dienes with Homogeneous Ziegler-Natta Catalysts Based on NCN-Pincer Rare Earth Metal Dichloride Precursors. *J. Am. Chem. Soc.* **2008**, *130*, 4984–4991. (d) Liu, Z.; Gao, W.; Liu, X.; Luo, X.; Cui, D.; Mu, Y. Pincer Chromium (II) and Chromium (III) Complexes Supported by Bis (imino) aryl NCN ligands: Synthesis and Catalysis on Isoprene Polymerization. *Organometallics* **2011**, *30*, 752–759.

(15) (a) Mungse, H. P.; Verma, S.; Kumar, N.; Sain, B.; Khatri, O. P. Grafting of Oxo-vanadium Schiff base on Graphenenanosheets and its Catalytic Activity for the Oxidation of Alcohols. *J. Mater. Chem.* **2012**, *22*, 5427–5433. (b) Yang, Y. C.; Toy, P. H. Self-supported Ligands as a Platform for Catalysis: Use of a Polymeric Oxime in a Recyclable Palladacycle Precatalyst for Suzuki-Miyaura Reactions. *Synlett* **2014**, *25*, 1319–1324.