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Abstract View-based approach for learning and recognition of 3D 
object and its pose detection was proved to be affective and efficient, except 
its high learning cost. In this research, we propose a virtual learning ap- 
proach which generates learning samples of views of an object from its 3D 
view model obtained by motion-stereo method. From the generated learning 
sample views, features of high-order autocorrelation are extracted, and dis- 
criminant feature spaces for object recognition and pose detection are built. 
Recognition experiments on real objects are carried out to show the effective- 
ness of the proposed method. 

Keywords: 3D View Model, View-based Virtual Learning, High-order Auto- 
correlation, Object Recognition, Pose Detection. 

w I n t r o d u c t i o n  
Object  recognition is a major  task in computer  vision. In the passed 

decades, enormous research efforts were made in this field and there were var- 
ious methods 1-6) proposed. Generally, most of those methods can be classified 
into two classes of model-based approach 1~3) and view-based approach. 4~6) In 
the model-based approach, object recognition is carried out by matching the 
geometric features extracted from the image of object with its geometric model. 
This approach requests the geometric model of the object  to be available in ad- 
vance, but  in general, building a geometric model of an object is not an easy task, 
especially when the object has complex shape. Moreover, fault in extraction of 
geometric features from the images may cause failure in recognition. 
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On the other hand, the view-based methods take a visual learning ap- 
proach to learn 3D object from its two-dimensional views. Murase et al. 4) pro- 
posed a method called parametric eigenspace for object learning. In this method, 
a sequence of views of the object, which are taken when the 3D object is turned 
around on a turn table, is compressed to its eigenspace by K-L expansion. The 
trajectory of the view sequence in the eigenspace is treated as a appearance 
model of the object. Object recognition is carried out by projecting the image 
to be recognized to the eigenspace and finding the closest point in the trajectory. 
Hasegawa et al. 5) also adopt a similar learning procedure, but they represented 
the images with high-order autocorrelation features 8) and constructed the feature 
space for recognition by discriminant analysis. 

On contrast to model-based approach, view-based methods do not need 
geometric models, so they can be applied effectively in spite of complexity of 
object shapes. However, in order to deal with 3D object appears at arbitrary 
pose under arbitrary illumination, numerous learning samples are required, so 
the learning cost will be very high. With regard to this problem, Amano et 
al.7) proposed a method which generates the learning samples of range images 
of an object from its 3D model, where the range data of the object is utilized 
for object recognition. 

In this research, we propose a view-based virtual learning approach which 
generates learning samples of views of object from its 3D view model obtained 
by motion-stereo method. In motion-stereo, some views of the object are shown 
to a static stereo camera by moving the object slightly. The shapes of the object 
at each view are reconstructed by motion-stereo which utilizes both stereo and 
motion information. The obtained shapes are integrated to form a 3D view 
model of the object. 

From the 3D view model, we can generate views of the object observed 
from any view point. In our research, we select 110 view points which uniformly 
distribute on the spherical surface as the representative poses of the object. For 
each pose of the object, learning samples of view are generated and the features 
of high-order autocorrelation are extracted to build discriminant feature spaces 
for object recognition and pose detection. In order to suppress the influence of 
illumination, we use directional high-order autocorrelations defined on Gaussian 
directional differential. With these features, the rotation of images can be rep- 
resented as a linear transformation in the feature space, so we can deduce one 
degree of freedom of rotation angle. Finally, recognition experiments on real 
objects are carried out to show the effectiveness of the proposed method. 

w 3D View Model from Motion-Stereo 
Motion stereo s) is a method to obtain the 3D view model of the object in 

general environment. Fig. 1 briefly illustrates the procedure. 
In motion stereo, the object is moved to show some views of it to a static 

stereo camera. At each view, two frames of stereo images which are temporally 
continued are use to recovery the shape of the object. Using such two tempo- 
rally continued stereo frames, we can utilize both stereo information and motion 
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Fig. 1 Ob t a i n  3D View Model  f rom Mot ion-Stereo  

information to find more reliable correspondences in the images than just using 
only one. On the assumption that the background is static and the object is 
rigid, we can extract the object region easy by checking the condition of rigidity 
of motion. 

When the views of the object are selected so that the full view of the object 
can be composed from them, the 3D model of the object can be obtained by 
integrating the partial shapes obtained at the selected views. First, we estimate 
the relative pose parameters of the partial shapes using a few initial matching 
points and refine them using texture matching. Then, the partial shapes are 
merged by transforming them to a common coordinate system. Thirdly, we 
eliminate some irrelevant parts in the partial shapes such as hands which touch 
to but not belong to the object, by extracting the overlapped surfaces, supposed 
that the views are selected such that each surface of the object appears in more 
than one views. Finally, the overlapped surfaces are filtered by a median filter 
to generate unique and thin surface and the 3D view model of the object is 
obtained. 

w Generation of Learning Samples 
The 3D view model obtained by motion stereo method contains both 

shape and texture of the object, so the view of any view-point can be generated 
using this model. In this research, in order to deal with any views of the object, 
we generate view points which uniformly distribute on the spherical surface with 
enough density, and regard the views from those view points as representative 
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poses of the object. 
Fig. 2 briefly illustrates how to generate such a view point distribution. 

First, we generate an initial view point distribution using 8 vertex of the inscribed 
cube of a sphere and 6 view points which pass through the centers of six faces of 
the cube. The initial spherical surface is stretched with triangle patches using 
over the 14 view points, as shown in Fig. 2 (a). View point distribution with 
any density can be generated by iteratively adding new view points using the 
centers of triangle patches and stretching the sphere surface again, as shown in 
Fig. 2 (b) and2 (c). In this research, we select 110 view points shown in Fig. 2 (c) 
as the representative poses of the object. Fig. 2 (e) shows the views generated 
for some poses from the 3D view models of two objects shown in Fig. 2 (d). 

~ (b) 

View Points (d) 3D View Models (e) Generated Views 

Fiu 2 Some Sample  Views G e n e r a t e d  f rom 3D View Models  

For each pose, we select some view points close to it and generate views 
as its learning samples. In experiment, we select 24 viewpoints uniformly dis- 
tributed on a circle around view point of the pose on the spherical surfaces. 

w High-order Directional Autocorrelation 
In this research, we adopt the high-order autocorrelation features pro- 

posed by Otsu et al. 6) for image representation, because this representation 
has the advantages of shift invariance and simplicity in computation. The def- 
inition of high-order autocorrelation is modified by using Steerable Gaussian 
Differential Filter, that  is, the high-order autocorrelation is defined on Gaussian 
directional differentials of the image rather than on its grey value. With the 
modified definition, the influence of illuminations can be suppressed, and be- 
cause the steerability of Ganssian differential filter, the rotation of images can 
be represented as a linear transformation in the feature space, so we can deduce 
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4.1 Steerable Gaussian Differential Filter 
Gaussian differential filter of arbitrary orientation can be represented by 

a linear combination of a set of basis filters in particular orientations. The filter 
with such property is called steerable filter. Steerable Gaussian differential filter 
is described briefly as following. 

1 x 2 -t- y2 ~ the 1-order Given a Gaussian function G ( x , y )  = 27ra2exp( -2a---- 2- j, 
differential filter in x direction (0 ~ and y direction (90 ~ are as following. 

1 x2 + y2 ) 

~y 1 x 2 q_ y2 
G 9~176 = G(x ,  y) - 27r-a4 y exp( ~a  i ) 

(1) 

(2) 

The first differential filter of Gaussian G~ ~ in direction 8 can be repre- 
sented linearly by G ~176 and G 9~176 as following. 

G? = cos(O)C ~176 + sin(0)G 9~176 (3) 

Similarly, the second differential filter of Gaussian Ge2 in direction 8 can be 
represented by a linear combination of that  of 91 = 0 ~ 02 = 60 ~ and 0a = 120 ~ 
That  is, 

= kl(0)a~ ~ + k2(0)a  ~176 + k (0)a  (4) 

where 
1 

kj(O) = 3(1 + 2 cos(2(0 - Oj))), j -- 1, 2, 3 (5) 

In general, n th  differential Gaussian filter of arbitrary direction can rep- 
resented as a linear combination of a set of basis filters. In this research, we only 
use first and second differential filters of Gaussian. 

4.2 High-order Directional Autocorrelation Features 
For image f ( x ,  y), its n th  differential filter of Gaussian Fn e in direction 0 

can be represented as 

F~(x, y) = I(x,  y) * a~(x ,  y) (6) 

where �9 stands for convolution operator. 
The high-order directional autocorrelation features are defined on filtered 

images F~ (x, y) as following. 

F~ = nl ('~, YJ . :  (x, y)...F;,~ (x, y )dxdy  (7) 

Using the distributivity of the convolution operator and the steerability of 
G e_ (x, y), we can show that  any given R(F,  el , F, a2) can be represented as a linear 

' *  " 0 0 *o ~o o o o o 
combination of K ( R (  R(  F~ 1, F~ 2)) = { R(  F o , F o ), R (  F o , FOl o ), R(  F~O , F91 o )}, 
which is called the basis features of R(F~  ~ , F~ The prove is omitted here. 
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Similarly as above, we can derive the basis features for other form of high- 
order directional autocorrelation features like R(F~ ,  F~ F~ Here we give 
the basis features of second-order and third-order directional autocorrelation 
features with first and second differential filters of Gaussian. 

K(R(F~' ,F~ = {R(Fb',Fb2), bl = 0~176 b2 = 0~176 ~ 

K(R(F~ ~ , F~ = {R(F bl , Fb2), bl, b2 = 0 ~ 60 ~ 120~ bl _< b2} 

K(R(F~176176 = {R(Fbl',Fb2,Fbz),bl,b2, b3 =0~176 

ba N b2 < b3} 

K(R(F~176176 = {R(Fba,Fb12,Fb3),bl,b2 = 0~176 
ba = 0 ~ 60 ~ 120~ bl _< b2} 

g(R(F~176176 = {R(Fb',Fb2,Fb3),bl = O~176 ; 
b2, ba = 0 ~ 60 ~ 120~ be _< b3} 

K ( R( F~ FO:, F~ ) ) = { R( Fb2~ , Fb2, Fbz ), bl, b2, b3 = 0~176 120~ 

bl < b2 < b3} 

In the above, we get 50 directional autocorrelation features which can be 
arranged to a vector of 50 dimensios to represent a gray image. For color images, 
a vector of 150 dimensions is used. 

4.3 Linear Transform for Image Rotation 
Let h(x', y') be the image rotated by 7 degree from image f (x ,  y). F~ y) 

and H~ ', y') be nth-order Gaussian differential in 0 direction computed for 
f ( x , y )  and h(x', y') respectively. Then F~ and H~ ', y') have following 
relation. 

H~(x', y') = F~+'r(x, y) (8) 

Let {R(F~ F~ ...,Fn~ be the high-order Gaussian directional differ- 
ential on the original image f (x, y) and let {R'(H~ H~ ..., H~ be that  of 
the rotated image h(x', y'). We can show that  

R'(g~176 ...,g~ 

= l ~ n l  ~ ' ,~)  n 2  I ' . ~ 1 " "  n m  \ ' 
y 

= R(F~176176 ) (9) 

As described in the  previous section, ~t t n, , rn2 ,..., can be 
F81 02 0.~ nm J represented as a linear combination of K(R(  nl, F ~ ,  ..., F , ~  )). That  is, 

R,(H~n~I, HO22,..., Ho:)T = A(,7).~(R(FO~, FO~,..., Fen,~))T (10) 

01 02 0,.,~ where A(-y) is a vector which contains a parameter 7. / ( ( R ( F ~ ,  F~2,..., F ~ ) )  
is a vector by lining u~ the basis high-order Gaussian directional differential 
features in K(R(F~  F~X, ..., F~ 
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To recognize the rotated image with the learning images without rotation, 
we just need to solve the following problem. 

arg min{min l~'fH~ nl, H~ "",H~'~)AT('Y) E -  M~II ~} (11) 
z "t 

where E is the projecting matrix obtained by discriminant analysis which project 
the the high-order Gaussian directional differential features to the discriminant 
space, in which the classes can be separated most easy. Mi stands for the centers 
of class i in the discriminant space. 

3, HOl HO2 HO,~ T 2 As IfR ( nl '  n2' ""' ,~,,)A (7 )E  - Mill is polynominal of sin(-/) and 
cos(7), it is usually difficult to find an analytic solution for the minimalizing 
problem. In our research, we seek for a approximate minimal solution by follow- 
ing method. 

min{ I1/~' (H~I~, H~, . . . ,  H~= )AT(7~)E - M, II 2, 

"y, = -180,  - 180  + s, ...., 180} (12) 

where s is the step of rotation degrees in seeking the minimal solution. In 
experiment s takes a value of 5. 

w Object Recognition and Pose Detection 
In order that  both object recognition and pose detection can be carried 

out efficiently, we construct the discriminant space hierarchically by bot tom up 
approach. 

First, we generate 110 poses of the object from uniformly contributed 
view points as shown in Fig. 2 (c). For each pose Pk and its neighboring poses 
Nk = {Pkj, j = 1, ...., nk }, we find the ellipse with largest density of neighboring 
poses by random sampling method. Then we iteratively extract  the the ellipse 
with largest density of neighboring poses obtained at each pose. The poses 
contained in the extracted ellipse are treated as a cluster of poses. 

For a given object, discriminant spaces of two hierarchies are built, where 
the top one is built for the clusters obtained above. For each cluster which 
contains more than one poses, a discriminant space is built where a pose is 
regarded as a class. In pose detection, we first project the view of the object to 
the top discriminant spaces and find the cluster to which the view of the object 
belongs. If the obtained cluster contains only one pose, we get the pose of the 
view at the same time. Otherwise, we project the view to the discriminant space 
of the found cluster, and detecting the pose of the view. 

In the case of more than one objects, the discriminant spaces for object 
recognition must also be built. One simple way is to regard an object as a class. 
However, if the view of an object changes much when the view point changes, 
a class may contain samples without similarity in feature. In this research, we 
represent each object with 20 classes. These classes are obtained by iteratively 
merging two closet clusters of poses. For n objects, 20n classes are used to build 
the discriminant space for object recognition. In this space, a view is recognized 
object On if it is classified to any class of object On. 
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w Experimental Results 
We applied our method to three real objects, one doll of bear and two 

boxes. The results of object recognition and pose detection are summarized in 
Table 1. In the experiment, the background is not taken into account. 

Table 1 Recogni t ion  Resu l t s  

Item box 1 doll box 2 

Number of test  images 13 14 12 
Correct object recognition 13 14 12 

Correct pose detection 12 12 10 
Incorrect pose detection 1 2 2 

The detected pose is judged to be correct or not by human based on 
difference between input view and the view of detected pose. If they are not 
different from each other obviously, the pose detection result is regarded to be 
correct. Fig. 3 some shows examples of correct results of pose detection. 

r 

Fig. 3 Examples  of Correc t  Recogni t ion  

w Conclusion and Future Work 
In this research, we proposed a view-based virtual learning approach which 

uses the 3D view model of object obtained by motion-stereo method. Using the 
3D view model, we generated the learning sample views of the object. From 
the generated learning sample views, features of high-order autocorrelation are 
extracted, and hierarchical discriminant spaces for object recognition and pose 
detection are built. Recognition experiments on real objects have been carried 
out to show the effectiveness of the proposed method. 

In current experiment, only three objects are used. It is necessary to test 
our method on more objects. Also the background in the scene has not be taken 
into account. This should be studied in future work. 
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