(e) K. J. Chang, H. F. Ridley, and D. J. Triggle, *ibid.*, 14, 1237 (1971).

- (9) (a) B. N. J. Ellenbroek, R. J. F. Nivard, J. M. van Rossum, and E. J. Ariëns, J. Pharm. Pharmacol., 17, 393 (1965); (b) E. J. Ariëns and A. M. Simonis, Ann. N. Y. Acad. Sci., 144, 842 (1967).
- (10) R. W. Brimblecombe and T. D. Inch, J. Pharm. Pharmacol., 22, 881 (1970).
- (11) H. P. Rang, Brit. J. Pharmacol., 22, 356 (1964).
- (12) (a) H. O. Schild, *ibid.*, 2, 189, 251 (1947); (b) O. Arunlakshana and H. O. Schild, *ibid.*, 14, 48 (1959).
- (13) T. Fujita, J. Iwasa, and C. Hansch, J. Amer. Chem. Soc., 86, 5175 (1964).
- (14) R. W. Brimblecombe, D. Green, and T. D. Inch, J. Pharm. Pharmacol., 22, 957 (1970).
- (15) J. F. Moran and D. J. Triggle, in "Cholinergic Ligand Interactions," D. J. Triggle, J. F. Moran and E. A. Barnard, Ed., Academic Press, New York, N. Y., 1971.

- (16) R. W. Brimblecombe, D. Green, and T. D. Inch, J. Pharm. Pharmacol., 22, 951 (1971).
- (17) W. Th. Nauta, R. F. Rekker, and A. F. Harms, in "Physicochemical Aspects of Drug Actions," E. J. Ariëns, Ed., Pergamon Press, London, 1968.
- (18) J. M. van Rossum and E. J. Ariëns, Arch. Int. Pharmacodyn., 118, 418 (1959).
- (19) (a) C. Hansch, Accounts Chem. Res., 2, 232 (1969); (b) C. Hansch and W. R. Glave, Mol. Pharmacol., 7, 337 (1971).
- (20) P. Pratesi, L. Villa, V. Ferri, E. Grana, and D. Sossi, Farmaco Ed. Sci., 24, 313 (1969).
- (21) F. B. Abramson, R. B. Barlow, M. G. Mustafa, and R. P. Stephenson, Brit. J. Pharmacol., 37, 207 (1969).
- (22) E. J. Ariëns, "Molecular Pharmacology," Vol. I., Academic Press, London and New York, 1964, Chapter IIA.
- (23) B. Belleau and J. L. Lavoie, Can. J. Biochem., 46, 1397 (1968).

Medicinal Chemical Studies on Antiplasmin Drugs. 4. Chemical Modification of *trans*-4-Aminomethylcyclohexanecarboxylic Acid and Its Effect on Antiplasmin Activity[†]

Atsuji Okano, Masato Inaoka, Shoichi Funabashi, Masahiro Iwamoto, Sumiro Isoda, Reimei Moroi, Yasushi Abiko, and Miyoshi Hirata.*

Research Laboratories, Daiichi Seiyaku Company, Ltd., Tokyo, Japan. Received July 12, 1971

A series of N-substituted derivatives, amides, and esters of *trans*-4-aminomethylcyclohexanecarboxylic acid (*trans*-AMCHA) were synthesized and evaluated for their antiplasmin activity. Among those, Ph ester derivatives were found to be superior to *trans*-AMCHA. In particular, a high order of the activity was achieved with para-substituted Ph esters. This paper reports the synthetic method, the antiplasmin activity, and the structure-activity relationship.

Several synthetic inhibitors of plasmin have been reported, including ϵ -aminocaproic acid (EACA), p-aminomethylbenzoic acid (PAMBA), trans-4-aminomethylcyclohexanecarboxylic acid (trans-AMCHA), and 4-aminomethylbicyclo[2,2,2]octanecarboxylic acid. Some of them have been subjected to chemical modifications in a search for a new inhibitor. Nagamatsu, et al.¹, reported the inhibitory effects of various N-substituted compounds of L-lysine and esters of EACA on plasmin activity, and Muramatsu, et al^{2-6} described the extensive inhibitory effect of various esters on plasmin and trypsin activities and the relationship between their chemical structure and the inhibitory effect. Among the various saturated aliphatic esters of EACA, the *n*-hexyl ester showed the most extensive inhibitory effect, while branching of the alkyl chain resulted in a decrease of this effect. Markwardt⁷⁻⁹ and his coworkers synthesized various PAMBA derivatives and studied the relationship between chemical structure and antiproteolytic activity of these compounds, and they demonstrated that the benzyl esters were most potent. Modification of trans-AMCHA had been limited to hexvl^{6,10} and p-nitrophenyl¹¹ esters. The preceding paper¹² from our laboratories indicated that introduction of Me into the cyclohexane ring or the side chain of trans-AMCHA resulted in a decrease of the antifibrinolytic activity.

Recently, however, Muramatsu and Fujii¹³ observed the excellent inhibitory effects of Ph ester and *p*-carboxyethylphenyl ester of *trans*-AMCHA on plasmin, trypsin, plasma kallikrein, and thrombin. The present paper deals with the relationship between the antiplasmin activity and the chemical structure of ester derivatives of *trans*-AMCHA including these Ph esters. Other chemical modifications of *trans*-

AMCHA, N-substitution and amidation, are also described here.

Chemistry. trans-AMCHA derivatives used in this study were synthesized mainly according to the methods A-J described in the Experimental Section, and are shown in Tables I and II. Most of these methods were used widely to obtain N-substituted amide and ester derivatives of the amino acid. Carbobenzoxy (Cbz) trans-AMCHA and its acid chloride were found very useful for the preparation of trans-AMCHA derivatives. Physical properties of Cbz intermediates are tabulated in Table III.

Structure-Activity Relationships. The substances listed in Tables I and II were examined for their antiplasmin activity in the caseinolytic and fibrinolytic reactions using *trans*-AMCHA, its benzyl ester (63), or its phenyl ester (75) as reference standards.

From the data in Table I, it was apparent that introduction of substituent groups into the aminomethyl moiety or amidation of *trans*-AMCHA caused a drastic decrease in the antiplasmin activity with only one exception (14).

As shown in Table II, the antiplasmin activity of a series of alkyl esters (35-46) was somewhat superior to that of *trans*-AMCHA in caseinolysis, and the relationship between the activity and the length of the ester moiety was in good agreement with the result of the EACA ester investigated earlier,¹⁻⁶ that is, the *n*-hexyl ester was found to be the most active agent in this series and the activity of the unbranched ester (37,39) was greater than that of the branched chain compd with the same number of C atoms (38,40,41). Furthermore, it was very interesting to find that the unsaturated alkyl esters (54,55) having a double or triple bond at the β position of the alkoxy group were more potent than the corresponding saturated alkyl ester (37).

The potency of the benzyl ester (63) relative to trans-

[†]Presented at the 91st Annual Meeting of Pharmaceutical Society of Japan, Fukuoka, April 1971.

						Yield	9		Relative act.4
No.	<u>R</u>	R'	HX	Mp, °C	Method	%	Formula	Analyses	fibrinolysis
			рсн		JR'HX				
			KCI						
1	CH ₃ SO ₂ NH	ОН		153-155	Α	30	C ₉ H ₁₇ NO ₄ S	C, H, N	<0.01
2	CH ₃ -SO ₂ NH	ОН		193-195	Α	80	C ₁₅ H ₂₁ NO ₄ S	C, H, N	<0.01
3	Ph-CONH	ОН		177-178	А	89	C, H, NO,	C, H, N	
4	CH ₂ CONH	ОН		154-155	Α	70	$C_{10}H_{17}NO_3$	C, H, N	<u>0.01</u>
5	CH,NH	ОН	b	230-232 dec	Bc	86	C _o H ₁ ,NO,	C, d H, N	0.23
6	C₂H́₅NH	ОН		219-220 dec	Be	84	C ₁₀ H ₁₉ NO ₂	C, H, N	0.03
7	(ČH ₃) ₂ N	ОН	f	149-152	С	70	$C_{10}H_{19}NO_2$	C, H, N	0.03
8	(C_2H_5) ,N	ОН	HC1	196-198	С	40	$C_{12}H_{23}NO_2 \cdot HCl$	C, H, N	0.03
9	((CH ₃),CHCH ₂),N	ОН	HCI	205-207	С	45	C ₁₆ H ₃ ,NO ₂ ·HCl	C, H, N	0.03
10	H,NC(NH)NH	ОН	h	349 dec	i	50	$C_{0}H_{12}N_{3}O_{2}$	C, H, N	< 0.04
11	HNCONH	ОН		195-197	i	27	C ₀ H ₁ N ₂ O ₂	C, H, N	< 0.01
12	HÖOCCH_NH	ОН	HCl	217-220 dec	i	35	C, H, NO, HCI	C, H, N	< 0.01
13	C_H_OCOŃH	ОН		130-132	i	70	C.H.NO	C, H, N ^k	< 0.01
14	HOSCHANH	ОН		181-183 dec	i	81	C.H. NO.S	C, H, N	1.05
15	H ₂ NNH ²	ОН	p-TsOH	228-230 dec	i		$C_{8}H_{16}N_{2}O_{2}$	C, H, N	0.13
16	H.NCONHNH	ОН	HCl	198-200 dec	i		$C_{H_1}N_1O_2 \cdot HCl$	C, H, N ¹	< 0.01
17	(ĆH ₂) ₂ N ⁺	ОН	I-	191-193	i	60	C, H, INO,	C, H, N	< 0.02
18	NH.	NH.	HC1	251-252 dec	E	70	C.H.N.O.HCI	C, H, N	0.02
19	NH.	NHCH.	HCl	239-241 dec	E	80	C.H.N.O HCI	C, H, N^m	< 0.02
20	NH ₂	NH(CH.)-CH.	HCl	248-250 dec	D	92	C.H.N.O·HCI	C, H, N	< 0.02
21	NH ₂	NH(CH.).CH.	HCl	233-237 dec	E	90	C.H.N.O ·HCI	C, H, N	0.02
22	NH.	NH(CH_).CH_	HCI	232-235 dec	Ē	79	C.H.N.O HCI	C. H. N ⁿ	< 0.02
23	NH.	NH(CH.).N(CH.).	2HCl	193-195 dec	E	54	C.H.N.O · 2HCl	C. H. N	< 0.02
24	NH ₂	NHPh	HCl	260-262 dec	i	89	C ₁₄ H ₂₀ N ₂ O · HCl	C, H, N	< 0.02
25	NH ₂	NH - H	HC1	305 dec	Ε	91	$C_{14}H_{26}N_2O \cdot HCl$	C, <i>o</i> H, N	< 0.02
26	NH ₂	$N(C_2H_5)_2$	HCl	190-192	Ε	81	$C_{12}H_{24}N_2O \cdot HCl$	C, H, N	0.02
27	NH ₂	$N\left(\left(H\right)\right)_{2}$	HCl	239-240 dec	D	42	$C_{20}H_{36}N_2O \cdot HCl$	С, Н , рN	0.02
28	NH ₂	Piperidino	HCl	246	Е	91	C13H24N2O+HCl	C, H, N	< 0.02
29	NH ₂	Morpholino	HCl	268-270 dec	F	77	$C_{1,H}, N, O, \cdot HCl$	C,9 H, N	< 0.02
30	NH ₂	$NH(C_{a}H_{a})OCH_{a}(p)$	HCl	281-282 dec	F	70	$C_{1}H_{2}N_{0}O_{1}$ HCl	C, H, N	< 0.02
31	NH ₂	NH(C,H)OC,H(p)	HCl	287-289 dec	F	68	$C_{16}H_{24}N_{2}O_{1} \cdot HCl$	C, H, N	< 0.02
32	NH,	NH(C,H,)CH,(O)	HCl	299-300 dec	F	65	C, H, N, O HCI	C, H, N	< 0.02
33	NH,	NH(C,H.)CH.(m)	HC1	248-249 dec	F	47	C, H, N.O · HCI	C, H, N	< 0.02
34	NH ₂	NH(C ₆ H ₄)Cl(p)	HCl	285	F	67	C ₁₄ H ₁₉ CINO ₂ · HCl	C, H, N	<0.02

^aFigures indicate the relative activity to *trans*-AMCHA (=1.0). ^bHCl, mp 254-257° dec. ^cIntermediate, *N*-methyl-*N*-tosyl-*trans*-AMCHA, mp 173-176°, prepd from I, yield 78%. ^aC: calcd, 63.12; found, 62.62. ^eIntermediate, *N*-ethyl-*N*-tosyl-*trans*-AMCHA, mp 133-135°, prepd from I, yield 58%. ^fHCl, mp 230-235°. ^gFree base, mp 93-95°. ^hHCl, mp 231°. ⁱSee in Experimental Section. ^jN: calcd, 13.99; found, 14.49. ^kN: calcd, 6.11; found, 6.59. ⁱN: calcd, 16.69; found, 16.18. ^mN: calcd, 13.54; found, 13.11. ⁿN: calcd, 9.63; found, 10.23. ^oH: calcd, 9.90; found, 9.40. *P*H: calcd, 10.45; found, 10.93. *q*C: calcd, 54.84; found, 54.19.

AMCHA was 41.8 and 1.6 in case inolysis and fibrinolysis, respectively. And as we would expect from the above evidence (54,55,63) the introduction of $CH=CH_2$ at the α -CH₂ portion of 63 caused an enhanced activity. Substitution in the benzene ring of the benzyl esters, however, gave no clear relationship (see 64-70).

Furthermore, the conversion of the benzyl moiety into phenyl resulted in an outstanding enhancement of the antiplasmin activity. For example, the activity of the Ph ester (75) relative to *trans*-AMCHA was increased about 32 times in fibrinolysis. The following characteristics between the substituent groups and the activity were observed. (1) Generally, the presence of the substituent groups at the para position, such as halogen, nitro, carboxy, aldehyde, sulfamoyl, or alkyl, enhanced the activity (78, 80, 83, 94, 95, 96, 97, 99, 101, 102, 105, 106, 109, 110, 114, 118, 119), with only one exception (104). (2) The activity of the meta-substituted Ph esters (77, 82, 100) was inferior to that of the corresponding para-substituted compounds (78, 83, 99). (3) The activity of the ortho, para-disubstituted esters (85, 92, 98, 111, 112, 113) was the same as or a little lower than that of the para-substituted esters. (4) On the other hand, the introduction of the substituent groups into the ortho, ortho positions of the Ph moiety (91, 93) resulted in lowering of the activity. These findings suggest that the antiplasmin activity of these Ph esters was affected by the steric as well as electronic effects of the substituents.

On the basis of the solubility and the stability in H_2O in addition to the excellent antiplasmin activity, it was assumed that 99 (our abbreviation was DV-1006) was the most promising substance as a novel antiplasmin drug.

Experimental Section

Melting points were detd on a Melting Point Apparatus (Yamato Scientific Co., Ltd.) and are uncor. Ir spectra were obtd with a Hitachi infrared spectrophotometer type EPI-G2. Tic was carried out on silica gel (Silica Rider, Daiichi Pure Chemicals Co., Ltd.), the upper layer consisting of *n*-BuOH-AcOH-H₂O (4:1:5) (solvent A) and ppc on Toyo Roshi No. 50 filter paper with solvents A and B (*n*-PrOH-H₂O; 65:35). The ascending technique was used in both chromatographies and *trans*-AMCHA derivatives were detected by spraying with ninhydrine in ppc, and the same reagent and I_2 were used in tlc. Hydrogenations were carried out at room temp and atm pressure unless otherwise stated. Where analyses are indicated only by the symbols of the elements, analytical results obtained for these elements were within $\pm 0.4\%$ of the theoretical values.

Materials. Amines, benzyl alcohols, and most phenols used in this work were obtd from commercial sources. Phenols having benzyloxycarbonyl groups, not commercially available, were prepd by benzylation of the corresponding carboxylic acid derivs as follows. To a soln of 4-hydroxyphenylacetic acid (3.0 g, 0.02 mole) in 4% aq NaOH (20 ml, 0.02 mole) and EtOH (30 ml), C₁H₂CH₂Cl (3.0 g, 0.024 mole) was added and the resulting mixt was refluxed for 1.5 hr. After completion of the reaction, EtOH was removed to give a syrup which was solidified on cooling. The resulting solid was treated with Et₂O (20 ml). The sepd H₂O layer was removed and the Et₂O layer was washed with 5% aq Na₂CO₃ soln and dried. After removal of the solvent, the white residue was recrystd from petr ether to give benzyl 4-hydroxyphenylacetate (2.3 g, 46.5%) as white prisms, mp 88-92°. Anal. (C₁₅H₁₄O₃) C, H.

In the same manner as described above, the hydroxyaryl derivatives were synthesized (Table IV).

Assay Methods of the Antiplasmin Activity. Anticaseinolytic activity of the compds was detd by the method of Shimizu, *et al.*¹⁴ Euglobulin soln (0.5 ml) prepd from human blood was preincubated with 1 ml of 2% casein soln in phosphate buffer-saline (pH 7.4) and 0.4 ml of the phosphate buffer-saline contg various amts of an inhibitor to be tested at 37° for 3 min. Then, 0.1 ml of streptokinase soln (200 units) was added and the mixt was incubated at 37° for 20 min. After incubation, 2 ml of 17% HClO₄ was added, allowed to stand at room temp for about 1 hr, and centrifuged. The extinction of the clear supernatant was measured at 280 mµ against an enzyme blank to which the streptokinase soln was added after the addn of HClO₄. The incubation rates were calcd by comparison with the control run which contd no inhibitor.

Antifibrinolytic activity was detd according to the method of Okamoto.¹⁵ Human euglobulin soln (0.1 ml) was mixed with 0.5 ml of the phosphate buffer-saline contg various amts of an inhibitor to be tested, 0.1 ml of thrombin soln (5 units) and 0.1 ml of streptokinase soln (100 units). Then 0.2 ml of 0.5% bovine fibrinogen in phosphate buffer-saline was added to the above mixt. The lysis time of the fibrin clot formed was measured at 25° after the addn of fibrinogen. Inhibitory actions of the compds are represented as the concns of the compds for doubling the clot lysis time of the control run which contd no inhibitor.

The relative antiplasmin activity of the ester derivs varied depending on the assay system employed and was variable, to some extent, even in the same assay system, when *trans*-AMCHA was used as a reference standard, because the mechanism of action was entirely different between *trans*-AMCHA and its ester derivative.¹⁴,¹⁶,¹⁷

Method A. trans-4-p-Toluenesulfonylaminomethylcyclohexanecarboxylic Acid (2). trans-AMCHA (I) (52.5 g, 0.334 mole) and p-TsCl (69 g, 0.363 mole) were added to 1 N NaOH (800 ml, 0.8 mole) and the mixt was vigorously stirred at room temp for 4 hr. Undissolved p-TsCl was filtered off, and the filtrate was acidified with concd HCl. The ppt was collected and recryst from AcOEt to give 2 (83.0 g) as coloriess prisms.

Method B. trans-4-Methylaminomethylcyclohexanecarboxylic Acid (5). To a soln of 2 (2.2 g, 0.007 mole) in 2 N NaOH (11 ml, 0.002 mole), MeI (2.0 g, 0.014 mole) was added and the soln was stirred at 65° for 1 hr and gradually cryst materials separated out. H₂O (20 ml) was added to the soln and neutralized with aq HCl. Pptd crystals were recryst from MeOH-H₂O to give trans-4-(Nmethyl-N-p-toluenesulfonyl)aminomethylcyclohexanecarboxylic acid (1.8 g, 78%), as prisms, mp 173-176°. Anal. (C₁₆H₂₃NO₄S) C, H, N.

The N-Me derivative (1.0 g, 0.003 mole) described above was dissolved in dry liquid NH₃ (80 ml) at $-55 \sim -60^{\circ}$. To this soln Na (0.3 g, 0.013 g-atom) was added portionwise and for decolorization the dry anionic ion-exchange resin DIAION SK #1 (NH₄ form; 2.2 g) was added. After removal of NH₃, the residue was passed through a column of the same resin (H form; 20 ml). After washing of the column with H₂O, it was eluted with 5% NH₄OH and the effluent was concd *in vacuo* and the residue was recrystd from MeOH-Me₂CO to give 0.45 g of 5, as prisms: tlc, solvent A, R_f , 0.34.

Method C. *trans*-4-Diisobutylaminomethylcyclohexanecarboxylic Acid (9). To a soln of I (1.6 g, 0.01 mole) in 25% aq MeOH (40 ml), isobutylaldehyde (2.9 g, 0.04 mole) and 10% Pd/C (1.6 g) were added. This suspension was catalytically hydrogenated at 50° for 3 hr. After absorption of the theoretical amt of H_2 (450 ml), the catalyst was filtered off, and the filtrate was concd *in vacuo*. The residue was recrystd twice from H_2O to furnish 9, as prisms: ppc, solvent A, R_f , 0.84.

trans-4-Carbamoylaminomethylcyclohexanecarboxylic Acid (11). To a soln of I (10 g, 0.064 mole) in H_2O (70 ml), a soln of KCNO (6.25 g, 0.077 mole) in H_2O (10 ml) was added with chilling and stirring. The reaction mixt was allowed to stand overnight at room temp, then acidified by adding of aq HCl and the sepd crystals were collected. Recrystn from *n*-PrOH gave 11 (3.5 g).

trans-4-Carboxymethylaminomethylcyclohexanecarboxylic Acid (12). To a soln of ClCH₂COOH (7.55 g, 0.08 mole) in H₂O (11 ml), 8% aq NaOH (80 ml, 0.16 mole) was added with cooling and stirring. To this soln, a soln of I (12.6 g, 0.08 mole) in 8% aq NaOH (40 ml, 0.08 mole) was added with cooling and stirring and the mixt was allowed to stand for 5 hr at room temp. The soln was passed through a column of the ion-exchange resin DIAION SK #1 (H form) and was eluted with H₂O (500 ml). The eluate was concd *in vacuo* under 50° to give raw 12 (8.5 g), mp 205-210° dec. Recrystn from Me₂CO-H₂O gave pure 12, as prisms.

trans-4-Ethoxycarbonylaminomethylcyclohexanecarboxylic Acid (13). I (12.6 g, 0.08 mole) was dissolved in 8% aq NaOH (40 ml, 0.08 mole). To this soln, CICOOC₂H₅ (9.6 g, 0.088 mole) was added with chilling and stirring. Na₂CO₃ (4.2 g, 0.044 mole) was gradually added and the reaction mixt allowed to stand at room temp for 5 hr. HCl (1 N, 82 ml, 0.08 mole) was added to the soln and the pptd crystals, mp 70-110°, were collected and recrystd from Me₂CO to give pure 13.

trans-4-Sulfomethylaminomethylcyclohexanecarboxylic Acid (14). I (15.7 g, 0.1 mole), HOCH₂SO₃Na (15.2 g, 0.11 mole), and NaHCO₃ (8.4 g, 0.1 mole) were dissolved in H₂O (79 ml), and the soln was heated on a boiling water bath for 4 hr. After cooling with an ice bath, 12 N HCl (16.7 ml) was added to the soln to acidity (pH 3) with stirring. White crystals were gradually ptd from the soln and the mixt was kept in a refrigerator overnight. The crystals were collected, washed (H₂O, EtOH, Et₂O), and dried to give 14 (20.3 g).

trans-4-Hydrazinomethylcyclohexanecarboxylic Acid p-Toluenesulfonate (15). A soln of NaHSO₃ (40 g, 0.38 mole) in H₂O (280 ml) was cooled to 15° and methyl 4-oxocyclohexanecarboxylate¹⁸ (47 g, 0.3 mole) was gradually added over 10 min under stirring. After stirring the soln for 30 min at 15°, NaCN (37 g, 0.75 mole) was added and the mixt was stirred for 20 min at 10-15°. The sepd upper oily layer was extd with trichloroethylene and the ext was washed (H₂O), dried (Na₂SO₄), and concd to a syrup in vacuo. The yellow oil (52.5 g) was dissolved in α -picoline (123 g, 1.32 mole) and to this soln $POCl_3$ (50 g, 0.32 mole) was added for 30 min at 0-5° under stirring. After stirring for 1 hr at 0°, an ice bath was removed. Heat was evolved and the color changed to reddish brown at the end. After standing at room temp overnight, the soln was poured onto ice water and the sepd oil solidified. It was extd with trichloroethylene and the soln was washed (H₂O) and dried (Na_2SO_4) . After removal of Na_2SO_4 and the solvent, the residue was distd; a colorless transparent oil, bp 125-128° (6 mm), was obtd in 34.5 g yield (70% from methyl 4-oxocyclohexanecarboxylate). It solidified on ice cooling, mp 33-35°

To a soln of methyl 4-cyano-3-cyclohexenecarboxylate (11.0 g, 0.067 mole), described above in pyridine (150 ml), a soln of NaH₂PO₂ · H₂O (20 g, 0.19 mole) in H₂O (20 ml) was added at room temp with stirring, and then a suspension of Raney Ni catalyst (20 ml) in AcOH (75 ml). The mixt was warmed at 40-45° for 2 hr under stirring. The catalyst was filtered off and washed with enough EtOH, and the washings were combined with the filtrate. It was concd to a syrup under reduced pressure, and the syrup was dissolved in H₂O (50 ml) and extd with i-Pr₂O. The *i*-Pr₂O layer was washed with aq NaCl soln and dried. After removal of the solvent, the residual syrup was distd. Methyl 4-formyl-3-cyclohexenecarboxylate (6.7 g, 60%) was obtd as colorless oil, bp 113-117° (5 mm). The 2,4-dinitrophenylhydrazone, mp 207-210° dec, was obtd as orange needles in the usual way. Anal. (C₁₅H₁₆N₄O₆) C, H, N, \ddagger

Methyl 4-formyl-3-cyclohexenecarboxylate (5.0 g, 0.03 mole) and CH₃CONHNH₂ (2.3 g, 0.03 mole) were dissolved in EtOH (20 ml) and the soln was refluxed for 4 hr and then cooled. The pptd white crystals, mp 155-157°, of the hydrazone were collected by filtration, yield, 6.2 g (92%). Recrystn from EtOH gave white prisms, mp 156-158°. Anal. (C₁₁H₁₆N₂O₃) C, H, N.

A soln of the above hydrazone (2.7 g, 0.012 mole) in AcOH (24 ml) was catalytically hydrogenated over PtO₂ (0.25 g). After removal of the catalyst and the solvent, the residual syrup was refluxed

[‡]N: calcd, 16.87; found, 16.26.

Table	II. Ester Derivatives of trans-AM(AHC									
									Rela	tive act.	
No.	R	ХН	Mp, °C	Method	Yield, %	Formula	Analyses	Cas A ^a	cinolysis Bb	<i>ა</i> ე	Fibrinolysis
		Ħ	² NCH ₂ -(H)COC	JR HX							
35	CH3	HCI	168-170	IJ-	91 70	C ₉ H ₁₇ NO ₂ · HCI	С, Н, N	2.4			0.17
36	C ₃ H ₅	HCI	185-188	- U	92	C10H19NO2 · HCI	С, ^d Н, N	1.5			0.04
37	$C_{a}H_{r}(n)$	HCI	160-164	ა.	79	C ₁₁ H ₂₁ NO ₂ ·HCI	C, e H. N	2.5			0.05
86 95	$C_{a}H_{a}(t)$	HC	180-181 dec	_ 0	80 18	$C_{11}H_{21}NO_{3}$ ·HCI	C, H, N D H, N	3.7			
64	C,H.(I)	HCI	154-156 dec		80	C ₁ ,H ₃ ,NO ₃ , HCI	C, H, N	3.0			
41	C.H. (tert)	HCI	197-203 dec	I	48	C ₁₂ H ₂₃ NO ₂ ·HCI	C.H.N	0.8			
42	$C_{s}H_{11}(n)$	HCI	120-124	ں ט	71	C ₁₃ H ₂₅ NO ₂ ·HCl	C, H, N	4. 6			
43	$C_{H_{13}(n)}$	DH CH	121-123	ڻ ن	76	$C_{14}H_{27}NO_3 \cdot HCI$	C, H, N C, H, N	8.0 7 0			0.4
ŧ	$C_{rH_{15}(n)}$ $C_{sH_{rc}(n)}$	HCI	125-127	00	12	C, H, NO, HC	C, H, N	5.4			
46	ĊĤ ₂ ĊĤ(Ċ ₂ H₅)(CH ₂)₅CH₃	0.5(COOH) ₂	190-200	ť	45	C ₁₆ H ₃₁ NO ₂ .	C, H, N	2.4			
47	Cyclohexyl	HCI	200-203	ť	83	U.S(CUUH), C, H, NO, · HCI	C, H, N	5.0			
48	CH ₂ CH ₂ OC ₂ H ₅	HCI	91-93	G	67	C ₁₂ H ₂₃ NO ₃ ·HCI	C,ĴH, N	6.5			
49	CH ₂ CH ₂ OC ₃ H ₄ (n)	p-TsOH	120-130	- 2	52	$C_{13}H_{15}NO_3g \cdot p TSOH$	C, H, N C, H, N	10.0			
<u> </u>	CH ₂ (CH ₂) ₃ CH ₂ CH.	2HCI	213-215	н	78 78	C.H.N.O. · 2HCI	C, H, N C, H, N	<u>.</u>	0.6		
52	CH ₂ (CH ₂), CH ₂ OH	p-TsOH	84-85	Н	83	C ₁₄ H ₂₇ NO ₃ · p-TsOH	C, H, N	8.3			
53	CH ₁ (CH ₂),CH ₂	2HClh	261-263		79 22	C ₂₂ H ₄₀ N ₂ O ₄ · 2HCl	C, H, N		0.4		
54 55	CH,CH=CH, CH.C=CH	HCI	139-142 188-190	-	ç8 68	C ₁₁ H ₁ ,NO ₂ ·HCl CH.NO2·HCl	C, H, N C, H, N	12.0	0.4		3.7
8 S	CH ₂ COOH		210-214 dec	i	85	C ₁₀ H ₁₇ NO ₄ 8	C, H, N	1.8			0.1
57	CH ₂ CONH ₂	HBr	188-190	· - ·	76 20	C ₁₀ H ₁₈ N ₂ O ₃ · HBr	C,/H,N		0.8		1.8
59 59 59	CH(C ₄ H ₄)CONHC ₆ H ₄ CH ₃ (p) CH.COC.H.	HCI	247-248 dec 168-170		89 50	C ₂₃ H ₂₈ N ₂ O ₃ ·HCl CHNO ₂ ·HBr	C, H, N C. ^K H. N		8.4 0.1		13.3
60	CH, CH, C, H,	HCI	161-163	I	81	C, HO, HCI	C, H, N		0.3		
61	CH,CH≐ČHĆ,H,	HCI	139-142	I	<i>61</i>	C ₁₇ H ₂₃ NO ₂ ·HCI	C, H, N		1.5		2.2
62	CH ₁ (H)	<i>p</i> -TsOH	140-143 dec	I	35	C ₁₃ H ₂₃ NO ₃ & · p-TsOH	С, Н, N		0.3		
63	CH.C.H.	HCl ¹	151-153	I	90	C, H, NO, · HCI	С, Н, N	41.8	1.0		1.6
64	$CH_2C_1H_2OCH_3(p)$	HCI	148-150	Ι	73	C ₁₆ H ₂₃ NO ₃ [•] HCl	C,m H, N		1.3		
65	$CH_2C_6H_3(OCH_3)_2(m,p)$	HCI	157-158		65 20	C ₁ ,H ₂₅ NO, HCB	C, H, N		0.9		2.1
99 7	CH ₂ C ₁ H ₂ Cl(0)	DHCI	158-160 173-177		80 75	C ₁₅ H ₂₀ CINO ₂ · HCI	N N N N H N N N		1.1		7.4
689	CH.C.H.CH.(p)	HCI	173-176	-	91	C.H.NO, HCI	C, H, Nn		1.6		
69	CH ₃ C ₆ H ₄ NO ₃ (m)	НСІ	140	Π	70	C15H20N204 · HCI 2/3H2	0 С, Н, N		1.2		1.5
02	CH ₂ C ₆ H ₄ CH ₃ OH(p)	HBr	157-160 dec	щı	14	C ₁₆ H ₃₃ NO ₃ ·HBr	C, H NP		2.2 4 7		15.8
12	CH(C,H,)CH,	p-TsOH	135-137	1	81	C16H23HO2 · P-TSOH	С,9 Н, N		ا ـ		
73	CH ₂	<i>p</i> -TsOH	153-154	Ι	41	С ₁₃ Н ₂₀ NO ₃ · <i>p</i> -ТsOH	C, H, N		1.7		
	`					5 2 5 F					

74	G, j	2HBr	200 dec	5	C J		:				
75	Č, H ₅	HCI	213-215 dec	1 -	0C 27	C14H20N2O2·2HBT	C, H, N	003	0.4	- -	
ł				4	2	1011. ² 011 ⁶ 111 ⁹	С, п, N	506		1.0	
9 F	CH,CH,CH,(0)	HCI	181-183	ц,	81	C ₁₅ H ₂₁ NO ₂ ·HCI	C, H, N			0.4	
78	$C_{s}H_{s}CH_{3}(m)$	DH	183-185 240-242		79 88	C ₁₅ H ₂₁ NO ₂ ·HCI	C, H, N C, H, N			1.0	
61	C,H,OCH,(0)	HCI	212-213		77	C H NO HCI	N H C			1.1	
80	$C_{a}H_{a}OCH_{3}(p)$	HCI	215-217 dec	-	83	C H NO HC	r H ک L			0.3	
81	$C_6H_4Cl(o)$	HCI	175-177	I	85	C. H. CINO. HCI	30 1 1 2 2			1.4	
82	$C_{\theta}H_{\star}Cl(m)$	HCI	191-194	Ι	80	C, H. CINO, HCI	C.H.C			14	
	$C_{\mu}H_{\mu}C(p)$	HCI	224-225 dec	Ĭ	80	C1,H1,CINO, HCI	C, t H, CI			2.5	
4 0 3		HCI	169-171	I	83	C ₁ ,H ₁₈ BrNO ₂ · HCl	C, ^u H, N			1.0	
2 2		HCI I	215 dec	,	85	C ₁₆ H ₂₃ NO ₂ ·HCI	C, H, N			0.2	
86	bipnenyi Noobthui		245 dec	_ ,	65	C ₂₀ H ₂₃ NO ₂ ·HCI	C, H, N ^v			r	
88	e-Naphtuy P.Naphthyl		200-203	·	75	C ₁₈ H ₂₁ NO ₂ ·HClg	C, H, N			0.7	
88	Thionheavel		239 dec	_ ,	62	C ₁₈ H ₂₁ NO ₂ ·HCl	C,wH, N			0.9	
68			211/ dec	- :	56	C14H19NOS · HCI	C, H,× N			0.6	
88	C H (CH) (c o)		241 dec	= :	8/	C1, H23NO2 · HCI	C, H, N			0.9	
5	C H CI (0 n)		221-225 dec	Ξ:	68 20	C ₁₆ H ₂₃ NO ₂ ·HCI	C, H, N			<0.01	
6	C.H.(1.(n, n, n))	HCH	201 dec	5	88	C, H, CI,NO, HCI	C, H, N			1.4	
8 2	C.H.C(CH.).(n)	HCH	256 der	= 1	8/	Cith, Cl3NO, · HCI	C, H, N			0.05	
95	C.H.OH(p)	DH	212_0.000		00	C18H27NO2.HCI	C, H, NY			1.5	
96	C _a H _a CH ₂ OH(<i>p</i>)	HCI	241-242 dec	= #	4 Y 7 C 7 C	C, H, NO, HCI	C, H,z N			0.7	
97	$C_{6}H_{4}COOH(p)$	HCI	255 dec	H	65	CISH21NO3.HCI	zz ĽI ÚC			1.	
98 30	$C_6H_3(COOH)_2(o,p)$	HCI	181-183 dec	Н	40	C, H, NO, HCI	C, H, N			0.1	
66	C ₆ H ₄ CH ₂ CH ₂ COOH(<i>p</i>)	HClaa	238-240 dec	Н	88	C ₁ ,H ₂₃ NO, HCI	C, H, N			1.1 1.1	
00				jr							
33		HC	197-199	H	81	C ₁₇ H ₂₃ NO ₄ ·HCI	C, H, N			0.4	
02	C.H.CH(OH)(CH.).COOH(p)	HC	150-154	╡╛	62 53	C ₂₀ H ₂₇ NO ₅ ·HCI	C, H, N			2.5	
103	C,H,CHBr(CH,),COOH(p)	HBr	139bb dec	: 2	000	C H NO B- HD-	ν Π Γ			2.1	
8	C ₆ H ₄ NHCH ₂ COOH(p)	HCI	213-214 dec	H	76		zи н с			0.00	
8	C ₆ H ₄ CH ₄ CH ₁ CH(NH ₂)COOH(<i>p</i>)	2HCldd	251 dec	Н	85	C, H, N, O, 2HCI	C, H, N			0.7	
8	C ₆ H ₄ UCH ₂ CH ₂ CUOH(p)	HCI	213 dec	Н	84	C ₁ ,H ₂₃ NO ₅ . HCI	C, H, N			1.0	
01	HOOC	HCI	208-210 dec	Н	20	DH NN H J	IN II de J			•	
				1	2	MIL PONTIETTOIN	с, п. п.			1.0	
08	COOH	HCI	216-218 dec	Н	40	C14H18N2O4 · HCI	С, <i>Й</i> Н, N			Α	
ş							•				
<u>6</u> 2	$C_{a}H_{A}NO_{2}(p)$ $C_{a}H_{a}NH_{2}(p)$	HBr 2HCl	190-192 dec		85 75	C ₁₄ H ₁₆ N ₂ O ₄ · HBr	C, H, N			1.5	
=		HBr	202 UEC	22		C1,H2,N2,O2, 2HCI	C, H, N			0.7	
12	C.H. (OCH.)(CH.)(O.P)	HCI	242-243 dec 188-101 dec	17		CieH21NO, HBr	C, H, N			2.3	
13	C,H,(NO,)(COOCH,)(0,p)	HBr	183-186	H	0 ¥ ¥	CIGHT23NO3.HCI				1.0	
14	$C_{s}H_{s}SO_{1}NH_{2}(p)$	HBr	261 dec	H	86	C.,H.,N.O., HBr	C.H.N C.H.N			5 4 3	
	N L										
15		энв.	103-105 dec	1	57						
ł		10117	177-177 UCV	4	70	U13n18N2U2. 201	С, н, N			1.6	

									Rel	ative act.	
No.	R	ХН	Mp, °C	Method	Yield, %	Formula	Analyses	Aa Ci	aseinolysis Bb	ઝ	Fibrinolysis
Ĭ	0,1										
9		HBr	278 dec	Н	58	C ₁₃ H ₁₈ N ₂ O ₃ · HBr	C, H, N				47.5
117	C ₆ H ₄ CH ₂ COOH(p)	HBr	210 dec	Н	60	C ₁₆ H ₂₁ NO ₄ · HBr	С, Н, N			1.0	22.8
118	CeH_CH=CHCOOH(p)	HBr	252-254 dec	Н	62	C ₁ ,H ₂₁ NO ₄ . HBr	C, H <i>,ii</i> N			1.9	72.9
119	C ₆ H ₄ (CH ₂) ₅ COOH(p)	HBr	195 dec	Н	65	C ₂₀ H ₂₉ NO ₄ · HBr	C, <i>kk</i> H, N			2.0	81.4
^a Figu ^d C: calc ^k C: calc 63.71; fo	tes indicate the relative activit d, 54.17; found, 54.58. $-\epsilon$ C: 1, 53.94; found, 54.33. l_p -Toh nud, 63.06. 'Insoluble in H.	ty to <i>trans</i> -AMCHA(=) calcd, 56.04; found 56 uenesulfonate, mp 159 .0. ^s N: calcd, 4.94; fc	1.0). <i>b</i> Figures indicat 6.47. <i>f</i> C: calcd, 54.23; -161°. <i>m</i> C: calcd, 61. pund. 5.35. <i>t</i> C: calcd.	e the relative ad found, 53.68. 23; found, 60.7 55.27: found	stivity to benz 8Hemihydrato 7 n N: calcd, 56.21 u C: c	yi trans-AMCHA(=1.0). c h^2 P-Toluenesulfonate, m (4.70; found, 5.18, oC: cc) alcd (48.72) found (47.81)	Figures indicate the p 239–242°. iSee ir alcd, 53.63; found, vN°. calcd, 4.05° fr	Experiment Experiment 54.39. PN:	tivity to pho the Section. 1 calcd, 5.05 wC calcd	C: calcd, 40. Found, 4.40.	ACHA(=1.0). 69; found, 40.17 2. ^q C: calcd, 1.66.67 xH·
calcd, 7.	05; found, 7.60. VN: calcd, 4	4.30; found, 4.86. ^z H	: calcd, 7.05; found, 7	.59. aa Methan	esulfonate, m	p 213-215°. bbDecompd	in a few days. ccT	reatment of	4-(1-hydro	xy-5-benzyle	xycarbonyl-n-
francy typ	IICIINI ILUNA-4-14-CALUUDIIN	xyammomenty icy cion	iexanecarboxyiate, int	ermediate of 1	02, WILD 33%	HBT-ACUH gave 103. uu	Monohydrocnioriae	, mp 233-2	35 dec. an	methanesulto	nate, mp 204-

206° dec, dihydrobromide, mp 205-207° dec. eeC: calcd, 62.72; found, 62.28. *I*fC: calcd, 53.42; found, 52.59. *BECatal*ytic hydrogenation of 4-nitrophenyl *trans*-4-N-carbobenzoxyaminomethylcyclo-hexanecarboxylate, intermediate of 109, over Pd/C gave 110. *hh*Catalytic hydrogenation of (4-formyl-1-methoxy)phenyl *trans*-4-carbobenzoxyaminomethylcyclohexanecarboxylate, intermediate of 111, over Pd/C gave 112. *i*fC: calcd, 61.23; found, 60.44. *j*H: calcd, 5.77; found, 6.29. *kk*C: calcd, 56.07; found, 55.60.

for 3 hr with 1 N HCl (30 ml) under N₂. The amino acids fractions obtd after tréatment with an ion-exchange resin were concd in vacuo, and the residue was crystd with EtOH-Et₂O to give a white powder (1.4 g, 67.5%), mp 105-130° dec, of crude 4-hydrazinomethylcyclohexanecarboxylic acid.

To a soln of this crude acid (1.4 g) in H₂O (15 ml), a soln of p-TsOH (2.3 g) in H₂O (5 ml) was added with stirring, and gradually prisms, mp 218-227° dec, sepd from the reaction mixt, yield, 0.93 g. Recrystn from H₂O yielded colorless prisms, mp 228-230° dec. of 15.

The stereochemical configuration of this compound was confirmed as follows. A soln of 15 in H₂O or 95% EtOH was refluxed with Raney Ni catalyst and the crystals obtd from this reaction mixt were identical with I by comparison of ir and ppc.

trans-4-(2-Carbamoylhydrazino)methylcyclohexanecarboxylic Acid (16). To a soln of methyl trans-4-formylcyclohexanecarboxylate (1.7 g, 0.01 mole), prepd from methyl trans-4-cyanocyclohexanecarboxylate in a similar manner as above in EtOH (24 ml) and H₂O (18 ml), H₂NCONHNH₂ · HCl (1.2 g, 0.011 mole) and AcONa (0.9 g, 0.011 mole) were added and vigorously stirred to make the soln homogeneous. After the soln was warmed on a water bath for 15 min, it was concd in vacuo, and the residue was treated with Et₂O to give the semicarbazone (0.94 g, 41%), mp 162-164°. A soln of this semicarbazone (0.94 g) in AcOH (18 ml) was catalytically hydrogenated over $PtO_2(0.1 \text{ g})$ and a theoretical amt of H₂ was absorbed. After removal of the catalyst and the solvent, the resulting syrup was dissolved in 4 N HCl and the soln was heated for 1 hr on a boiling water bath and was concd in vacuo. The sepd crystals were collected by filtration and washed with EtOH. Recrystn from EtOH-Et₂O gave colorless prisms (0.68 g, 66%) of 16.

N-(trans-4-Carboxycyclohexylmethyl)trimethylammonium Iodide (17). A soln of 7 (8.0 g, 0.043 mole) in hot Me₂CO (500 ml) was cooled to room temp and MeI (12.4 g, 0.087 mole) was added to the soln and the mixt was allowed to stand at room temp overnight. The soln was concd to one-third of its original vol. The sepd crystals were recrystd from Me₂CO to give 17 (8.5 g) as prisms.

Method D. trans-4-Aminomethylcyclohexanecarboxamide Hydrochloride (18). To a soln of I (6.3 g, 0.04 mole) in 10% aq NaOH (16 ml, 0.04 mole), CbzCl (8.2 g, 0.048 mole) and 10% aq NaOH (20 ml, 0.05 mole) were added for 15 min with cooling and vigorous stirring and the reaction mixt was stirred for another hr. The soln was acidified with aq HCl under cooling. The white ppt was collected, washed with H₂O, dried, and recrystd from C₆H₆-petr ether to give needles of II (10.7 g, 92%), mp 115-117°. Anal. (C₁₆H₂₁NO₄) C, H, N.

II (5.0 g, 0.017 mole) was mixed with SOCl₂ (5 ml) and warmed to 40° for 30 min. A vigorous reaction took place and a homogeneous soln was formed. After cooling, dry petr ether (50 ml) was added to the soln to ppt white crystals, which were collected, washed with dry petr ether, and dried in vacuo to give 4.4 g (82%) of acid chloride of II, as hygroscopic white crystals, mp 77-82°. Anal. $(C_{16}H_{20}CINO_3)$ C, H, N.

Dry NH, was introduced to the soln of II-acid chloride (4.4 g, 0.014 mole) in dry C_6H_6 (30 ml) under cooling. The reaction mixt was concd to dryness in vacuo and the residue was recrystd from $Me_2CO-n-C_6H_{14}$ to give an amide, 3.5 g (83%). This amide (3.2 g, 0.011 mole) was dissolved in MeOH (20 ml), concd HCl (3 ml) was added, and the soln was catalytically hydrogenated over 10% Pd/C (0.5 g). After removal of the catalyst, the filtrate was concd to give 2.4 g of 18, mp 242-247° dec. Recrystallization from MeOH-Me₂Co gave the pure sample.

Method E. N-n-Hexyl-trans-4-aminomethylcyclohexanecarboxamide Hydrochloride (21). II (5.8 g, 0.02 mole) and NEt_3 (2.1 g, 0.02 mole) were dissolved in CHCl, (70 ml) and the soln was cooled to 0° . ClCOOC₂H₅ (2.2 g, 0.02 mole) was dropwise added for 15 min at $0-5^{\circ}$ and the mixt kept at this temp for 30 min under stirring. *n*-Hexylamine (2.1 g, 0.02 mole) was added to the soln at the same temp for 30 min, and after being kept at room temp for 2.5 hr the mixture was washed with H₂O and dried. After removal of the solvent, the residue was recrystd from Me₂CO to give 5.9 g of trans-4-N-Cbz-aminomethylcyclohexanecarbox-n-hexylamide as needles.

This intermediate was catalytically hydrogenated in methanolic HCl over 10% Pd/C. After removal of the catalyst and the solvent, the residue was dissolved in H₂O and the soln was passed through a column of Amberlite IR-45 (OH form), and the eluate was concd to dryness in vacuo. Recrystn from MeOH-Me₂CO yielded 21, as leaflets

trans-4-Aminomethylcyclohexanecarboxanilide Hydrochloride (24). To a soln of II (2.9 g, 0.01 mole) and C₆H₅NH₂ (0.93 g, 0.01 mole) in CH₂Cl₂ (20 ml), DCC (2.3 g, 0.011 mole) was added and the reaction mixt was allowed to stand at room temp overnight. After addn of several drops of AcOH, the sepd dicyclohexylurea was filtered off. The filtrate was concd *in vacuo* and the residual white mass was recrystd from EtOH to give a white cryst powder, mp 188-190°; yield, 2.93 g (78%). Anal. $(C_{22}H_{24}N_2O_3)$ C, H, N. These crystals (1.83 g, 0.005 mole) were dissolved in 2% MeOH-HCl (50 ml)

Table III. Intermediate, Cbz Derivatives

				Yield,		
No.	R	Mp, °C	Method	%	Formula	Analyses
		ChaHNCH -				
		COZINCII2				
18	NH ₂	185-188	E	91	$C_{16}H_{22}N_{2}O_{3}$	C, H, N
19	NHCH ₃	198-200	E	86		а
20	NH(CH ₂) ₃ CH ₃	160-162	D	78		а
21	NH(CH ₂) ₅ CH ₃	162-163	E	85		a
22	NH(CH ₂) ₆ CH ₃	160-162	E	85		а
23	NHCH ₂ CH ₂ N(CH ₃) ₂	139-140	E	89	$C_{20}H_{31}N_{3}O_{3}$	C, H, N
25	NH H	211-212	Е	92	C.,H.,N.O.	C, H, N
26		117-119	E	71	CHNO	Снри
20		117-117		11	C2011301 2 C3	0, 11, 11
27	N ((H))	183	D	18	$C_{28}H_{42}N_2O_3$	C, H, N
28	Piperidino	127-129	Е	28	CHN.O.	C. H. N
50	O(CH.).OH	c	Н		21 30 2 3	
51	OCH. (CH.).CH.O	c	н			
52	OCH.(CH.).OH	c	Н			
53	OCH.(CH.).CH.O	c	H			
70	OCH.C.H.CH.OH(n)	c	н			
71	OCH(C ₆ H ₅)C≡CH	c	Н			
	\sim					
74	OCH2	с	н			
90	OC H (CH) (m n)	07-08	н	81	CHNO	СНИ
90	$OC_{4}II_{3}(CII_{3})_{2}(m,p)$	110-112	и ц	28	C H NO	CHN
71 07	$OC_{6} H_{3}(CH_{3})_{2}(0,0)$	10-112	n u	20		C H N
02	$OC_6 \Pi_3 Cl_2(0,p)$	122-125	11 U	70	C H C NO	$C \parallel d N$
95 04	$OC_6 \Pi_2 CI_3 (0, 0, p)$	10/-109	u u	13	C H NO	С и м
94 05	$OC U OB = C(C \Pi_3)_3(D)$	106 109	л u	67	$C_{26}\Pi_{33}NO_4$	
95	$OC_6\Pi_4OBZ^{\circ}(p)$	100-108	п 11	00	$C_{29}H_{31}NO_5$	C U N
90	$OC_6 \Pi_4 C \Pi_2 O \Pi(p)$	112-113	п	04		C, H, N
9/	$OC_{6}H_{4}COOBZ(p)$	98-100	H	88	C ₃₀ H ₃₁ NO ₆	С, Л Н, М
98	$OC_6H_3(COUBZ)_2(0,p)$	118-121	H	67	C ₃₈ H ₃₇ NO ₈	
99	$OC_{6}H_{4}CH_{2}CH_{2}COOBZ(p)$	83	н	82	C ₃₂ H ₃₅ NO ₆	C,8 H, N
100	$OC_6H_4CH_2CH_2COOBZ(m)$	Syrup	H	0.7	a 1 110	C h H H H
101	$OC_6H_4CO(CH_2)_4COOBz(p)$	72-75	H	87	$C_{36}H_{39}NO_7$	С," Н, N
102	$OC_6H_4CH(OH)(CH_2)_4COOBz(p)$	62-65	Н	79	$C_{35}H_{41}NO_{7}$	С, Н, N
104	$OC_6H_4NHCH_2COOBz(p)$	169-170	н	50	$C_{31}H_{34}N_2O_6$	C, H, N
105	$OC_6H_4CH_2CH(NHCbz)COOBz(p)$	137-139	Н	70	$C_{40}H_{42}N_2O_8$	C, H, N
106	$OC_4H_4O(CH_2)_2COOBz(p)$	108-110	Н	86	$C_{32}H_{35}NO_7$	C, H, N
107	0-	117-119	н	84	C. H. NO.	C. H
	BzOOC				-34336	-,
100		04.00		()		ciu N
108	0	94-96	н	63	C ₂₉ H ₃₀ N ₂ U ₆	C,' H, N
109	$OC_6H_4NO_2(p)$	132-134	j	85	C ₂₂ H ₂₄ N ₂ O ₆	C, H, N
111	$OC_6H_3(OCH_3)(CHO)(o,p)$	94-97	Н	78	C ₂₄ H ₂₇ NO ₆	C, H, N
113	$OC_6H_3(NO_2)(COOCH_3)(o,p)$	126-128	н	81	C ₂₄ H ₂₆ N ₂ O ₈	C, H, N
114	$OC_6H_4SO_2NH_2(p)$	174-176	Н	59	$C_{22}H_{26}N_2O_6S$	C, H, N
	N N					0 H N
115		88-90	н	85	$C_{21}H_{24}N_2U_4$	С, Н, N
	O t					
116	∩N	100-102	ц	77	СНИО	СИМ
110	Ŭ ∖_∕	100-103	п	41	U211124IN2U5	С, П, М
117	$OC_6H_4CH_2COOBz(p)$	106-108	Н	77	C ₃₁ H ₃₃ NO₄	C, H, N
118	$OC_6H_4CH=CHCOOBz(p)$	121-123	н	75	C32H33NO6	C,* H
119	$OC_6H_4(CH_2)_5COOBz(p)$	76.5-77.5	н	81	C35H41NO6	C, H, N

^aUsed to the next procedure without further purification. ^bN: calcd, 8.09; found, 8.71. ^cNot isolated. ^dH: calcd, 4.67; found, 4.23. ^eBenzyl. ^fC: calcd, 71.84; found, 72.32. ^gC: calcd, 72.56; found, 71.97. ^hC: calcd, 71.77; found, 71.19. ⁱC: calcd, 69.31; found, 69.95. ^jSee in Experimental Section. ^kC: calcd, 72.82; found, 72.23.

			Yield,		
No.	Hydroxyaryl derivatives	Mp (or bp (mm), °C)	%	Formula	Analyses
1	$HOC_{6}H_{4}CH=CHCOOBz^{a}(p)$	89-91	37	C, H, O,	С, Н
2	$HOC_{6}H_{4}CH_{2}CH_{2}COOBz(p)$	199 (1 mm)	35	$C_{16}H_{16}O_{3}$	С, Н
3	$HOC_{6}H_{4}CO(CH_{2})_{4}COOBz(p)$	90-96	32	$C_{19}H_{20}O_{4}$	С, Н
4	$HOC_{6}H_{4}(CH_{2})$, $COOBz(p)$	40-41; 213.5 (1 mm)	37	$C_{19}H_{22}O_{3}$	С, Н
5	HOC ₆ H ₄ NHCH ₂ COOBz(p) · p-T ₈ OH	186 dec	81	$C_{15}H_{15}NO_{3}$ <i>p</i> -TsOH	C, ^b H, N
6	$HOC_{b}H_{4}CH_{2}CH(NHCbz^{c})COOBz(p)$	116-118	30	C, H, NO,	C, H, ^d N
7	$HOC_{6}H_{4}O(CH_{2})$,COOBz(p)	74-78; 200-201 (1 mm)	26	$C_{16}H_{16}O_{4}$	С, Н
8	$HOC_6H_4CH_2CH_2COOBz(m)$	194-196 (1 mm)	29	$C_{16}H_{16}O_{3}$	С, Н
9	$HOC_6H_3(COOBZ)_2(o,p)$	81-83	29	$C_{22}H_{18}O_{5}$	С, Н
10	HO BZOOC	86-87	37	C ₁₈ H ₁₄ O ₃	С,е Н
11	HO - COOBz HCl	142-145 dec	16	C ₁₃ H ₁₁ NO ₃ · HCl	C, H, N, Cl

^aBenzyl. ^bC: calcd, 61.52; found, 62.58. ^cCarbobenzoxy. ^dH: calcd, 6.23; found, 5.72. ^eC: calcd, 76.67; four 1, 76.13.

and catalytically hydrogenated over 10% Pd/C (0.5 g). After filtration of the catalyst, the filtrate was concd *in vacuo* and the residue was recrystd from EtOH-Me₂CO to render white prisms of 24.

Method F. trans-4-Aminomethylcyclohexanecarboxyl-o-toluidide Hydrochloride (32). I (5 g, 0.032 mole) was dissolved in SOCl₂ (20 ml). Gradually white crystals began to ppt. After 30 min, Et_2O was added to the reaction mixt and the crystals were collected by filtration and dried in a desiccator to give the acid chloride hydrochloride of I (5.4 g), as highly hygroscopic needles, mp 126-128° dec. Anal. (C₂H₁₄CINO HCl) C, H, N.

To a soln of the acid chloride hydrochloride of I (5.0 g, 0.024 mole) in PhMe (50 ml), *o*-toluidine (5.0 g, 0.047 mole) was added with chilling and stirring. Stirring was contd for 30 min. The ppt was collected by filtration and recrystd from MeOH-Me₂CO to give 32 as white crystals.

Method G. Ethyl *trans*-4-Aminomethylcyclohexanecarboxylate Hydrochloride (36). I (0.5 g, 0.003 mole) was dissolved in EtOH (20 ml) and the soln was refluxed for 1 hr while bubbling through dry HCl. The soln was concd under diminished pressure and the residual white powder was recrystd from EtOH-Et₂O to give white needles of 36.

Carboxymethyl trans-4-Aminomethylcyclohexanecarboxylate (56). To a soln of II (5.82 g, 0.02 mole) and NEt₃ (2.2 g, 0.02 mole) in AcOEt (40 ml), a soln of ClCH₂COOCH₂C₆H₅ (3.7 g, 0.02 mole) in AcOEt (20 ml) was added. The reaction mixt was refluxed for 8 hr and then cooled. H₂O was added and the soln was extd with C₆H₆; the C₆H₆ layer was washed with H₂O repeatedly and dried. After removal of the solvent *in vacuo*, the residue was recrystd from AcOEt to give 3.3 g (40%) of benzyloxycarbonylmethyl ester of II, mp 108-110°, as needles. Anal. (C₂₅H₂₉NO₆) C, § H, N.# This ester (2.2 g, 0.005 mole) was dissolved in AcOH (20 ml) and THF (10 ml) and the soln was catalytically hydrogenated over 10% Pd/C (1 g). After completion of the hydrogenation, the catalyst was removed, Et₄O and petr ether were added to the filtrate to ppt crystals. Recrystallization from H₂O-EtOH-Me₂CO gave 56.

Carbamoylmethyl trans-4-Aminomethylcyclohexanecarboxylate Hydrobromide (57). A soln of II (29.1 g, 0.1 mole), NEt₃ (15.2 g, 0.15 mole), and ClCH₂CN (11.4 g, 0.15 mole) in AcOEt (150 ml) was refluxed for 4 hr. The soln was washed with H₂O, 5% aq NaHCO₃, 1 N HCl, and H₂O and dried. After removal of the solvent, the residue was recrystd from AcOEt-petr ether to afford 26.1 g (79%) of cyanomethyl ester of II. Anal. (C₁₈H₂₂N₂O₄) C, H, N.** The cyanomethyl ester (16.5 g, 0.05 mole) was dissolved in AcOH (17 ml), 44% HBr-AcOH (50 ml) was added, and the mixt was allowed to stand for 1 hr at room temp. Et₂O (700 ml) was added to the soln, the sepd syrup was dissolved in *tert*-BuOH (80 ml) and the soln was warmed at 80° for 5 min. The solidified material was collected and recrystd from EtOH-Et₂O to give 57.

 α -(4-Tolylcarbamoyl)benzyl trans-4-Aminomethylcyclohexanecarboxylate Hydrochloride (58). To a soln of II (12 g, 0.04 mole) in PhCHO (29.1 g, 0.27 mole), 4-tolylisonitrile (3.7 g, 0.032 mole) was added and the mixt was allowed to stand in a refrigerator for 3 days. Petr ether was added, and the sepd oily residue was washed with petr ether repeatedly, Et_2O (100 ml) was added to the residue to solidify it. The cryst mass (7.1 g), mp 145-149°, was dissolved in EtOH-MeOH and the soln was decolorized with activated C. After removal of the solvent, the residue was triturated with Et_2O to give 5.0 g of 4-N-Cbz-58, mp 149-151°. Anal. ($C_{31}H_{35}N_2O_5$) C, H, N.

4-N-Cbz-58 (515 mg, 0.001 mole) was dissolved in warm MeOH (20 ml) and 34% HCl-MeOH (0.5 ml). The soln was catalytically hydrogenated over 5% Pd/C (500 mg). After completion of the hydrogenation (5 min), the catalyst was removed and the filtrate was concd *in vacuo* below 40° (bath temp). Et₂O was added to the residue to induce crystn. The crystals were collected and washed with t_2 to give 370 mg of 58. A pure sample was obth by recrystn from MeOH-Et₂O, as prisms: ppc, solvent A, R_f , 0.86.

Phenacyl trans-4-Aminomethylcyclohexanecarboxylate Hydrobromide (59). To a soln of II (2.9 g, 0.01 mole) in AcOEt (20 ml), phenacyl bromide (2.0 g, 0.01 mole) and NEt₃ (1.4 ml, 0.01 mole) were added and the mixt was allowed to stand at room temp overnight. After removal of NEt₃ HBr, the filtrate was washed enough with H_2O and dried. The soln was concd to a syrup which solidified on cooling. Recrystn from MeOH gave white needles, mp 92-94°, in yield of 2.6 g (65%). Arial. ($C_{24}H_{27}NO_{5}$) C, H, N.

These crystals (2.6 g) were dissolved in AcOH (6 ml), 30% HBr-AcOH (6 ml) was added to the soln, and the mixt was allowed to stand at room temp for 30 min when dry Et₂O was added to the soln. The sepd crystals were recryst from EtOH-Et₂O to yield white needles of 59.

Method I. Phenyl trans-4-Aminomethylcyclohexanecarboxylate Hydrochloride (75). A soln of phenol (2.3 g, 0.024 mole) in dry dioxane (20 ml) was added to the acid chloride hydrochloride of I (4.2 g, 0.02 mole) and the mixt was warmed for 30 min and then concd. The sepd crystals were collected and recrystd from EtOH-Et₂O to give 75 (4.3 g).

Method H. 4-(2-Carboxyethyl)phenyl trans-4-Aminomethylcyclohexanecarboxylate Hydrochloride (99). To a soln of benzyl 4hydroxyphenyl
propionate (60.4 g, 0.236 mole) and NEt_3 (28.6 g, 0.283 mole) in dry C_6H_6 (250 ml), a soln of the acid chloride of II (73.0 g, 0.236 mole) in dry C_6H_6 (450 ml) was dropwise added for 30 min under stirring. The reaction mixt was allowed to stand at room temp for 2 hr and then warmed at 50-60° for 30 min. After cooling, the sepd NEt₃ · HCl was filtered off and the filtrate was washed several times with H₂O and dried (Na₂SO₄). After removal of the solvent, Et₂O was added to the residual syrup which crystd. The crystals were collected, washed with Et₂O, and dried. This Cbz-ester (30 g, 0.057 mole) was dissolved in AcOH (150 ml) and the soln was hydrogenated over 10% Pd/C (5 g). After removal of the catalyst, Et,O (200 ml) and petr ether (400 ml) were added and the mixt was allowed to stand in a refrigerator overnight. The sepd crystals, mp 280°, were collected and washed with Et₂O, yield 16.1 g.

To a soln of free 99 (16.1 g, 0.053 mole) in AcOH (100 ml), 9% HCl-AcOH (25.6 g, 0.063 mole) was added under chilling and stirring and then *i*- Pr_2O (300 ml) was added and the mixt cooled with an ice bath for 1 hr. The sept crystals of 99 were collected, washed with *i*- Pr_2O , and dried; yield, 17.1 g.

Method J. 4-(2-Carboxyethyl)phenyl trans-4-Aminomethylcyclohexanecarboxylate Hydrochloride (99). trans-4-Cyanocyclohex-

[§]C: calcd, 68.32; found, 67.76.

[#]N: calcd, 3.19; found, 4.07.

^{**}N: calcd, 8.48; found, 7.81.

anecarboxylic acid¹⁹ (1.53 g, 0.01 mole) was dissolved in SOCl₂ (5 ml) and the soln was gently refluxed for 1 hr and then concd to a syrup *in vacuo* at low temp (bath temp was below 80°). A soln of this syrup in dry C₆H₆ (20 ml) was added to a soln of benzyl 4-hydroxyphenylpropionate (2.6 g, 0.01 mole) and NEt₃ (2.0 g, 0.02 mole) in dry C₆H₆ (20 ml) with stirring. The reaction mixt was warmed on a water bath for 30 min with stirring. The sepd NEt₃. HCl was filtered off, and the filtrate was concd to dryness *in vacuo*. The white residue (3.5 g, 89.5%), mp 58-62°, was recrystd from MeOH to give a pure sample of the cyano ester, mp 61-65°; yield, 3.1 g (80%). Anal. (C₂₄H₂NO₄) C, H. N.

3.1 g (80%). Anal. ($C_{24}H_{25}NO_4$) C, H, N. A soln of this ester (1.5 g, 0.004 mole) in a mixt of AcOEt-EtOH-H₂O (15:40:20) (75 ml), and 28% NH₄OH (0.25 ml, ca. 0.002 mole) was placed in an autoclave and Raney Ni catalyst (W-5) (1.5 ml) was added. Hydrogenation was achieved at an initial pressure of 140 kg/cm² at 70°. After completion of the hydrogenation, the catalyst was filtered off and washed with MeOH and H₂O and the washings were combined with the filtrate and the combined soln was concd in vacuo at low temp (bath temp was 40-50°). The sepd crystals were collected by filtration and washed with hot MeOH; yield, 0.8 g. The crystals, mp 200-280° dec, were dissolved in a small amt of AcOH, an equimolar HCl-AcOH was added, and then *i*-Pr₂O, and recrystd from MeOH-Et₂O to give 0.7 g of 99.

4-Nitrophenyl trans-4-Aminomethylcyclohexanecarboxylate Hydrobromide (109). A soln of II (14.6 g, 0.05 mole) and p-nitrophenol (8.4 g, 0.06 mole) in AcOEt (90 ml), DCC (12.4 g, 0.06 mole) was added at room temp. Gradually cryst materials sepd from the reaction mixt which was allowed to stand at room temp overnight. White crystals were collected and washed with cold AcOEt. Recrystn from EtOH gave pale yellow crystals, mp 130-132°, yield, 17.5 g (85%). These crystals (2.1 g, 0.005 mole) were suspended in 15% HBr-AcOH (10 ml) and warmed at 50° for 10 min and then the resulting homogeneous soln was cooled. Dry Et_2O was added to the soln and the ppt was recrystd from EtOH to give pale yellow needles of 109.

Acknowledgments. The authors wish to express their deep gratitude to Dr. S. Fujii, Professor of Tokushima University, and Dr. Y. Yamamura, Professor of Osaka University, for valuable discussions. We are very grateful to Dr. T. Ishiguro, President of this company, Dr. M. Shimizu, Director of these laboratories, and Dr. T. Naito, Vice-President of these laboratories, for kind advice and encouragement throughout this work.

References

- (1) A. Nagamatsu, T. Okuma, M. Watanabe, and Y. Yamamura, J. Biochem. (Tokyo), 54, 491 (1963).
- (2) M. Muramatsu, T. Onishi, and S. Fujii, Proc. Symp. Chem. Physiol. Pathol., 3, 142 (1963).
- (3) M. Muramatsu, T. Onishi, S. Makino, S. Fujii, and Y. Yamamura, J. Biochem. (Tokyo), 57, 402 (1965).
- (4) M. Muramatsu, T. Onishi, S. Makino, S. Fujii, and Y. Yamamura, *ibid.*, 57, 450 (1965).
- (5) M. Muramatsu, T. Onishi, S. Makino, Y. Hayakumo, and S. Fujii, *ibid.*, 58, 214 (1965).
- (6) M. Muramatsu, and S. Fujii, ibid., 65, 17 (1969).
- (7) F. Markwardt, P. Neuland, and H. P. Klöcking, *Pharmazie*, 21, 345 (1966).
- (8) H. Landmann, and F. Markwardt, Hoppe-Seyler's Z. Physiol. Chem., 348, 745 (1967).
- (9) H. G. Kazmirowski, P. Neuland, H. Landmann, and F. Markwardt, *Pharmazie*, 22, 465 (1967).
- (10) M. Iwamoto, Y. Abiko, and M. Shimizu, J. Biochem. (Tokyo), 64, 759 (1968).
- (11) K. Tanizawa, S. Ishii, and Y. Kanaoka, Chem. Pharm. Bull., 18, 2346 (1970).
- (12) A. Okano, T. Miki, M. Inaoka, and S. Isoda, submitted for publication in Chem. Pharm. Bull.
- (13) M. Muramatsu and S. Fujii, *Biochim. Biophys. Acta*, 242, 222 (1971).
- (14) M. Shimizu, T. Aoyagi, M. Iwamoto, Y. Abiko, T. Naito, and A. Okano, Chem. Pharm. Bull., 16, 357 (1968).
- (15) S. Okamoto and U. Okamoto, Keio J. Med., 11, 105 (1962).
- (16) Y. Abiko, M. Iwamoto, and M. Tomikawa, Biochim. Biophys. Acta, 185, 424 (1969).
- (17) Y. Abiko and M. Iwamoto, *ibid.*, 214, 411 (1970).
- (18) M. Fetizon, M. Golfier, and N. Laffont, C. R. Acad. Sci., 254, 3376 (1962); Chem. Abstr., 57, 71868 (1962).
- (19) S. Siegel and J. M. Komarmy, J. Amer. Chem. Soc., 82, 2547 (1960).

Potential Antileukemic and Immunosuppressive Drugs. 3. Effects of Homocyclic Ring Substitution on the *in Vitro* Drug Activity of 4-Nitrobenzo-2, 1, 3-oxadiazoles (4-Nitrobenzofurazans) and Their N-Oxides (4-Nitrobenzofuroxans)¹

P. B. Ghosh,*

Biological Chemistry Unit, Department of Orthopaedic and Traumatic Surgery, Royal North Shore Hospital, St. Leonards, Sydney, New South Wales, 2065, Australia

B. Ternai,

Department of Chemistry, La Trobe University, Bundoora, Victoria, 3083, Australia

and M. W. Whitehouse

Departments of Medicine and Pharmacology, University of California, School of Medicine, Los Angeles, California 90024. Received August 17, 1971

4-Nitrobenzofuroxans and benzofurazans bearing electron-withdrawing substituents in the 5 and 6 positions (relative to NO_2) have been examined for their ability to inhibit nucleic acid synthesis in rabbit thymocytes *in vitro*. None of the compds tested were more potent in this screen than the unsubstituted nitrobenzofurazan or nitrobenzofuroxan, suggesting that the formation and stability of Meisenheimer complexes with cellular thiols and amino groups is diminished by the presence of substituents in the 5 as well as 6 position. The 5-halogeno (F, Cl, Br) benzofuroxans nitrated in the 4 position, in contrast to 5-CF₃, 5-CN, 5-CONHR, and 5-COOR benzofuroxans which direct NO_2 to the 7 position. Some unique chemical and biological properties of 5-F (vs. 5-Cl or 5-Br) benzofuroxan are discussed.

Benzofuroxans and benzofurazans bearing NO₂ groups in the 4 and 5 positions have been shown to be potent *in vitro* inhibitors of nucleic acid synthesis in lymphocytes.² It was suggested² that a possible mode of action of these compounds at the cellular level was by forming Meisenheimer complexes with essential cellular SH and/or amino groups.