

PII: S0040-4039(96)00669-7

## Palladium-Catalyzed Cross-Coupling of Organostannanes with Iodanes

Suk-Ku Kang,\* Hong-Woo Lee, <sup>1</sup> Jae-Sun Kim, and Sang-Chul Choi

Department of Chemistry, Sung Kyun Kwan University, Natural Science Campus, Suwon 440-746, Korea

Abstract: The palladium-catalyzed coupling of organostannanes with iodanes(Koser's and Zefirov's reagents) in the presence of palladium catalyst was accomplished at room temperature under aqueous conditions to afford phenyl- or 4-iodophenyl-substituted products depending on the iodanes used. Copyright © 1996 Published by Elsevier Science Ltd

The palladium-mediated cross-coupling of organostannanes with aryl halides, known as the Stille reaction, has developed into an extremely powerful tool for the construction of carboncarbon bonds.<sup>2</sup> Though recent improvements have been made<sup>3</sup> in the choice of ligands and co-catalysts by copper salts, there is still a feature that limits the usefulness of the Stille crosscoupling. The relatively drastic conditions must be sometimes used to induce coupling and temperature as high as 100 °C is not unusual. Recently, Beletskaya<sup>4</sup> and Collum<sup>5</sup> independently reported the PdCl<sub>2</sub>-catalyzed cross-coupling of aryl iodides with organotin trihalides and potassium hydroxide *via* hydroxocomplex at 90-100 °C in aqueous medium.<sup>6</sup> We have investigated the Pd-catalyzed coupling of organostannanes with iodanes<sup>7</sup> to carry out the coupling at room temperature in aqueous medium, which is shown below (Eq. 1).<sup>8</sup>

The cross-coupling of organostannanes with iodanes is summarized in Table 1.<sup>9</sup> The 2-thienyltributylstannane (1a) was coupled with the iodane PhI(OH)OTs (2)(Koser's reagent)<sup>10</sup> in the presence of PdCl<sub>2</sub>(0.5 mol %) in CH<sub>3</sub>CN/H<sub>2</sub>O (4 : 1) for 15 min to afford 2-phenylthiophene (4a)<sup>11</sup> in 91% yield (entry 1 in Table1).<sup>12</sup> Of the catalysts tested, the best choice was PdCl<sub>2</sub>(0.5 mol %). As solvent, CH<sub>3</sub>CN/H<sub>2</sub>O (4 : 1) was preferred even if DME/H<sub>2</sub>O (4 : 1) was also effective. When the reaction was conducted in dry DMF, the same coupled product was afforded in comparable yield(88%). We coupled 2-furyltributylstannane (1b) and phenyltributylstannane (1c) with Koser's reagent 2 to afford 2-phenylfuran (4b)<sup>13</sup> and biphenyl (4c) in 90 and 84% yield,

| Entry | Organostannanes           | Iodanes                | Time(min) | Product                                              | Isolated<br>Yield(% |
|-------|---------------------------|------------------------|-----------|------------------------------------------------------|---------------------|
| 1     | SnBu <sub>3</sub><br>1a   | PhI(OH)OTs<br>2        | 15        | ⟨_sµ_Ph<br>4a                                        | 91                  |
| 2     | ⟨SnBu₃<br>1b              | 2                      | 20        | Kovent<br>4b                                         | 90                  |
| 3     | PhSnBu <sub>3</sub><br>1c | 2                      | 25        | Ph—Ph<br>4c                                          | 84                  |
| 4     | Ph                        | 2                      | 20        | Рь <del></del> Рь<br><b>4d</b>                       | 76                  |
| 5     | 1b                        | Tro O Tr<br>Ph Ph<br>3 | 20        | √ − − I                                              | 58 <sup>a</sup>     |
| 6     | SnBu3<br>1e               | 3                      | 25        | 5a $I$ $I$ $5b$ $6$ $(1:1)$                          | 60                  |
| 7     | lc                        | 3                      | 20        | 4c X = H $(3:5)$ $(3:5)$                             | 72<br>I             |
| 8     | 1a                        | 3                      | 20        | <i>√s−x</i>                                          | 58                  |
| 9     | 1d                        | 3                      | 30        | <b>4a</b> $X = H$ <b>5d</b> $X = I$<br>(1 : 1)<br>Ph | 72                  |

Table 1. Palladium-Catalyzed Cross-Coupling of Iodanes with Organostannanes

<sup>a</sup> The coupled product 5a was afforded in dry DMF in 61% yield.

respectively (entries 2 and 3). This method was also applied to alkynyltributylstannane (1d) to provide diphenylacetylene (4d) (entry 4). Alternatively, we have investigated the reaction of the other iodane  $\mu$ --oxobis[(trifluoromethanesulfonato)(phenyl)iodine] (3) known as Zefirov's reagent<sup>14</sup> with organostannanes. The coupling of 2-furylbutylstannane (1b) with Zefirov's reagent 3 with PdCl<sub>2</sub>(0.5 mol%) as catalyst afforded 4-iodophenyl-substituted product 5a in 58% yield(entry 5 in Table 1).<sup>15</sup> Alternatively, the vinylstannane 1e was treated with Zefirov's reagent 3 to afford 4-iodostylene 5b<sup>16</sup> and 1,4-diiodobenzene(6) (1 : 1) in 60% yield (entry 6). However, for the phenyltributylstannane (1c), 4-iodobiphenyl (5c)<sup>17</sup> (45%) and biphenyl (4c) (27%) were obtained in the ratio of 5 : 3, which were separable by column chromatography (entry 7). It is notable that 2-thienyltributylstannane (1a) and alkynyltributylstannane (1d) with 3 afforded ~1 : 1 mixtures of phenyl- or 4-iodophenyl-substituted thiophene 4a and 5d<sup>18</sup> and phenylacetylene 4d and 5e<sup>19</sup> (entries 8 and 9).<sup>20,21</sup>

The typical procedure is as follows. To a stirred solution of Zefirov's reagent 3(1.2 g, 1.66 mmol) in CH<sub>3</sub>CN/H<sub>2</sub>O(4:1) (10 mL) was added PdCl<sub>2</sub>(1.5 mg, 0.5 mol %) followed by 2-(tributylstannyl)furan (1b)(650 mg, 1.82 mmol). The reaction mixture was stirred at room temperature for 20 min and quenched with saturated NH<sub>4</sub>Cl solution and then extracted with ether(2 x 20 mL). The organic layer was dried over anhydrous MgSO<sub>4</sub> and evaporated. Thecrude product was separated by SiO<sub>2</sub> column chromatography(hexane, R<sub>f</sub> = 0.47) to give 5a (0.26 g, 58%).

For the formation of the *p*-iodophenyl compounds with Zefirov's reagent **3**, it can be speculated that the intermediate of *p*-iodopalladium complexes generated by the oxidative addition of Pd(0) species to the *para*-position of **3** would couple with organostannanes.<sup>22</sup>

Acknowledgment. Generous financial support by KOSEF-OCRC and Ministry of Education (BSRI-95-3420) is gratefully acknowledged.

## **References and Notes**

- 1. On leave from Chong Kun Dang Pharm. Co. Ltd..
- Reviews: (a) Stille, J. K. Angew. Chem. Int. Ed. Engl. 1986, 25, 508-524. (b) Mitchell, T. N. Synthesis 1992, 803-815.
- Modification of ligands: (a) Farina, V.; Krishnan, B. J. Am. Chem. Soc. 1991, 113, 9585-9595. (b) Farina, V.; Roth, G. P. Tetrahedron Lett. 1991, 32, 4243-4246. (c) Farina, V.; Krishnan, B.; Marshall, D. R.; Roth, G. P. J. Org. Chem. 1993, 58, 5434-5444. Addition of copper salts as co-catalysts: (d) Farina, V.; Kapadia, S.; Krishnan, B.; Wang, C.; Liebeskind, L. S. J. Org. Chem. 1994, 59, 5905-5911. (e) Ye, J.; Bhatt, R. K.; Falck, J. R. J. Am. Chem. Soc. 1994, 116, 1-5.
- 4. Roshchin, A. I.; Bumagin, N. A.; Beletskaya, I. P. Tetrahedron Lett. 1995, 36, 125-128.
- 5. Rai, R.; Aubrecht, K. B.; Collum, D. B. Tetrahedron Lett. 1995, 36, 3111-3114.
- Pd-catalyzed Stille coupling using R<sub>4</sub>Sn derivatives in aqueous THF at 50 °C have been repoted. See, Busacca, C. A.; Swestock, J.; Johnson, R. E.; Bailey, T. R.; Musza, L.; Rodger, C. A. J. Org. Chem. 1994, 59, 7553-7556.
- 7. Review: Moriarty, R. M.; Vaid, R. K.; Koser, G. F. Synlett 1990, 365-383.

- Heck-type C-C coupling with iodonium salts: Kang, S-K.; Jung, K-Y.; Park, C-H.; Jang, S-B. Tetrahedron Lett. 1995, 36, 8047-8050 and references therein.
- 9. Satisfactory spectral and physical data were obtained for the new compounds in accord with the structure. Selected physical and spectral data are as follows. 5a: TLC, SiO<sub>2</sub>, hexane, R<sub>t</sub> = 0.47. IR(KBr) 3052, 1760, 1568, 1475, 800, 701 cm<sup>-1</sup>. MS(m/e) 270(M<sup>+</sup>), 241, 143, 115(base peak), 113, 63. <sup>1</sup>H NMR(CDCl<sub>3</sub>, 400 MHz) δ 6.47(dd, J = 3.5, 1.6 Hz, 1H), 6.66(d, J = 3.5 Hz, 1H), 7.40(m, 2H), 7.47(d, J = 1.6 Hz, 1H), 7.71(m, 2H). Anal. Calcd for C<sub>9</sub>H<sub>2</sub>IO: C, 44.47; H, 2.61. Found: C, 44.42; H, 2.86. 5b: TLC, SiO<sub>2</sub>, hexane, R<sub>t</sub> = 0.64. IR(KBr) 3021, 1625, 1560, 1482, 918 cm<sup>-1</sup>. MS(m/e) 230(M<sup>+</sup>, base peak), 127, 103, 77. <sup>1</sup>H NMR(CDCl<sub>3</sub>, 400 MHz) δ 5.27(d, J = 10.8 Hz, 1H), 5.75(d, J = 17.5 Hz, 1H), 6.63(dd, J = 17.5, 10.8 Hz, 1H), 7.65(m, 2H). 5c: TLC, SiO<sub>2</sub>, hexane, R<sub>t</sub> = 0.55. IR(KBr) 3024, 1559, 1478, 899, 690 cm<sup>-1</sup>. MS(m/e) 280(M<sup>+</sup>), 153(base peak), 141, 127, 77. <sup>1</sup>H NMR(CDCl<sub>3</sub>, 400 MHz) δ 7.35(m, 3H), 7.44 (m, 2H), 7.55(m, 2H), 7.77(m, 2H). 5d: TLC, SiO<sub>2</sub>, hexane, R<sub>t</sub> = 0.53. IR(KBr) 3054, 1601, 1472, 824, 701 cm<sup>-1</sup>. MS(m/e) 286(M<sup>+</sup>, base peak), 160, 115, 90. <sup>1</sup>H NMR(CDCl<sub>3</sub>, 400 MHz) δ 7.08(m, 1H), 7.31(m, 2H), 7.35(m, 2H), 7.69(m, 2H). 5e: TLC, SiO<sub>2</sub>, hexane, R<sub>t</sub> = 0.53. IR(KBr) 3054, 1601, 1472, 824, 701 cm<sup>-1</sup>. MS(m/e) 286(M<sup>+</sup>, base peak), 160, 115, 90. <sup>1</sup>H NMR(CDCl<sub>3</sub>, 400 MHz) δ 7.08(m, 1H), 7.31(m, 2H), 7.56(m, 2H). 5e: TLC, SiO<sub>2</sub>, hexane, R<sub>t</sub> = 0.53. IR(KBr) 3054, 1601, 1472, 824, 701 cm<sup>-1</sup>. MS(m/e) 286(M<sup>+</sup>, base peak), 160, 115, 90. <sup>1</sup>H NMR(CDCl<sub>3</sub>, 400 MHz) δ 7.08(m, 1H), 7.31(m, 2H), 7.35(m, 2H), 7.69(m, 2H). 5e: TLC, SiO<sub>2</sub>, hexane, R<sub>t</sub> = 0.53. IR(KBr) 3054, 1601, 1472, 824, 701 cm<sup>-1</sup>. MS(m/e) 286(M<sup>+</sup>, base peak), 160, 115, 90. <sup>1</sup>H NMR(CDCl<sub>3</sub>, 400 MHz) δ 7.08(m, 1H), 7.31(m, 2H), 7.35(m, 2H), 7.69(m, 2H). 5e: TLC, SiO<sub>2</sub>, hexane, R<sub>t</sub> = 0.50. IR(KBr) 3052, 1610, 1482, 1067, 750, 688 cm<sup>-1</sup>. MS(m/e) 304(M<sup>+</sup>, base peak), 177, 176, 151, 89. <sup>1</sup>H NMR(CDCl<sub>4</sub>, 400 MHz) δ 7.26(m, 2H), 7.35(m, 3H), 7.53(m, 2H), 7.69(m, 2H).
- 10. Koser, G. F.; Wettach, R. H.; Troup, J. M.; Frenze, B. A. J. Org. Chem. 1976, 41, 3609-3611.
- 11. Negishi, E.; Luo, F. T.; Frisbee, R.; Matsushita, H. Heterocycles 1982, 18, 117-122.
- 12. The Pd-catalyzed coupling of 2-thienyltributylstannane (1a) with PhI(OH)OTs was carried out under the same conditions with Pd(OAc)<sub>2</sub>(0.5 mol %) for 15 min, Pd<sub>2</sub>(dba)<sub>3</sub>·CHCl<sub>3</sub>(5 mol %) for 5 h, and Pd(PPh<sub>3</sub>)<sub>4</sub> (5 mol %) for 2 h to give 4a in 91, 82, and 68% yield, respectively.
- 13. Pelter, A.; Rowlands, M.; Clements, G. Synthesis 1987, 51-53.
- 14. Gallos, J.; Varvoglis, A.; Alcock, N. W. J. Chem. Soc., Perkin Trans. 1 1985, 757-763 and references therein.
- 15. For the optimization of the catalyst in the coupling 2-furyltributylstannane (1b) with Zefirov's reagent 3, PdCl<sub>2</sub> was chosen. Under the same conditions, Pd(OAc)<sub>2</sub>(0.5 mol %) for 30 min, Pd/C(2 mol %) for 2 h gave the coupled product 5a in 55 and 61% yield, respectively.
- Kikukawa, K.; Ikenaga, K.; Kono, K.; Toritani, K.; Wada, F.; Matsuda, T. J. Organomet. Chem. 1984, 270, 277-282.
- 17. Muathen, H., A. J. Chem. Res. Synop. 1994, 11, 405.
- Polyakov, V. K.; Zaplyuisvechka, Z. P.; Pivovarevich, L. P.; Surov, Y. N.; Tsukerman, S.V. Khim. Geterosikl. Soedin 1976, 1196 (Chem. Abstr. 1989, 92, 180916j).
- Meng, Q.; Sun, S.; Bu, X.; You, X. Gaodeng Xuexiao Huaxue Xuebo 1988, 9, 856 (Chem. Abstr. 1989, 111, 195045j).
- 20. 1,4-Diiodobenzene was recovered (~10% yield) along with iodobenzene(50%).
- The ratios of 4-iodophenyl-substituted thiophene 5d and 4-iodophenyl-phenylacetylene 5e can be increased to 4:1 and 2:1 respectively by utilizing Kitamura's reagent. For Kitamura's reagent, see, Kitamura, T.; Furuki, R.; Nagata, K.; Zheng, L.; Taniguchi, H. Synlett 1993, 193-194.
- 22. As indirect evidence of the intermediary of intermediate A, only unreacted starting materials 4a-4c were recovered when 4a-4c were reacted with Zefirov's reagent 3 under the same conditions, which can be ruled out the direct iodination by the reagent 3. Under the same conditions without addition of RSnBu, we could not detect any 1,4-diiodobenzene formed.

(Received in Japan 26 February 1996; revised 5 April 1996; accepted 8 April 1996)