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Two Chiral Events in One C-H Activation Step: a route towards 
terphenyl ligands with two atropisomeric axes. 
Quentin Dherbassy,[a] Jean-Pierre Djukic,[b] Joanna Wencel-Delord,*[a] and Françoise Colobert*[a] 
Abstract: Herein we disclose the synthesis of original chiral 
scaffolds - ortho-orientated terphenyls presenting two atropisomeric 
Ar-Ar axes. These unusual structures are built up using the C-H 
activation approach and remarkably both chiral axes are controlled 
with excellent stereoselectivities in a single transformation. During 
the reaction, not only atroposelective functionalization of a biaryl 
precursor occurs imposing one chiral axis, but also an 
unprecedented atropo-stereoselective C-H arylation takes place 
generating the second chiral element. These enantiopure ortho-
terphenyls shows an original tridimensional structure and thus 
constitute a unique ground to build-up a library of enantiopure 
bicoordinating ligands such as new S/N-Biax and diphosphine 
BiaxPhos. 

Axial chirality, arising from the hindered rotation about the Ar-Ar 
axis, is an important feature of a variety of molecular scaffolds[1] 
conferring unique properties to certain biologically active 
compounds[2] and advanced materials.[3] But arguably the most 
prominent application of the atropisomeric biaryls relates to their 
use as stereogenic ligands.[4 ] Quite surprisingly, polyaromatic 
structures presenting two ortho-orientated chiral Ar-Ar axes are 
extremely rare (Figure 1). In 2006, Shibata astutely used 
[2+2+2] cycloadditions to convert triynes into symmetrical ortho-
terphenyls[5] while Sparr et al. reported the synthesis of oligo-
1,2-naphthylenes bearing two atropocontrolled binaphthyl 
axes.[6] Besides, molecules exhibiting both C-C and C-N axial 
chiralities were also disclosed.[ 7 ] In contrast, doubly 
atropisomeric, ortho-orientated dissymmetrical terphenyls A 
(Figure 1), exhibiting important structural diversity, remain 
elusive although their unusual “open clam shell” geometry 
seems highly appealing for stereogenic ligands design. To 
address this synthetic challenge we embarked on designing a 
general, step-economic and stereoselective protocol, focusing 
on unprecedented atroposelective directed C-H arylation.[ 8 ],[ 9 ] 
Such a C-H coupling presents however major difficulties: 1) 
reacting together a metallacyclic intermediate resulting from a 
challenging metallation at a sterically congested position and an 
ortho-substituted iodoarene (recognized as difficult coupling 
partner); 2) an inherent antagonism between efficiency and 
atroposelectivity whereas such conditions are detrimental for 
atropostability. Furthermore, as we target terphenyls with two 
chiral axes, a perfect stereocontrol of both asymmetric events is 

necessary. Such a double stereocontrol can be achieved by 
means of: 1) atroposelective introduction of an aryl substituent 
on a configurationally unstable biaryl precursor (control of the 
Ar1-Ar2 bond)[ 10 ] and 2) direct stereoselective Ar1-Ar3 bond 
formation.  
To access terphenyl precursors that can be used as a platform 
to build up few families of unprecedented ligands, biaryl 1 
(Figure 1) bearing a stereogenic sulfoxide moiety, appears as a 
promising substrate. Few key parameters speak in favor of such 
a substrate design: 1) the sulfoxide moiety is both, an efficient 
directing group and a chiral auxiliary accessible in large scale[11] 
from menthol as chiral pool, 2) traceless character of the 
sulfoxide [ 12 ] should allow convenient installation of various 
coordinating motifs via post-modifications, 3) chiral ligand-free 
transformation may be expected as the chirality on the sulfur 
atom is expected to induce chiral information, 4) access to 
optically pure compounds is facilitated by a convenient 
purification of diastereomeric products.[13] Direct arylation of 1 
with ortho-substituted iodoarenes bearing judiciously selected 
and located functionalities should thus deliver the terphenyl 
skeletons, the precursor of several various families of 
stereogenic ligands with one or two coordination sites 
(modification of red/orange sphere) and adjustable  electronic 
and steric properties (grey/black sphere). In order to warrant 
atropostability of the desired terphenyls, important steric 
hindrance around both Ar-Ar bonds is required (blue spheres).  

Figure 1. Concept of terphenyl scaffolds as precursor for original chiral ligands 
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Accordingly, coupling between 1a and ortho-iodotoluene 2A was 
selected as a test reaction (Scheme 1). Although initial attempts 
using standard reaction conditions for direct arylation failed,[14] 
desired product 3aA was formed in small amount when using a 
large catalyst loading of Pd(OAc)2 in combination with N-
heterocyclic carbene (NHC) ligand, Ag2CO3 salt and 
trifluoroacetic acid (TFA) as additive. Detailed optimization of the 
reaction conditions revealed that: 1) Pd(TFA)2 is more effective 
catalyst than Pd(OAc)2  as side reactions are limited (formation 
of 4a); 2) replacement of TFA by AgTFA salt is essential for 
reactivity and 3) the coupling is highly water sensitive thus 
addition of an optimized amount of 4Å molecular sieve is crucial 
to prevent deactivation of the catalyst. Accordingly, under the 
optimal reaction conditions, i.e. Pd(TFA)2 (25 mol%) and IPr-HCl 
ligand, Ag2CO3 (2.5 equiv.) together with AgTFA (1 equiv.) and 
4Å MS, in 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) at 85 °C, the 
desired product was isolated in 49% yield within 4h. Remarkably, 
1H NMR analysis of the crude reaction mixture shows formation 
of 3aA with excellent diastereoselectivity (d.r. of 49 : 2 : 1) and 
the purified product is a single atropisomer. 

Scheme 1. Test reaction for the synthesis of terphenyls via asymmetric direct 
arylation 

Next, the coupling of 1a with electron-rich 2-iodotoluene 
derivatives 2A-C was completed delivering 3aA, 3aB and 3aC in 
moderate to good yields, with no loss of the atroposelection 
(Scheme 2). An additional electron donating substituent on 2 
increased the reactivity of this coupling partner and therefore 
catalytic loading for 3aB and 3aC could be decreased to 15 
mol%. In contrast, less electron rich biaryl substrate 1b was 
more effective than 1a as the desired arylation was achieved 
with only 10 mol% of Pd (3bA-C). The reaction is compatible 
with different heteroatoms; not only Cl- and Br-atoms were 
tolerated but also coordinating motifs such as NPhth or OMe. 
Besides, ortho-position of the aryl-iodide may be substituted by 
Cl or OMe group (products 3bJ and 3bK, 3bL). More sterically 
demanding Me substituent could also be introduced at the key, 
meta position of Ar1 and 3cL and 3cK were isolated as 
atropoisomerically pure compounds albeit in low yield. Finally, 
electron donating and electron withdrawing substituents are well 
tolerated on Ar2, delivering 3dG, 3eG, 3fG, 3gM and 3hG in 44-
68 % yield. Noteworthy, crystal structure of 3aC shows the 
expected spatial proximity of Ar2 and Ar3 and the “cavity-like” 
architecture of the molecule.[15]  

 

Scheme 2. Scope of the terphenyls with two axial chiralities (a) 4 
diastereomers could be potentially obtained and 3 of them were identified in 
“crude” 1H NMR spectra, b) 2 diastereomers detected on the 1H NMR spectra 
of the purified products, c) for details see SI; d) reaction performed at 115 °C). 

In order to unambiguously prove the optical purity of the 
products, few fundamental tests were performed and the 
rotational barriers were determined (Figure 2). Firstly, the 
configurational stability of the sulfoxide was proved by chiral 
HPLC analysis. Subsequently, the rotational barrier for the Ar1-
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Ar2 axis of 3bN of +37 kcal/mol in the gas phase was computed 
using Density Functional Theory studies (cf. SI) (calculated half-
life of c.a. 112 years at 85 °C) suggesting that the 
stereoinduction is kinetically controlled. Next, 
atropodiastereomerically pure 3bB was subjected to thermal 
treatment and partial racemization of the Ar1-Ar3 axis was 
evidenced; ΔG‡ (32.4 ± 0.3) kcal/mol (413.15 K) for Ar1-Ar3 axis 
of 3bB was determined (epimerization half-life of c.a. 73 days at 
85 °C), in consistence with computed ΔG‡ of 33 kcal/mol. 
Comparable stability of both atropo-diastereomers indicates that 
the Ar1-Ar3 coupling is under kinetic control. 

Further mechanistic studies (Scheme 3a) revealed the 
irreversibility of the C-H activation step (D/H scrambling test) and 
KIE of 1.58 suggesting that the turnover-limiting step occurs 
after the C-H cleavage.  
Subsequently, in order to characterize the key intermediates, we 
strove on preparation of the metallacyclic species (Scheme 3b). 
Unfortunately all attempts of isolation of palladacycle 
intermediate using substrate 1b failed but reaction between a 
simplified substrate 1i and Pd(OAc)2, followed by ligand 
exchange, delivered the complex 5. In presence of the NHC, 5 
was easily converted into the well-defined, atropisomeric Pd-
NHC complex 6. The X-Ray structure of 6 clearly shows 
coordination of Pd by the S-atom.[ 16 ] 1H NMR analysis of 6 
indicates that the Ar1-Ar2 axis is perfectly controlled  (d.r. > 98 : 
2) during formation of the organometallic intermediate.[17] Finally, 
while investigating reductive elimination from 6, the importance 
of both Ag2CO3

 and AgTFA salts to liberate the coupling product 
was confirmed.  

Scheme 3. Mechanistic studies. 

The originality of this transformation comes from the unique 
possibility to control both axial chiralities in a single 
transformation (Scheme 4). Isolation of the atropisomerically 
pure palladacyclic intermediate 6 and rapid racemization of the 
substrate under the reaction conditions clearly suggest that the 
stereoselectivity of Ar1-Ar2 axis is induced during the C-H 
activation step. When diastereomer (aS,S)-1b reacts with NHC-
Pd catalyst, the interactions between the chiral auxiliary and the 
NHC ligand are minimized (pTol moiety above the plane vs. 
NHC ligand underneath the plane). In contrast, palladation of 
(aR,S)-1b would require accommodation of the bulky ligand and 
pTol group in the same plane and is yet disfavored and the 
transformations implies Dynamic Kinetic Resolution. In contrast, 
chirality of the Ar1-Ar3 linkage arises from the favored oxidative 
addition of the Ar-I coupling partner from a sterically less 
congested face of the metallacyclic intermediate, i.e. minimizing 
a steric hindrance between the SOpTol moiety and ortho-
substituent of the Ar-I. In addition, reductive elimination from 
such a sterically less congested Pd(IV) intermediate seems also 
enhanced. 

Scheme 4. Proposed stereoinduction model. 

As our goal is to access ligand precursors, a large-scale 
synthesis of 3bE was undertaken (Scheme 5). 1b was prepared 
at gram scale, in 3 steps (53% total yield) from inexpensive 
starting materials, using only cheap reactants and catalysts and 
with no need for silica gel column purifications. The large scale 
direct atroposelective arylation with 2E furnished optically pure 
3bE in 65% yield (774 mg). 

Figure 2. Determination of atropostability of terphenyl scaffolds. 
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Scheme 5. Large-scale synthesis of 3bE. 

Next, in order to illustrate that the sulfoxide moiety is an useful 
handle to install a variety of coordinating motifs while conserving 
the optical purity of the scaffold, a sulfoxide/lithium exchange  

Scheme 6. Post-functionalization of terphenyl scaffolds. 

followed by trapping with CO2, HCO2Et or PPh2Cl were 
performed, delivering the corresponding enantiomerically pure 
products 9,[18] 10 and 11 (Scheme 6).  
The key application of these terphenyls with two chiral axes 
concerns their use as chiral ligands. Based on the X-ray 
structure of 9, it can be speculated that related ligands could 
show a “pseudo-planar chiral” geometry if one coordinating 
moiety is placed in ortho-position of Ar2 and the second 
coordinating moiety in meta-position of Ar3. Accordingly, 
brominated ortho-terphenyls 3bF, 3bG, 3(d-h)G, 3gN, all 
obtained in decent yields and excellent stereoinduction, are  
ligand precursors. As example, 3bF was subjected to double 
lithium exchange followed by quenching with PPh2Cl and 
delivered the diphosphine ligand BiaxPhos 12[19] in 54% yield 
(Scheme 7). BiaxPhos, the first ligand presenting such “open 
clam shell” tridimensional structure, revealed excellent reactivity 
in Rh-catalyzed benchmark hydrogenation of the trisubstituted 
methyl (Z)-α-acetamidocinnamate (MAC) 13 delivering the 14 
with 99.5:0.5 e.r.  

Scheme 7. BiaxPhos synthesis and its application in asymmetric 
hydrogenation.  

Besides S/N-Biax 15 ligand, synthesized in two steps from 3fR, 
showed good activity in 1,2-addition of Et2Zn to an aldehyde 
(Scheme 8). Under non-optimized reaction conditions the 
desired alcohol 17 was isolated in high yield and good e.r. of 
93:7, comparable with a planar-chiral ferrocene-derived S/N 

ligand.[20] 

Scheme 8. S/N-Biax and its application in asymmetric reaction.   

We present herein a new family of enantiopure skeletons, 
terphenyls exhibiting two atropisomeric Ar-Ar axes. These 
original compounds are built up via a challenging asymmetric C-
H activation route. This direct coupling is not only the first 
example of highly atroposelective Ar-Ar bond formation, but also 
two chiral elements are perfectly stereocontrolled during one 
synthetic event. Hence accessed terphenyls present a unique, 
tridimensional structure and by means of functional group 
modifications they can be easily converted into an array of 
unique bicoordinating ligands. Accordingly, diphosphine 
BiaxPhos and S/N-Biax ligands were prepared and both 
showed excellent stereoinduction in asymmetric hydrogenation 
and 1,2 addition of Et2Zn respectively. These results clearly 
showcase the potential of these chiral ligands for various 
asymmetric transformations. 
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PPh2

Me

OMe

Me

Br

SOpTol

3bF

NHAc

CO2Me
12/Rh(cod)2OTf 

(1.5 mol%)
EtOH, 25 °C, 2 h

Ph
NHAc

CO2Me

Ph
13

14: conv. > 99%
e.r. = 99.5 : 0.5

BiaxPhos
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