# Mechanism and Products of Autoxidation of 5,7-Dihydroxytryptamine<sup>1</sup>

# Achintya K. Sinhababu and Ronald T. Borchardt\*

Contribution from the Departments of Medicinal Chemistry and Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas 66045. Received January 28, 1985

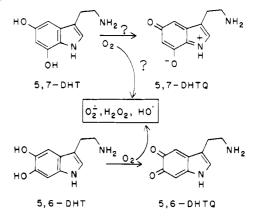
Abstract: The neurodegenerative effect of 5,7-dihydroxytryptamine (5,7-DHT) has been postulated to involve alkylation of neuronal proteins by its autoxidation product, which is believed to be the corresponding p-quinone imine (5,7-DHTQ). To more precisely elucidate the mechanism of autoxidation of 5,7-DHT and its molecular mechanism of action in vivo, a series of methyl-substituted 5,7-DHT's, namely, 4-Me-, 6-Me-, and 4,6-Me<sub>2</sub>-5,7-DHT's (21a-c, respectively), were designed and synthesized as probes. The indole nucleus of these probes was constructed by the reductive cyclization of the corresponding  $2,\beta$ -dinitrostyrene and the aminoethyl side chain was introduced via gramine methiodides. Cyclic voltammetric analysis of 5,7-DHT and 21a-c in 0.1 M H<sub>2</sub>SO<sub>4</sub> and pH 4.0 and 7.4 buffers indicated that the primary product of electrochemical oxidation from each compound is the corresponding p-quinone imine which is very short lived (<1 s). Like 5,7-DHT, 21a-c exhibited phenol-keto tautomerism but 21a and 21c did so to a much smaller extent as determined by UV and NMR spectroscopic methods. The predominant nonphenolic tautometic form of 5,7-DHT, out of eight possible, was shown to be 27 ( $R_1 = R_2$ = H). Polarographic measurements showed that, like 5,7-DHT, 21a-c react with O<sub>2</sub> in a bimolecular fashion. Consideration of all the data indicates that the initial product of autoxidation in all cases is apparently a 4-hydroperoxy derivative. Only in the case of 5,7-DHT and 21b, the initially formed hydroperoxides break down to give colored products. These products were not stable enough to be isolated, but their UV-visible spectra correlate very well with similar known structures. The structure of this product in the case of 5,7-DHT is postulated to be the (4,7) p-quinone of 4,5,7-trihydroxytryptamine (4,5,7-THTQ, 35, R = H). The results of this study further indicate that in the autoxidation of 5,7-DHT, the p-quinone imine (5,7-DHTQ) is almost certainly not the primary product nor is it a transient intermediate in the formation of 4,5,7-THTQ. 4,5,7-THTQ also is unstable and appears to undergo further transformations at pH 7.4.

The study of the functional organization and the role of the nervous system has been greatly aided by the discovery of chemical agents that can bring about selective degeneration of a given type of neuron.<sup>2-7</sup> Some of the more important examples of these chemical denervation tools include [(2,4,5-trihydroxyphenyl)ethyl]amine (6-hydroxydopamine, 6-OHDA) for inducing degeneration in catecholamine containing neurons<sup>4,7,8</sup> and 5,6- and 5,7-dihydroxytryptamines (5,6-DHT and 5,7-DHT, respectively) for the denervation of 5-hydroxytryptamine (5-HT, serotonin) containing neurons.<sup>2-7</sup> While the selectivity of these agents is derived from their high affinity uptake by the respective neuronal membrane pumps, their ability to induce neuronal degeneration appears to be the result of an inherent chemical property, namely, autoxidizability.

In the case of 6-OHDA, an extensive body of research<sup>4,7-10</sup> has established that autoxidation results in the formation of electro-

(3) "Serotonin Neurotoxins": Jacoby, J. H., Lytle, L. D., Eds., Ann. N. Y. Acad. Sci. 1978, 305, 1-702.

 (4) Jonsson, G. Annu. Rev. Neurosci. 1980, 3, 169–187.
 (5) Baumgarten, H. G.; Klemm, H. P.; Sievers, J.; Schlossberger, H. G. Brain Res. Bull. 1982, 9, 131-150.


(6) Baumgarten, H. G.; Jenner, S.; Bjorklund, A.; Klemm, H. P.;

(6) Badnigarten, H. G., Seiner, S., Björkund, A., Kichin, H. F., Schlossberger, H. G. In "Biology of Serotonergic Transmission"; Osborne, N. N., Ed.; Wiley: New York, 1982; Chapter 10.
(7) Jonsson, G. In "Handbook of Chemical Neuroanatomy"; Björklund, A., Hokfelt, T., Eds.; Elsevier: Amsterdam, 1983; Vol. 1, "Methods in Chemical Neuroanatomy", Chapter XII and references cited therein.
(8) Jonsson, G. Malmförer, T. Sacha, C. Eds. "Chemical Tooks in Cate."

(8) Jonsson, G., Malmfors, T., Sachs, C., Eds., "Chemical Tools in Cate-cholamine Research I: 6-Hydroxydopamine as a Denervation Tool in Catecholamine Research"; North-Holland Publishing Co.: Amsterdam, 1975; Vol.

(9) (a) Sauer, A.; Thoenen, H. Mol. Pharmacol. 1971, 7, 147-157. (b) (9) (a) Sauer, A.; Thoenen, H. Mol. Pharmacol. 1971, 7, 14/-157. (b)
Blank, C. L.; Kissinger, P. T.; Adams, R. N. Eur. J. Pharmacol. 1972, 19, 391-394. (c) Tse, D. C. S.; McCreery, R. L.; Adams, R. N. J. Med. Chem.
1976, 19, 37-40. (d) Borchardt, R. T.; Burgess, S. K.; Reid, J. R.; Liang, Y. O.; Adams, R. N. Mol. Pharmacol. 1977, 13, 805-818. (e) Borchardt, R. T.; Reid, J. R.; Thakker, D. R.; Liang, Y. O.; Wightman, R. W.; Adams, R. N. J. Med. Chem. 1976, 19, 1201-1209. (f) Cohen, G.; Heikkila, R. J. Biol. Chem. 1976, 249, 2447-2452 Biol. Chem. 1974, 249, 2447–2452. (10) Cohen, G.; Heikkila, R. In ref 3, p 74.

Chart I



philic quinones and reduced-O2 species such as H2O2, HO, and  $O_2$ . Neuronal degeneration is believed to be the result of alkylation of neuronal proteins by these quinones together with oxidation of lipids etc. by the reduced-oxygen species. Qualitatively similar mechanisms have been proposed<sup>5,6,10-12</sup> for both 5,6-DHT and 5,7-DHT (see Chart I) in spite of the fact that 5,7-DHT lacks a hydroquinone (as in 6-OHDA) or a catechol (as in 5,6-DHT) moiety. Indeed, there are remarkable differences in the physical and chemical properties of 5,6-DHT and 5,7-DHT. Unlike 5,6-DHT (and 5-HT), 5,7-DHT exhibits pronounced phenol-keto tautomerism<sup>13</sup> above pH 7. A role for this unique property of 5,7-DHT in its reaction with  $O_2$  or in its expression of neurotoxic effects has not yet been postulated. While the autoxidation of 5,6-DHT at pH 7.4 proceeds with autocatalytic promotion<sup>6,12</sup> eventually producing black precipitate and 40-60 mol % yield of  $H_2O_2$ , 5,7-DHT reacts with  $O_2$  at least 10 times faster<sup>12</sup> in a bimolecular fashion producing soluble products and with very little,

0002-7863/85/1507-7618\$01.50/0 © 1985 American Chemical Society

<sup>(1)</sup> Presented in part: Sinhababu, A. K.; Borchardt, R. T. "Abstracts of Papers", 186th National Meeting of the American Chemical Society, Washington, DC, Aug 28-Sept 1983; American Chemical Society: Washington, DC; 1983; MEDI 72

<sup>(2)</sup> Baumgarten, H. G.; Bjorklund, A.; Lachenmayer, L.; Nobin, A.; Acta Physiol. Scand., Suppl. 1973, 391, 1-19.

<sup>(11) (</sup>a) Baumgarten, H. G.; Klemm, H. P.; Lachenmayer, L.; Bjorklund, A.; Lovenberg, W.; Schlossberger, H. G. In ref 3, p 3. (b) Creveling, C. R.; Rotman, A. In ref 3, p 57 and references cited therein.
(12) Klemm, H. P.; Baumgarten, H. G.; Schlossberger, H. G. J. Neurochem. 1980, 35, 1400-1408.

<sup>(13)</sup> Schlossberger, H. G. In ref 3, p 25.

## Autoxidation of 5,7-Dihydroxytryptamine

if any, production<sup>6,10</sup> of H<sub>2</sub>O<sub>2</sub>. Apparently hydroxyl radicals are also formed during the autoxidation of 5,7-DHT, as hydroxyl radical scavangers have been shown to protect peripheral sympathetic neurons against destruction by 5,7-DHT.<sup>10</sup> The reactivity of the respective quinone products, none of which has been characterized, but which are postulated to be 5,6-DHTQ and 5,7-DHTQ, differ significantly. By use of radioactive DHT's, it has been shown that the oxidation product(s) of 5,6-DHT undergoes extensive covalent binding with protein nucleophiles both in vitro<sup>11b</sup> (e.g., 17 mol of 5,6-DHT-derived product/mol of bovine serum albumin (BSA)) and in vivo<sup>11a</sup> while the oxidation product(s) of 5,7-DHT binds rather poorly in vitro<sup>11b</sup> (1 mol of 5,7-DHT-derived product/mol of BSA) as well as in vivo.<sup>11a</sup>

Our initial objective was to determine the relative importance of various sites on 5,7-DHTQ, postulated to be the major autoxidation product, toward alkylation by protein nucleophiles in vivo. We thought that, because of the many possible reactions which 5,7-DHTQ or any other quinoid autoxidation product of 5,7-DHT not yet postulated could undergo, direct isolation and chemical characterization of the reaction products from biological systems would be difficult and perhaps impossible. Therefore, we sought to design probes which hopefully will exhibit similar affinities for the membrane transport pump and similar redox potentials but different inherent reactivities to nucleophiles. Our previous work<sup>9d,e,14</sup> with 6-OHDA and 5,6-DHT suggested that these objectives might be accomplished by the incorporation of a methyl substituent at the postulated site of nucleophilic attack. Thus, the probes we required are 4-Me-5,7-DHT (21a), 6-Me-5,7-DHT (21b), and 4,6-Me<sub>2</sub>-5,7-DHT (21c). Synthesis of these probes as well as the detailed comparative study of the physical chemical properties of 5,7-DHT and the probes is the subject of this paper. The results described below indicate the discovery of a unique mechanism of autoxidation of 5,7-DHT and, further, that 5,7-DHTQ is probably not formed even transiently.

#### **Experimental Section**

General Methods. Infrared spectra were obtained on a Beckman IR-33 spectrophotometer, UV-vis spectra on a Perkin-Elmer 555 spectrophotometer, and <sup>1</sup>H NMR spectra on a Varian T-60 or FT-80A spectrometer (with Me<sub>4</sub>Si as internal standard). Melting points were obtained on a Thomas Hoover capillary melting point apparatus and are given uncorrected. Column chromatography was performed on silica gel 60 (70-270 mesh).

3,5-Bis(benzyloxy)-2-methylbenzaldehyde (4). To a stirred solution of anhydrous morpholine (10.5 g, 120 mmol) in 200 mL of anhydrous THF under a dry  $N_2$  atmosphere at -78 °C (dry ice-acetone bath) was added 1.6 M n-BuLi in hexane (75 mL, 120 mmol). After 10 min, a solution of 3,5-bis(benzyloxy)-2-bromobenzaldehyde<sup>15</sup> (2, 39.7 g, 100 mmol) in 120 mL of anhydrous THF was added over a period of 2 min and the mixture was stirred at -78 °C for 20 min.<sup>16</sup> n-BuLi in hexane (1.6 M, 100 mL, 160 mmol) was then added over a period of 15 min, keeping the temperature at -78 °C. After stirring the mixture at -78 °C for 40 min, a solution of (MeO)<sub>2</sub>SO<sub>2</sub> (63 g, 500 mmol) in 50 mL of anhydrous THF was added, keeping the temperature below -70 °C. After stirring at -78 °C for 2 h, the mixture was allowed to warm to 25 °C and was stirred at 25 °C for 1 h and then acidified to pH  $\sim$ 1 with 2 N HCl. After stirring for 15 min at 25 °C, the mixture was diluted with brine and ether, and the organic layer was collected. The aqueous layer was extracted twice with ether, and the combined organic solutions were washed, in order, with a brine-2 N HCl mixture and brine and NaHCO<sub>3</sub> solution, dried (Na<sub>2</sub>SO<sub>4</sub>), and then evaporated in vacuo to dryness. The syrupy residue deposited pale yellow solid on trituration with ice-cold 95% EtOH. Recrystallization of the crude solid from benzene-hexane gave 23.9 g (72%) of 4 as a colorless amorphous solid: mp 92-93 °C; NMR (CDCl<sub>3</sub>) δ 2.51 (s, 3, Me), 5.07 (s, 4, OCH<sub>2</sub>), 6.80  $(d, J_{4,6} = 3 \text{ Hz}, 1, \text{H-4}), 7.07 (d, J_{6,4} = 3 \text{ Hz}, 1, \text{H-6}), 7.30-7.50 (m, 10, 10)$ Ph), 10.32 (s, 1, CHO); IR (Nujol) 1665, 1600 cm<sup>-1</sup>. Anal. (C<sub>22</sub>H<sub>20</sub>O<sub>3</sub>) С, Н.

3,5-Bis(benzyloxy)-4-methylbenzaldehyde (6). To a stirred suspension of LiAlH<sub>4</sub> (6.08 g, 160 mmol) in 120 mL of THF was added a solution

of benzyl 3,5-bis(benzyloxy)-4-methylbenzoate<sup>17</sup> (5b, 35 g, 80 mmol) in 220 mL of THF, dropwise under an N2 atmosphere, and the mixture was refluxed with stirring for 3 h. The mixture was cooled in an ice-water bath and 60 mL of EtOAc was added dropwise. The mixture was then diluted with ether, and 2 N HCl was added cautiously until the mixture was slightly acidic. The mixture was filtered (or decanted), the filtrate washed once with a NaHCO3-NaCl solution, and the solvent removed under reduced pressure. The syrupy residue solidified upon stirring with water. The solid was collected by filtration, washed thoroughly with water, dried over P2O5 under vacuum, and recrystallized from benzenehexane to give 24.3 g (91%) of 3,5-bis(benzyloxy)-4-methylbenzyl alcohol: mp 65-67 °C; NMR (CDCl<sub>3</sub>) δ 2.20 (s, 3, Me), 2.38 (s, 1, OH), 4.49 (s, 2, CH<sub>2</sub>OH), 4.97 (s, 4, OCH<sub>2</sub>Ph), 6.50 (s, 2, H-2 and H-6), 7.16-7.42 (m, 10, Ph). Anal. (C<sub>22</sub>H<sub>22</sub>O<sub>3</sub>) C, H.

To an efficiently stirred suspension of pyridinium chlorochromate (24.9 g, 115 mmol) in 50 mL of CH<sub>2</sub>Cl<sub>2</sub> was added, at 15-20 °C, a solution of 3,5-bis(benzyloxy)-4-methylbenzyl alcohol (25 g, 75 mmol) in 120 mL of CH<sub>2</sub>Cl<sub>2</sub> all at once. The mixture was then stirred at 25 °C for 2.5 h protected from moisture. After dilution with 500 mL of ether the mixture was filtered through a pad of Celite and the filtrate was passed through a column ( $20 \times 5$  cm) of silica gel in 50:50 ether-CH<sub>2</sub>Cl<sub>2</sub>. Further elution with the same solvent mixture and subsequent evaporation of solvent gave a pale yellow solid, which was recrystallized from benzene-hexane to give 6 as colorless plates (24 g, 96%): mp 70-71 °C; IR (Nujol) 1700, 1585 cm<sup>-1</sup>; NMR (CDCl<sub>3</sub>)  $\delta$  2.27 (s, 3, Me), 5.10 (s, 4, OCH<sub>2</sub>), 7.08 (s, 2, H-2 and H-6), 7.20-7.60 (m, 10, Ph), 9.87 (s, 1, CHO). Anal. (C<sub>22</sub>H<sub>20</sub>O<sub>3</sub>) C, H.

2,4-Dimethoxy-3-methylbenzaldehyde (7). To a stirred solution of 2,6-dimethoxytoluene (30.4 g, 200 mmol) in 300 mL of CH<sub>2</sub>Cl<sub>2</sub> at 5-10 °C and protected from moisture was added 60.8 g (320 mmol) of TiCl<sub>4</sub>, followed by a solution of Cl<sub>2</sub>CHOMe (23.6 g, 205 mmol) in 30 mL of CH<sub>2</sub>Cl<sub>2</sub> over a period of 20 min. The mixture was stirred at 10 °C for 1 h and then at 25 °C for 1 h. The solution was then poured into ice-water and stirred for 1 h, and the organic layer was collected and washed, in order, with 3 N HCl, brine, and NaHCO<sub>3</sub> solution. It was then dried  $(Na_2SO_4)$  and evaporated in vacuo to dryness. The residue, on recrystallization from hexanes (Skelly-B) gave 7 as long rods: mp 53-54 °C (lit.<sup>18</sup> mp 52-53 °C); IR (Nujol) 1692, 1600 cm<sup>-1</sup>; NMR (CDCl<sub>3</sub>)  $\delta$  2.17 (s, 3, Me), 3.88 (s, 3, OMe), 3.92 (s, 3, OMe), 6.73 (d,  $J_{5,6} = 9$  Hz, 1, H-5), 7.75 (d,  $J_{6,5} = 9$  Hz, 1, H-6), 10.23 (s, 1, CHO).

2,4-Dimethoxy-1-[(dimethylamino)methyl]-3-methylbenzene (8). To a stirred solution of freshly vacuum dried Me<sub>2</sub>NH·HCl (16.62 g, 204 mmol) in 120 mL of dry MeOH, protected from moisture, was added KOH pellets (89% KOH content, 3.6 g, 57 mmol). After 10 min, 7 (29.4 g, 163 mmol) was added. After a further 20 min, a solution of NaB- $H_3CN$  (3.85 g, 61 mmol) in 30 mL of MeOH was added dropwise with cooling.<sup>19</sup> After the addition was complete, the mixture was stirred at 25 °C for 2.5 h and then made strongly basic (pH  $\sim$ 12) by adding NaOH pellets with cooling. The mixture was filtered, and the filtrate was evaporated in vacuo to dryness. The oily residue was diluted with water and made acidic (pH  $\sim$ 1) with 6 N HCl with cooling inside a hood (caution: HCN is produced upon addition of HCl). The solution was washed twice with ether and the aqueous layer was collected and made strongly basic (pH  $\sim\!\!12)$  by adding NaOH pellets with cooling and stirring over 30 min. The mixture was then extracted with  $CH_2Cl_2$  (3  $\times$  50 mL), and the combined organic layers were washed separately with  $\rm H_2O$  and brine, dried (K\_2CO\_3), and evaporated in vacuo to dryness to give 30.4 g (89%) of 8 as a colorless oil: NMR (CDCl<sub>3</sub>)  $\delta$  2.14 (s, 3, Me), 2.20 (s, 6, NMe<sub>2</sub>), 3.36 (s, 2, CH<sub>2</sub>N), 3.70 (s, 3, OMe), 3.77 (s, 3, OMe), 6.58 (d,  $J_{5,6} = 9$  Hz, 1, H-6), 7.20 (d,  $J_{6,5} = 9$  Hz, 1, H-5). Anal. (C12H19NO2) C, H, N

[(2,4-Dimethoxy-3-methylphenyl)methyl]trimethylammonium Iodide (9). To a stirred solution of 8 (42.6 g, 204 mmol) in 75 mL of  $CH_2Cl_2$ was added, with cooling in an ice-water bath, a solution of MeI (37 g, 260 mmol) in 20 mL of CH<sub>2</sub>Cl<sub>2</sub> over a period of 15 min. The mixture was then stirred at 25  $^{\rm o}C$  for 3 h and evaporated in vacuo to dryness. To the residue was added 100 mL of acetone, and the resulting mixture was stirred briefly. Hexane (Skelly-B, 50 mL) was then added with stirring. After cooling to 5 °C the mixture was filtered and the white solid was dried under vacuum to give 68.7 g (96%) of 9: mp 188-190 °C dec; NMR (CDCl<sub>3</sub>)  $\delta$  2.16 (s, 3, Me), 3.38 (s, 9,  $-N^+Me_3$ ), 3.79 (s, 3, OMe), 3.87 (s, 3, OMe), 4.83 (s, 2,  $CH_2N^+$ ), 6.72 (d,  $J_{5.6} = 9$  Hz, 1, H-5), 7.62 (d,  $J_{5,6} = 9$  Hz, 1, H-6). Anal. ( $C_{13}H_{22}INO_2$ ) C, H, N.

<sup>(14) (</sup>a) Borchardt, R. T.; Bhatia, P. J. Med. Chem. 1982, 25, 263-271. (b) Sinhababu, A. K.; Ghosh, A. K.; Borchardt, R. T. J. Med. Chem. 1985, 28, 1273-1279.

<sup>(15)</sup> Sinhababu, A. K.; Borchardt, R. T. J. Org. Chem. 1983, 48, 1941-1944, 2356-2360.

<sup>(16)</sup> Comins, D. L.; Brown, J. D. Tetrahedron Lett. 1981, 22, 4213-4216.

<sup>(17)</sup> Borchardt, R. T.; Sinhababu, A. K. J. Org. Chem. 1981, 46, 5021-5022.

<sup>(18)</sup> Godfrey, I. M.; Sargent, M. V.; Elix, J. A. J. Chem. Soc. Perkin Trans. 1, 1974, 1353-1354. (19) Borch, R. F.; Bernstein, M. D.; Durst, H. D. J. Am. Chem. Soc. 1971,

<sup>93. 2897-2904.</sup> 

3,5-Dimethoxy-2,4-dimethyl-1-[(dimethylamino)methyl]benzene (10). About 250 mL of anhydrous NH<sub>3</sub> was condensed using a dry-ice acetone bath and a dry-ice condenser in a three-neck round-bottom flask under nitrogen. Fe(NO<sub>3</sub>)<sub>3</sub>·9H<sub>2</sub>O (400 mg) was added with stirring followed by Na (4.37 g, 190 mmol) in  $\sim$ 100-mg portions. After 30 min (or when the blue coloration disappeared) the methodide 9 (33.3 g, 95 mmol) was introduced over 5 min.<sup>20</sup> Additional  $NH_3$  was condensed to maintain the original volume and then the dry-ice bath was removed. After 4 h, excess NaNH<sub>2</sub> was decomposed by carefully adding NH<sub>4</sub>Cl (5.4 g, 100 mmol). The mixture was stirred until all NH<sub>3</sub> evaporated and the residue was diluted with H<sub>2</sub>O (500 mL). The resulting mixture was extracted with  $CH_2Cl_2$  (3 × 50 mL). The combined organic layers were washed separately with H<sub>2</sub>O and brine, dried (K<sub>2</sub>CO<sub>3</sub>), and evaporated in vacuo to dryness to give 10 as a colorless oil (20 g, 94%). An analytical sample was obtained by chromatography on preparative thin-layer plates (silica gel, 1 mm, Analtech GF) using 9:1 Et<sub>2</sub>O-EtOH as the developing solvent: NMR (CDCl<sub>3</sub>) δ 2.14 (s, 3, Me), 2.22 (s, 6, NMe<sub>2</sub>), 3.33 (s, 2, CH<sub>2</sub>), 3.64 (s, 3, OMe), 3.78 (s, 3, OMe), 6.64 (s, 1, H-6). Anal. (C<sub>13</sub>H<sub>21</sub>NO<sub>2</sub>) C, H, N

3,5-Dimethoxy-2,4-dimethylbenzaldehyde (11). To a stirred solution of the amine 10 (18.75 g, 84 mmol) in 500 mL of reagent grade benzene was added N-bromosuccinimide<sup>21</sup> (15.3 g, 86 mmol, freshly recrystallized from water and dried over P<sub>2</sub>O<sub>5</sub>) in 2-g portions at 25 °C. The stoppered reaction mixture was stirred at 25 °C for 20 h, and then 300 mL of water was added. The resulting mixture was stirred vigorously under  $N_2$  for 3 h and the organic layer was separated, washed with a brine-NaHCO<sub>3</sub> mixture, dried (Na<sub>2</sub>SO<sub>4</sub>), and evaporated in vacuo. The oily residue was chromatographed on a column of silica gel (60 g) using 9:1 CH<sub>2</sub>Cl<sub>2</sub>hexane. Evaporation of eluents gave 9.5 g (58%) of 11 as an oil which solidified on storage at -20 °C for a few days. An analytical sample was obtained by chromatography on preparative thin-layer plates (silica gel, 9:1 CH<sub>2</sub>Cl<sub>2</sub>-hexane) followed by recrystallization from pentane: mp 93-94 °C; IR (Nujol) 1705, 1610 cm<sup>-1</sup>; NMR (CDCl<sub>3</sub>) δ 2.26 (s, 3, Me), 2.53 (s, 3, Me), 3.79 (s, 3, OMe), 3.90 (s, 3, OMe), 7.37 (s, 1, H-6), 10.08 (s, 1, CHO). Anal. (C11H14O3) C, H.

3,5-Bis(benzyloxy)-2,4-dimethylbenzaldehyde (13). To a stirred solution of 11 (9 g, 46.4 mmol) in 180 mL of CH<sub>2</sub>Cl<sub>2</sub> at -78 °C was added under an N<sub>2</sub> atmosphere a solution of BBr<sub>3</sub> (31.5 g, 140 mmol) in 20 mL of CH<sub>2</sub>Cl<sub>2</sub>. The mixture was stirred at -78 °C for 2 h and at 25 °C for 2 h and then poured into crushed ice containing 100 mL of concentrated HCl. After it was stirred briefly, the mixture was extracted with EtOAc  $(6 \times 60 \text{ mL})$ . The combined organic layers were washed, in order, with brine, NaHCO<sub>3</sub> solution, and brine and then dried (Na<sub>2</sub>SO<sub>4</sub>). The solution was clarified with neutral decolorizing charcoal and evaporated in vacuo to dryness. Recrystallization of the crude solid from EtOAchexane gave 12 as an off-white, air-sensitive solid (6.62 g, 86%): mp 177-180 °C; IR (Nujol) 3310, 1685, 1655, 1610, 1590 cm<sup>-1</sup>; NMR (acetone- $d_6$ )  $\delta$  2.18 (s, 3, Me), 2.47 (s, 3, Me), 6.20 (br s, 2, OH), 6.92 (s, 1, H-6), 10.14 (s, 1, CHO). Anal. (C<sub>9</sub>H<sub>10</sub>O<sub>3</sub>) C, H. Aldehyde 12 was benzylated by heating a mixture of 12 (5.3 g, 31.9 mmol), PhCH<sub>2</sub>Cl (9 g, 72 mmol), powdered K<sub>2</sub>CO<sub>3</sub> (18 g, 130 mmol), NaI (1.5 g, 10 mmol), and acetone (100 mL) under reflux in an N<sub>2</sub> atmosphere for 5 h. The mixture was cooled and filtered, and the filtrate was evaporated in vacuo to give a syrup which was dissolved in CH<sub>2</sub>Cl<sub>2</sub>. After it was washed with water and then with brine, the CH<sub>2</sub>Cl<sub>2</sub> solution was dried (Na<sub>2</sub>SO<sub>4</sub>) and subsequently evaporated in vacuo to dryness. The syrupy residue was stirred with hexanes vigorously until solidification was complete. The crude solid was collected by filtration and chromatographed on a column of silica gel (40 g) in CH<sub>2</sub>Cl<sub>2</sub>. Evaporation of eluent gave 8.6 g (78%) of 13 as a fine powder. An analytical sample was prepared by recrystallization from benzene-hexane: mp 137-139.5 °C; IR (Nujol) 1675, 1595 cm<sup>-1</sup>; NMR (CDCl<sub>3</sub>) δ 2.28 (s, 3, Me), 2.52 (s, 3, Me), 4.78 (s, 2, OCH<sub>2</sub>), 5.10 (s, 2, OCH<sub>2</sub>), 7.23 (s, 1, H-6), 7.35-7.54 (m, 10, Ph), 10.27 (s, 1, CHO). Anal. (C<sub>23</sub>H<sub>22</sub>O<sub>3</sub>) C, H.

Synthesis of  $\beta$ -Nitrostyrenes 14a-c: General Procedure.<sup>22</sup> A mixture of the aldehyde 4, 6, or 13 (20 mmol), CH<sub>3</sub>NO<sub>2</sub> (3.7 g, 60 mmol), anhydrous NH4OAc (4.62 g, 60 mmol), and 60 mL of HoAc was refluxed for 1.5 h (or until the reaction was complete as judged by silica gel TLC in CH<sub>2</sub>Cl<sub>2</sub>) protected from moisture. The mixture was then cooled to 25 °C and poured into water (500 mL). The precipitated solid was collected by filtration, washed with water, and dissolved in CH2Cl2. The CH<sub>2</sub>Cl<sub>2</sub> solution was washed with NaHCO<sub>3</sub> solution, dried (Na<sub>2</sub>S- $O_4$ ), and passed through a column of silica gel (20 g) in CH<sub>2</sub>Cl<sub>2</sub>. Further

elution with CH<sub>2</sub>Cl<sub>2</sub> and evaporation of eluent gave a yellow solid, which was recrystallized as described below: 3,5-Bis(benzyloxy)-2-methyl- $\beta$ nitrostyrene (14a) was recrystallized from benzene-hexane to give 6.2 g (83%): mp 124 °C; NMR (CDCl<sub>3</sub>) δ 2.30 (s, 3, Me), 5.03 (s, 4, OCH<sub>2</sub>), 6.68 (s, 2, H-4 and H-6), 7.40 (d,  $J_{\alpha,\beta} = 14$  Hz, 1,  $H_{\alpha}$ ), 7.39 (s, 10, Ph), 8.30 (d,  $J_{\alpha,\beta} = 14$  Hz, 1,  $H_{\beta}$ ). Anal. (C<sub>23</sub>H<sub>21</sub>NO<sub>4</sub>) C, H, N. 3,5-Bis(benzyloxy)-4-methyl- $\beta$ -nitrostyrene (14b) was recrystallized from benzene-hexane yielding 5.6 g (75%): mp 153-155 °C; NMR (CDCl<sub>3</sub>) δ 2.26 (s, 3, Me), 5.09 (s, 4, OCH<sub>2</sub>), 6.72 (s, 2, H-2 and H-6), 7.20-7.55 (m, 11, Ph and  $H_{\alpha}$ ), 7.90 (d,  $J_{\alpha,\beta} = 14$  Hz, 1,  $H_{\beta}$ ). Anal. (C<sub>23</sub>H<sub>21</sub>NO<sub>4</sub>) C, H, N. 3,5-Bis(benzyloxy)-2,4-dimethyl- $\beta$ -nitrostyrene (14c) was recrystallized from EtOH giving 6.0 g (77%): mp 148-149.5 °C; NMR (CDCl<sub>3</sub>) & 2.27 (s, 3, Me), 2.32 (s, 3, Me), 4.76 (s, 2, OCH<sub>2</sub>), 5.08 (s, 2, OCH<sub>2</sub>), 6.82 (s, 1, H-6), 7.21-7.49 (m, 11, Ph and H<sub>a</sub>), 8.28 (d, J<sub>a,b</sub> 14 Hz, 1,  $H_{\beta}$ ). Anal. ( $C_{24}H_{23}NO_4$ ) C, H, N.

Synthesis of Dinitrostyrenes 15a-c. General Procedure.<sup>23</sup> To a stirred solution of the  $\beta$ -nitrostyrenes 14a-c (10 mmol) in Ac<sub>2</sub>O (freshly distilled from  $P_2O_5$ , 40 mL) at 60–65 °C and protected from moisture was added Cu(NO<sub>3</sub>)<sub>2</sub>·3H<sub>2</sub>O (3.87 g, 16 mmol) in small portions over a period of 30 min keeping the temperature between 60 and 65 °C. The mixture was then stirred at 60-65 °C for 1 h (or until the reaction was complete as judged by TLC in 85:15 CH<sub>2</sub>Cl<sub>2</sub>-hexane), cooled to 25 °C, and poured into cold water (400 mL). The precipitated solid or gum was collected by filtration or decantation, washed with water, and dissolved in CH<sub>2</sub>Cl<sub>2</sub>. The CH<sub>2</sub>Cl<sub>2</sub> solution was washed with NaHCO<sub>3</sub> solution, dried (Na<sub>2</sub>S- $O_4$ ), and then passed through a column of silica gel (20 g) in 9:1 CH<sub>2</sub>Cl<sub>2</sub>-hexane. Elution with the same solvent system and evaporation of solvent gave relatively pure solid in each case. The solid was further purified by recrystallization from benzene-hexane. Yields and physical properties are described below. 3,5-Bis(benzyloxy)-2-methyl-6, $\beta$ -dinitrostyrene (**15a**): yield 2.56 g (61%); mp 157–159 °C; NMR (CDCl<sub>3</sub>) δ 2.17 (s, 3, Me), 5.03 (s, 2, OCH<sub>2</sub>), 5.08 (s, 2, OCH<sub>2</sub>), 6.58 (s, 1, H-4), 7.07 (d,  $J_{\alpha,\beta} = 14$  Hz, 1, H<sub>α</sub>), 7.20–7.41 (m, 10, Ph), 7.98 (d,  $J_{\alpha,\beta} = 14$  Hz, 1, H<sub>β</sub>). Anal. (C<sub>23</sub>H<sub>20</sub>N<sub>2</sub>O<sub>6</sub>) C, H, N. 3,5-Bis(benzyloxy)-4methyl-6,β-dinitrostyrene (15b): yield 2.86 g (68%); mp 163 °C; NMR (CDCl<sub>3</sub>) & 2.27 (s, 3, Me), 4.95 (s, 2, OCH<sub>2</sub>), 5.15 (s, 2, OCH<sub>2</sub>), 6.80 (s, 1, H-6), 7.20–7.47 (m, 11, Ph and  $H_{\alpha}$ ), 7.89 (d,  $J_{\alpha,\beta} = 14$  Hz, 1,  $H_{\beta}$ ). Anal. (C<sub>23</sub>H<sub>20</sub>N<sub>2</sub>O<sub>6</sub>) C, H, N. 3,5-Bis(benzyloxy)-2,4-dimethyl-6,βdinitrostyrene (15c): yield 2.1 g (48%); mp 154-155 °C; NMR (CDCl<sub>3</sub>) δ 2.27 (s, 6, Me), 4.85 (s, 2, OCH<sub>2</sub>), 4.97 (s, 2, OCH<sub>2</sub>), 7.29-7.53 (m, 11, Ph and  $H_{\alpha}$ ), 8.01 (d,  $J_{\alpha,\beta} = 14$  Hz, 1,  $H_{\beta}$ ). Anal. (C<sub>24</sub>H<sub>22</sub>N<sub>2</sub>O<sub>6</sub>) C, H.N.

Synthesis of Indoles 16a-c. General Procedure.22 A mixture of the dinitrostyrene 15a, 15b, or 15c (4 mmol), silica gel (70-270 mesh, 10 g), HOAc (24 mL), reduced Fe powder (electrolytic grade-IX, Mallinckrodt, 4 g, 71 mmol), and toluene (40 mL) was refluxed under an  $N_2$  atmosphere for 1 h. The mixture was then cooled to 25 °C, diluted with  $CH_2Cl_2$ , and filtered. The filter cake was washed thoroughly with CH<sub>2</sub>Cl<sub>2</sub> and the combined filtrates were washed, in order, with a NaH-SO<sub>3</sub> solution and NaHCO<sub>3</sub> solution, dried (Na<sub>2</sub>SO<sub>4</sub>), and evaporated in vacuo to dryness. The light brown residue was chromatographed on a column of silica gel (15 g) using 9:1 CH<sub>2</sub>Cl<sub>2</sub>-hexane as eluent. Evaporation of solvent gave almost pure (air sensitive) indoles which were recrystallized from benzene-hexane. 5,7-Bis(benzyloxy)-4-methylindole (16a): yield 1.2 g (88%); mp 88-89 °C; NMR (CDCl<sub>3</sub>) δ 2.37 (s, 3, Me), 4.90 (s, 2, OCH<sub>2</sub>), 4.95 (s, 2, OCH<sub>2</sub>), 6.37 (t,  $J_{1,3} = J_{3,2} = 3$  Hz, 1, H-3), 6.42 (s, 1, H-6), 6.84 (t,  $J_{1,2} = J_{2,3} = 3$  Hz, 1, H-2), 7.14–7.41 (m, 10, Ph), 8.02 (br s, 1, H-1). Anal. ( $C_{23}H_{21}NO_{2}$ ) C, H, N. 5,7-Bis(benzyloxy)-6-methylindole (16b): yield 1.1 g (80%); mp 105-107 C: NMR (CDCl<sub>3</sub>)  $\delta$  2.31 (s, 3, Me), 4.89 (s, 2, OCH<sub>2</sub>), 4.98 (s, 2, OCH<sub>2</sub>), 6.34 (t,  $J_{1,3} = J_{2,3} = 3$  Hz, 1, H-3), 6.79 (t,  $J_{1,2} = J_{2,3} = 3$  Hz, 1, H-2), 6.87 (s, 1, H-4), 7.18–7.43 (m, 10, Ph), 7.85 (br s, 1, H-1). Anal. (C<sub>23</sub>H<sub>21</sub>NO<sub>2</sub>) C, H, N. 5,7-Bis(benzyloxy)-4,6-dimethylindole (16c): yield 1.26 g (92%); mp 97-99 °C; NMR (CDCl<sub>3</sub>) δ 2.31 (s, 3, Me), 2.44 (s, 3, Me), 4.80 (s, 2, OCH<sub>2</sub>), 4.93 (s, 2, OCH<sub>2</sub>), 6.48 (t, J<sub>1,3</sub>  $= J_{2,3} = 3$  Hz, 1, H-3), 6.91 (t,  $J_{1,2} = J_{2,3} = 3$  Hz, 1, H-2), 7.25-7.58 (m, 10, Ph), 8.01 (br s, 1, H-1). Anal. ( $C_{24}H_{23}NO_2$ ) C, H, N.

Synthesis of Indole-3-acetonitriles 19a-c. General Procedure.<sup>24,25</sup> Although the intermediate gramines and gramine methiodides could not be readily purified to homogeneity due, in part, to their instability, the

<sup>(20) (</sup>a) Brasen, W. R.; Hauser, C. R. "Organic Syntheses"; Wiley: New York, 1963; Collect. Vol. IV, pp 585-588. (b) Pine, S. H. Org. React. 1970, 18, 403-464.

<sup>(21)</sup> Dunstan, S.; Henbest, H. B. J. Chem. Soc. 1957, 4905-4908

<sup>(22)</sup> Sinhababu, A. K.; Borchardt, R. T. J. Org. Chem. 1983, 48, 3347-3349.

<sup>(23)</sup> Lee, F. G. H.; Dickson, D. E.; Suzuki, J.; Zirnis, A.; Manian, A. A. J. Heterocycl. Chem. 1973, 10, 649-654.

<sup>(24)</sup> Schlossberger, H. G.; Kuch, H. Chem. Ber. 1960, 93, 1318-1323; Liebigs Ann. Chem. 1963, 662, 132-138. (25) Spande, T. F. In "Indoles"; Houlihan, W. J., Ed.; Wiley: New York,

<sup>1979;</sup> Part 3, Chapter 1

<sup>(26) (</sup>a) Adams, R. N. "Electrochemistry at Solid Electrodes"; Marcel Dekker: New York, 1969. (b) Faulkner, L. R. In "Physical Methods in Modern Chemical Analysis"; Kuwana, T., Ed.; Academic Press: New York, 1983; Vol. 3, pp 137-248.

#### Autoxidation of 5,7-Dihydroxytryptamine

crude products were sufficiently pure to give satisfactory NMR spectra. Gramines 17a-c: To a stirred mixture of HOAc (10 mL), EtOH (5 mL), 37% aqueous CH<sub>2</sub>O (400 mg, 5 mmol), and 40% aqueous Me<sub>2</sub>NH (600 mg, 5 mmol) at 0-5 °C was added a solution of the indole (16a, 16b or 16c, 2 mmol) in 5 mL of EtOH. After it was stirred at 0-5 °C for 2 h and then at 25 °C for 8 h, the mixture was diluted with 100 mL of water and made strongly basic (pH  $\sim$ 12) with 4 N NaOH with cooling. After stirring for 30 min, the mixture was extracted with  $CH_2Cl_2$  (3 × 10 mL). The CH<sub>2</sub>Cl<sub>2</sub> extract was washed with brine, dried (K<sub>2</sub>CO<sub>3</sub>), and evaporated in vacuo to dryness to give a light brown gum in each case. The NMR data of the crude products in CDCl<sub>3</sub> are described below. Gramine 17a:  $\delta$  2.21 (s, 6, NMe<sub>2</sub>), 2.61 (s, 3, Me), 3.53 (s, 2, CH<sub>2</sub>NMe<sub>2</sub>), 4.92  $(s, 2, OCH_2), 5.02 (s, 2, OCH_2), 6.48 (s, 1, H-6), 6.84 (d, J_{1,2} = 2.5 Hz,$ 1, H-2), 7.20-7.40 (m, 10, Ph), 8.27 (br s, 1, H-1). Gramine 17b: δ 2.18 (s, 6, NMe<sub>2</sub>), 2.30 (s, 3, Me), 3.52 (s, 2, CH<sub>2</sub>NMe<sub>2</sub>), 4.95 (s, 2, OCH<sub>2</sub>), 5.05 (s, 2, OCH<sub>2</sub>), 6.82 (s, 1, H-4), 6.95 (br s, 1, H-2), 7.06-7.47 (m, 10, Ph), 8.13 (br, 1, H-1). Gramine 17c: 8 2.23 (s, 6, NMe2), 2.34 (s, 3, Me), 2.72 (s, 3, Me), 3.54 (s, 2, CH<sub>2</sub>NMe<sub>2</sub>), 4.80 (s, 2, OCH<sub>2</sub>), 4.97 (s, 2, OCH<sub>2</sub>), 6.85 (d,  $J_{1,2}$  = 2 Hz, 1, H-2), 7.30–7.60 (m, 10, Ph), 7.82 (br s, 1, H-1). Gramine Methiodides 18a-c: To a stirred solution of CH<sub>3</sub>I (10 g, 70 mmol) in 10 mL of EtOH at 0-5 °C, protected from moisture, was added a solution of the gramine 17a, 17b, or 17c (1 mmol) in 10 mL of EtOAc over a period of 10 min. The mixture was refrigerated for 12 h and then evaporated at 25 °C to dryness. The residue, often a gum, was triturated with a 9:1 mixture of EtOAc-hexane and refrigerated for a few hours. The precipitated white solid was collected by filtration and dried under vacuum. In each case, NMR showed the presence of varying amounts of dimeric products, although the precise amounts could not be quantitated due to partially overlapped signals. Methiodide 18a: mp 145 °C dec; NMR (( $(CD_3)_2SO$ )  $\delta$  2.43 (s, 3, Me, partly buried in the signal due to residual protons of solvent but separates on addition of D<sub>2</sub>O), 3.02 (s, 9, NMe<sub>3</sub>), 3.13 (s, NMe<sub>2</sub> of the dimer, representing approximately 20% dimer in the mixture), 4.78 (br s, 2,  $CH_2N^+$ ), 5.07 (s, 2,  $OCH_2$ ), 5.27 (s, 2, OCH<sub>2</sub>), 6.84 (s, 1, H-6), 7.20–7.70 (m, 11, H-2 and Ph), 11.72 (br s, 1, H-1, exchanges with D<sub>2</sub>O). Methiodide 18b: mp 168 °C dec; NMR ((CD<sub>3</sub>)<sub>2</sub>SO)  $\delta$  2.19 (s, 3, Me), 3.13 (s, 9, NMe<sub>3</sub>), 3.05 (s, Me<sub>2</sub>N<sup>+</sup> of dimer, representing presence of approximately 10% of dimer in the mixture), 4.71 (s, 2, CH<sub>2</sub>N<sup>+</sup>), 5.05 (s, 2, OCH<sub>2</sub>), 5.18 (s, 2, OCH<sub>2</sub>), 7.20-7.50 (m, 12, H-2, H-4 and Ph), 11.54 (s, 1, H-1, exchanges with D<sub>2</sub>O). Methiodide 18c: mp 128 °C dec; NMR ((CD<sub>3</sub>)<sub>2</sub>SO) δ 2.22 (s, 3, Me), 2.52 (s, 3, Me on C-4), 3.07 (s,  $Me_2N^+$  of the dimer, representing approximately 20% dimer in the mixture), 3.13 (s, 9, Me<sub>1</sub>N<sup>+</sup>), 4.75 (br, s, 4,  $CH_2N^+$  and  $OCH_2$ ), 5.01 (s, 2,  $OCH_2$ ), 7.12–7.70 (m, 11, H-2 and Ph), 11.69 (s, 1, H-1, exchanges with D<sub>2</sub>O). Indole-3-acetonitriles 19a-c: To a stirred solution or suspension of the gramine methiodide 18a, 18b, or 18c (1 mmol) in 5-7 mL of Me<sub>2</sub>NCHO at 75 °C was added, immediately, a solution of KCN (260 mg, 4 mmol) in 3 mL of water. The mixture then heated with stirring at 75 °C for 1 h, cooled to 25 °C, and diluted with water (70 mL). The mixture was kept at 0 °C for 1 h and the precipitated solid (or gum) was collected by filtration (or decantation). The residue was washed with water and dissolved in CH<sub>2</sub>Cl<sub>2</sub> and the CH<sub>2</sub>Cl<sub>2</sub> solution was washed with brine, dried (Na<sub>2</sub>SO<sub>4</sub>), and evaporated in vacuo to dryness. The residue was chromatographed on a column of silica gel (20 g) using 9:1 CH<sub>2</sub>Cl<sub>2</sub>-hexane. Evaporation of eluent and recrystallization of the residue from benzene-cyclohexane gave a white solid in each case. 5,7-Bis(benzyloxy)-3-(cyanomethyl)-4methylindole (19a): yield 76%; mp 127-128.5 °C; IR (CHCl<sub>3</sub>) 2230 cm<sup>-1</sup>; NMR (CDCl<sub>3</sub>)  $\delta$  2.52 (s, 3, Me), 3.96 (s, 2, CH<sub>2</sub>CN), 5.03 (s, 2,  $OCH_2$ ), 5.14 (s, 2,  $OCH_2$ ), 6.63 (s, 1, H-6), 7.18 (d,  $J_{1,2} = 2.4$  Hz, 1, H-2), 7.30-7.60 (m, 10, Ph), 8.37 (br s, 1, H-1). Anal. (C<sub>25</sub>H<sub>22</sub>N<sub>2</sub>O<sub>2</sub>) C, H, N. 5,7-Bis(benzyloxy)-3-(cyanomethyl)-6-methylindole (19b): yield 69%; mp 102-104 °C; IR (CHCl<sub>3</sub>) 2230 cm<sup>-1</sup>; NMR (CDCl<sub>3</sub>) δ 2.32 (s, 3, Me), 3.71 (s, 2, CH<sub>2</sub>CN), 4.98 (s, 2, OCH<sub>2</sub>), 5.08 (s, 2,  $OCH_2$ ), 6.80 (s, 1, H-4), 6.92 (d,  $J_{1,2} = 2$  Hz, 1, H-2), 7.23-7.48 (m, 10, Ph), 7.75 (br s, 1, H-1). Anal. (C25H22N2O2) C, H, N. 5,7-Bis(benzyloxy)-3-(cyanomethyl)-4,6-dimethylindole (19c): yield 75%; mp 110-112 °C; IR (CHCl<sub>3</sub>) 2225 cm<sup>-1</sup>; NMR (CDCl<sub>3</sub>) δ 2.41 (s, 3, Me), 2.56 (s, 3, Me), 3.88 (s, 2, CH<sub>2</sub>CN), 4.78 (s, 2, OCH<sub>2</sub>), 4.97 (s, 2,  $OCH_2$ ), 6.98 (d,  $J_{1,2} = 2$  Hz, 1, H-2), 7.32–7.60 (m, 10, Ph), 7.97 (br s, 1, H-1). Anal. (C<sub>26</sub>H<sub>24</sub>N<sub>2</sub>O<sub>2</sub>) C, H, N.

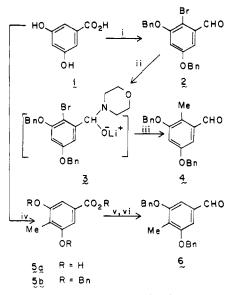
Synthesis of Dihydroxytryptamines 21a-c. General Procedure.<sup>23-25</sup> To a stirred suspension of LiAlH<sub>4</sub> (570 mg, 15 mmol) in 30 mL of dry Et<sub>2</sub>O under an N<sub>2</sub> atmosphere was added a solution of 19a, 19b, or 19c (1 mmol) in 30 mL of PhH gradually, and the mixture was then refluxed for 6.5 h. After cooling the mixture to 5-10 °C, excess LiAlH<sub>4</sub> was decomposed by carefully adding water until the inorganic materials separated as a white gel. The organic solution was collected by decantation, washed with brine, dried (K<sub>2</sub>CO<sub>3</sub>), and then evaporated in vacuo to dryness to give the protected tryptamines 20a, 20b, or 20c in >90% yield as gums in each case. These tryptamines (pure by NMR, see

below) were utilized in the next step without further purification. Tryptamine 20a: NMR (CDCl<sub>3</sub>) δ 1.72 (br s, 2, NH<sub>2</sub>), 2.51 (s, 3, Me), 2.95 (s, 4, CH<sub>2</sub>CH<sub>2</sub>), 4.94 (s, 2, OCH<sub>2</sub>), 5.05 (s, 2, OCH<sub>2</sub>), 6.49 (s, 1, H-6), 6.86 (br s, 1, H-2), 7.22-7.50 (m, 10, Ph), 7.92 (br s, 1, H-1). Tryptamine 20b: NMR (CDCl<sub>3</sub>) δ 1.63 (br s, 2, NH<sub>2</sub>), 2.33 (s, 3, Me), 2.88 (t, poorly resolved, J = 4.5 Hz, 4, CH<sub>2</sub>CH<sub>2</sub>), 4.98 (s, 2, OCH<sub>2</sub>), 5.07 (s, 2, OCH<sub>2</sub>), 6.70 (d,  $J_{1,2}$  = 2 Hz, 1, H-2), 6.80 (s, 1, H-4), 7.07-7.53 (m, 10, Ph), 8.05 (br s, 1, H-1). Tryptamine 20c: NMR (CDCl<sub>3</sub>) δ 1.78 (br s, 2, NH<sub>2</sub>), 2.34 (s, 3, Me), 2.60 (s, 3, Me), 2.97 (m, 4, CH<sub>2</sub>CH<sub>2</sub>), 4.78 (s, 2, OCH<sub>2</sub>), 4.93 (s, 2, OCH<sub>2</sub>), 6.77 (d,  $J_{1,2} = 2.5$  Hz, 1, H-2), 7.20-7.60 (m, 10, Ph), 8.17 (br s, 1, H-1). To a solution of the bis-(benzyloxy)tryptamine 20a, 20b, or 20c (1 mmol) in 50-75 mL of deoxygenated EtOH was added 1 M H<sub>2</sub>SO<sub>4</sub> (1 mL, 1 mmol) and 200 mg of 10% Pd/C, and the mixture was shaken in a Parr shaker at 40 psi of H<sub>2</sub> for 6 h at ambient temperature. [All the operations described below were conducted, as far as practicable, in a positive  $N_2$  atmosphere.] The mixture was filtered under gravity and to the filtrate was added a solution of creatinine (113 mg, 1 mmol) in 1 mL of deoxygenated water. The cloudy mixture was evaporated in vacuo at <40 °C to dryness. The residue was dissolved in deoxygenated water and filtered. To the filtrate was added deoxygenated acetone until precipitation of some solid had begun, and the mixture was stored at -20 °C overnight. White solid was obtained in each case and was collected by filtration and dried under vacuum

**5,7-Dihydroxy-4-methyltryptamine** Creatinine Sulfate (4-Me-5,7-DHT, **21a**): yield 89%; mp 240 °C dec; NMR (D<sub>2</sub>O)  $\delta$  2.32 (s, 3, 4-Me), 2.91–3.07 (m, 7, CH<sub>2</sub>CH<sub>2</sub>, NMe), 4.01 (s, 2, CH<sub>2</sub> of creatinine), 6.99 (s, 1, H-2); partial NMR in (CD<sub>3</sub>)<sub>2</sub>SO  $\delta$  6.20 (s, 1, H-6), 6.97 (s,  $J_{1,2}$  = 2.5 Hz, 1, H-2). Anal. (C<sub>15</sub>H<sub>23</sub>N<sub>5</sub>O<sub>7</sub>S·2H<sub>2</sub>O) C, H, N. **5,7-Dihydroxy-6-methyltryptamine** Creatinine Sulfate (6-Me-5,7-DHT, **21b**): yield 72%; mp 235 °C dec; NMR (D<sub>2</sub>O)  $\delta$  2.02 (2, 6-Me), 2.85–3.08 (m, 7, CH<sub>2</sub>CH<sub>2</sub>, NMe), 4.05 (s, 2, CH<sub>2</sub> of creatinine), 6.99 (s, 1, H-2); partial NMR in (CD<sub>3</sub>)<sub>2</sub>SO  $\delta$  6.40 (s, 1, H-4), 6.98 (d,  $J_{1,2}$  = 2.5 Hz, 1, H-2). Anal. (C<sub>15</sub>H<sub>23</sub>N<sub>5</sub>O<sub>7</sub>S·2H<sub>2</sub>O) C, H, N. **5,7-Dihydroxy-4,6-dimethyltryptamine** Creatine Sulfate (4,6-Me<sub>2</sub>-5,7-DHT, **21c**): yield 92%; mp 187 °C dec; NMR (D<sub>2</sub>O)  $\delta$  2.02 (s, 3, 6-Me), 2.25 (s, 3, 4-Me), 2.90–3.05 (m, 7, CH<sub>2</sub>CH<sub>2</sub>, NMe), 4.03 (s, 2, CH<sub>2</sub> of creatinine), 6.96 (s, 1, H-2). Anal. (C<sub>16</sub>H<sub>25</sub>N<sub>5</sub>O<sub>7</sub>S·2H<sub>2</sub>O) C, H, N.

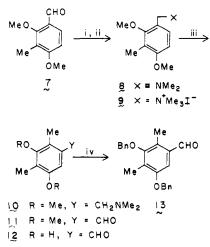
**Cyclic Voltammetry.** An electrochemical cell with a carbon paste working electrode, a standard Ag/AgCl (3N NaCl) reference electrode, and a platinum foil auxiliary electrode was used.<sup>26</sup> The carbon paste was prepared by mixing Ultracarbon (Ultra F purity) and hexadecane in a ratio of 2:1 by weight. Each voltammogram was generated by using a freshly prepared electrode surface. Approximate area of this surface was 1.5 mm<sup>2</sup>. The electrolytes were 0.1 M H<sub>2</sub>SO<sub>4</sub>, 0.05 M acetate buffer at pH 4.0 containing 0.9% NaCl, or 0.05 M phosphate buffer at pH 7.4 containing 0.9% NaCl. These solvents were freed of dissolved O<sub>2</sub> by purging with N<sub>2</sub> for at least 1 h. The cyclic voltammograms were recorded while maintaining the test solutions quiet in an N<sub>2</sub> atmosphere at a scan rate of 50 mV/s by using an IBM EC 225 voltammetric analyzer and a Houston Instruments Model 2000 x-y recorder.

**Polarographic Measurements of O<sub>2</sub> Consumption.**<sup>12,27</sup> The rates of oxygen consumption were measured with a Clark electrode (Yellow Springs Instruments) in a closed water-jacketed cell equipped with a magnetic stirrer at 37 °C using 0.05 M phosphate buffer at pH 7.4 as the solvent. The final volume of the test solution in the cell was 1.1-1.2 mL. The oxygen consumption rates were calculated on the basis of a dissolved oxygen content, determined experimentally,<sup>27</sup> in the solvent at 37 °C of 188 nmol/mL.


## Results

Synthesis of the Probes. Our general strategy for the synthesis of **21a**-c was to transform appropriately substituted benzaldehydes to the corresponding indoles via  $2,\beta$ -dinitrostyrenes followed by introduction of the aminoethyl side chain. The manner in which the aminoethyl side chain was introduced was dictated by our need in future studies for radiolabeled probes with the radiolabel in a chemically and metabolically stable position.

Efficient synthesis of the aldehydes, none of which has been described in the literature, is presented in Schemes I and II. For the synthesis of aldehyde 4, 3,5-dihydroxybenzoic acid (1) was first converted to the bromobenzaldehyde 2 in four steps (Scheme I) as described earlier.<sup>15</sup> The aldehyde function of 2 was protected in situ to give amino alkoxide 3 which upon Br-Li exchange

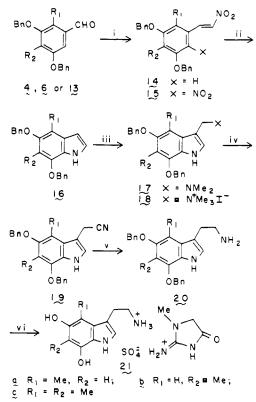

<sup>(27) (</sup>a) Irving, F. "Polarographic Oxygen Sensors"; CRC Press: Cleveland, 1976. (b) Hitchman, M. L. Chem. Anal. **1978**, 49, 1-255. (c) "Polarographic Oxygen Sensors"; Gnaiger, E., Forstner, H., Eds.; Springer-Verlag: Berlin, 1983.

Scheme I<sup>a</sup>



<sup>a</sup> Reagents: (i) ref 15; (ii) lithium morpholide, THF, -78 °C; (iii) BuLi, -78 °C then (MeO)<sub>2</sub>SO<sub>2</sub> then H<sub>3</sub>O<sup>+</sup>; (iv) ref 17; (v) LiAlH<sub>4</sub>, THF; (vi) pyridinium chlorochromate, CH<sub>2</sub>Cl<sub>2</sub>.

Scheme II<sup>a</sup>




<sup>a</sup> Reagents: (i)  $7 \rightarrow 8$ , Me<sub>2</sub>NH·HCl, KOH, MeOH, NaBH<sub>3</sub>CN; (ii)  $8 \rightarrow 9$ , MeI, CH<sub>2</sub>Cl<sub>2</sub>; (iii)  $9 \rightarrow 10$ , NaNH<sub>2</sub>, liquid NH<sub>3</sub>;  $10 \rightarrow 11$ , NBS, PhH;  $11 \rightarrow 12$ , BBr<sub>3</sub>, CH<sub>2</sub>Cl<sub>2</sub>; (iv)  $12 \rightarrow 13$ , PhCH<sub>2</sub>Cl, K<sub>2</sub>CO<sub>3</sub>, NaI, acetone.

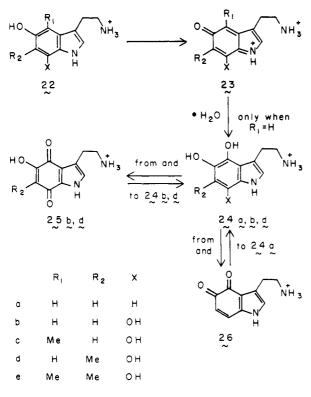
followed by treatment with (MeO)<sub>2</sub>SO<sub>2</sub> gave, after acidic workup,<sup>15,16</sup> aldehyde 4. TLC suggested formation of only one compound, and its structure as 4 was confirmed from NMR spectral data which displayed characteristic meta coupling with  $J_{4.6} = 3$ Hz. For the synthesis of aldehyde 6 (Scheme I), we had to devise a selective method for the conversion of 1 to 4-methyl-3,5-dihydroxybenzoic acid<sup>17</sup> (5a) which on benzylation gave benzoate 5b. Ester 5b was then converted to the aldehyde 6 by a standard reduction-oxidation sequence. For the synthesis of the dimethylbenzaldehyde (13, Scheme II), we started with aldehyde 7 after encountering difficulty with a number of seemingly more simple pathways. Reductive amination<sup>19</sup> of 7 followed by quaternization of the resulting amine gave methiodide 9. Sommelet-Hauser rearrangement<sup>20</sup> of 9 proceeded essentially quantitatively to give amine 10. Oxidation of amine 10 to aldehyde 11 was accomplished using NBS.<sup>21</sup> Interchange of the protecting groups of 11 then afforded aldehyde 13.

The sequence of reactions that was used for the conversion of aldehyde 4, 6, and 13 to the tryptamines 21a, 21b, and 21c, respectively, is shown in Scheme III. Nitromethylenation of the

Scheme III<sup>a</sup>



<sup>a</sup> Reagents: (i) 4, 6, or  $13 \rightarrow 14$ , CH<sub>3</sub>NO<sub>2</sub>, NH<sub>4</sub>OAc, HOAc;  $14 \rightarrow 15$ , Cu(NO<sub>3</sub>)<sub>2</sub>·3H<sub>2</sub>O, Ac<sub>2</sub>O; (ii) 15  $\rightarrow 16$ , Fe, HOAc, silica gel, PhCH<sub>3</sub>; (iii) 16  $\rightarrow 17$ , CH<sub>2</sub>O, Me<sub>2</sub>NH, EtOH, HOAc;  $17 \rightarrow 18$ , MeI, EtOH, EtOAc; (iv) 18  $\rightarrow 19$ , KCN, DMF, H<sub>2</sub>O; (v) LiAlH<sub>4</sub>, Et<sub>2</sub>O, PhH; (vi) H<sub>2</sub>SO<sub>4</sub>, Pd/C, H<sub>2</sub>, EtOH then creatinine.


aldehydes followed by ring nitration gave the dinitrostyrenes 15. Attempted reductive cyclization of 15 to indoles using Fe/HOAc gave disappointingly poor yields. This led us to modify the method.<sup>22</sup> Using the modified procedure, which involved use of Fe/HOAc in toluene in the presence of silica gel, the indoles 16a, 16b, and 16c were produced in 88%, 80%, and 92% yields, respectively. The indoles were then converted to indole-3-acetonitriles 19 via reaction of methiodides 18 with KCN. Reduction<sup>24</sup> of nitriles 19 to the tryptamines 20 could be effected satisfactorily only in very dilute solutions of 1:1 Et<sub>2</sub>O-PhH by using 15-fold excess of LiAlH<sub>4</sub>. Catalytic debenzylation of the hydrogen sulfate salts of 20, followed by treatment with creatinine furnished the target DHT's 21a-c. The synthetic intermediates as well as the targets 21a-c were characterized by NMR spectroscopy and elemental analysis.

**Cyclic Voltammetric Studies.** Previous cyclic voltammetric studies with 5-HT have indicated that it undergoes electrochemical oxidation to produce the corresponding *p*-quinone imine (5-HTQ, **23a**, Chart II).<sup>28</sup> The initial oxidation of 5-HT to 5-HTQ appears to be a 2e process.<sup>29</sup> Although supporting evidence was provided<sup>28</sup> for the subsequent chemical and electrochemical steps, outlined in Chart II for 5-HT, direct proof is lacking for any of these steps. These observations on 5-HT led us to expect that it might be possible to generate 5,7-DHTQ, which has been postulated to be the primary autoxidation product of 5,7-DHT, electrochemically and compare its chemical and electrochemical properties with the corresponding *p*-quinoneimines generated from the methyl-substituted 5.7-DHT's.

The voltammograms in the present study were generated by using the standard three-electrode configuration with a carbon paste working electrode at pH 7.4 and 4.0 and in 0.1 M  $H_2SO_4$ .

<sup>(28)</sup> Feinberg, B. A. Ph.D. Dissertation, The University of Kansas, Lawrence, KS, 1971.
(29) Blank, L. E., personal communication.

Chart II



These are shown in Figure 1. On the first anodic scan a peak is observed in each case. The values of the peak potentials for 5-HT, 5,7-DHT, 4-Me-5,7-DHT, 6-Me-5,7-DHT, and 4,6-Me<sub>2</sub>-5,7-DHT were (in mV vs. Ag/AgCl) at pH 7.4, 430, 230, 110, 190, and uncertain, respectively, at pH 4.0, 570, 460, 330, 370, and 300, respectively, and in 0.1 M H<sub>2</sub>SO<sub>4</sub>, 650, 560, 420, 510, and 390, respectively. The value for  $4,6-Me_2-5,7-DHT$  at pH 7.4 is uncertain as it exhibited essentially a vanishingly small peak at 240 mV but a major peak at 620 mV. The reason for this phenomenon remained a puzzle until it was found that the pH 4.0 test solution, from which voltammogram 2 of Figure 1e was generated, produced voltammogram 2a after  $\sim$  5-s exposure to air. Qualitative similarity of (1) and (2a) in Figure 1e suggests that traces of residual O2 present in the "deoxygenated" test solution was enough to oxidize the 40  $\mu$ M solution of this DHT essentially completely due to its extremely rapid rates of reaction with  $O_2$  (vide infra). However, the species responsible for the peak at 620 mV still remains a mystery. In the case of 5,7-DHT and 4- and 6-Me-5,7-DHT, exposure to air (up to 5 min) resulted in complete disappearance of the peaks obtained at pH 4.0 and 7.4 but did not result in the appearance of any new peaks while voltammograms for 5-HT remained essentially unchanged even after exposure to air for 30 min. In analogy to 5-HT, the first anodic peak for 5.7-DHT and its methylated derivatives corresponds to the transformation  $22b-e \rightarrow 23b-e$  (Chart II). It should be emphasized that at the present time we do not have any direct evidence that this peak is solely due to the formation of the DHTQ's 23b-e. The number of electrons involved in each of these oxidations also remains to be determined.

On the first cathodic scan, at scan rates of up to 400 mV/s, none of the test compounds displayed peaks corresponding to the reduction of **23b-e** to **22b-e**, respectively, at any pH tested (Chart II, Figure 1). The only cathodic peaks observed were those for 5,7-DHT (peak Ic) and 6-Me-5,7-DHT (peak Ic) in 0.1 M H<sub>2</sub>SO<sub>4</sub> at -20 and -90 mV, respectively. In analogy to 5-HT, which displays a similar cathodic peak (Figure 1a, curve 3) thought to be due to the transformation **26**  $\rightarrow$  **24a** at 200 mV, these peaks would be expected to correspond to the reduction of **25b** and **25d**, respectively (Chart II). Each of these peaks, thus, amounts to an ECE process (**22b,d**  $\rightarrow$  **23b,d**  $\rightarrow$  **24b,d**  $\rightarrow$  **25b,d**  $\rightarrow$  **24b,d**) with the chemical step being Michael addition of H<sub>2</sub>O to **23b** and **23d**,

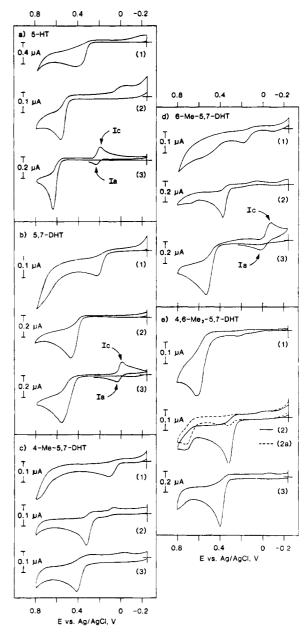



Figure 1. Cyclic voltammograms of (a) 5-HT, (b) 40  $\mu$ M 5,7-DHT, (c) 25  $\mu$ M 4-Me-5,7-DHT, (d) 30  $\mu$ M 6-Me-5,7-DHT, and (e) 40  $\mu$ M 4,6-Me<sub>2</sub>-5,7-DHT in (1) phosphate buffer at pH 7.4, (2) acetate buffer at pH 4.0, and (3) 0.1 M H<sub>2</sub>SO<sub>4</sub> at a scan rate of 50 mV/s at ~25 °C. The concentrations of 5-HT were (1) 50, (2) 30, and (3) 40  $\mu$ M. The scan in each case was initiated at -0.25 V. For 4,6-Me<sub>2</sub>-5,7-DHT (e) volt-ammogram 2a was obtained after bubbling air for ~5 s into the solution from which voltammogram 2 was generated.

respectively. Absence of similar cathodic peaks for 4-Me- and 4,6-Me<sub>2</sub>-5,7-DHT supports the involvement of the 4-position in the chemical follow-up step for 5,7-DHT and 6-Me-5,7-DHT. The fact that both 4-Me- and 4,6-Me<sub>2</sub>-5,7-DHT failed to display peaks corresponding to the process  $23 \rightarrow 22$ , suggests that the 4-position of 23 is not the only site where nucleophilic attack by H<sub>2</sub>O or the amino group of the aminoethyl side chain can take place. These other sites might be position 2 and the ring junctions (positions 3a and 7a) of 23.

On the first anodic follow-up scan in 0.1 M  $H_2SO_4$  a peak is observed only with 5-HT (peak Ia), 5,7-DHT (peak Ia), and 6-Me-5,7-DHT (peak Ia) at 240, 30, and 20 mV, respectively. Each of these peaks correspond to a simple oxidation process with the oxidation step being 24a  $\rightarrow$  26 and 24b,d  $\rightarrow$  25b,d, respectively.

NMR Spectroscopic Studies. Schlossberger<sup>13</sup> first showed that the H-4 and H-6 of 5,7-DHT undergo rapid exchange with deuterium in  $D_2O$ ; however, relative rates of exchange and the

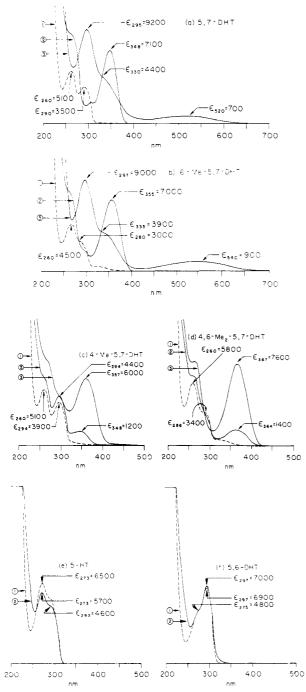



Figure 2. UV-visible absorption curves of 5,7-DHT and its methylated derivatives 5-HT and 5,6-DHT at 25 °C in (1) 0.05 M O<sub>2</sub>-free HCl-KCl buffer at pH 2.0, (2) 0.05 M O<sub>2</sub>-free phosphate buffer at pH 7.4, and (3) 0.05 M phosphate buffer saturated with air at pH 7.4. Curves 1 and 2 were recorded immediately after sample preparation ( $\sim 2$  min), while curve 3 was recorded after (a) 12 h, (b) 1 h, (c) 2 min, and (d) 2 min.

chemical shift values were not reported. We have found that in a 25 mM solution of 5,7-DHT in D<sub>2</sub>O at 25 °C, H-6 exchanges approximately twice as fast as H-4. Complete exchange of H-6 takes about 5 min. There is also a substantial difference in the chemical shift values for the two protons; while H-6 occurs at 6.13 ppm, H-4 appears at 6.30 ppm downfield from Me<sub>4</sub>Si. We ascribe this lower value for H-6 to the shielding effect of the two electronegative oxygen atoms on C<sub>5</sub> and C<sub>7</sub>. The H-6 ( $\delta$  6.20) and H-4 ( $\delta$  6.45) signals of 4-Me-5,7-DHT and 6-Me-5,7-DHT, respectively, also underwent exchange although at slightly reduced rates (7 and 13 min for complete exchange, respectively). The shielding effect extends to the methyl substituents as well: thus, 4-Me of **21a** occurs at  $\delta$  2.32, 6-Me of **21b** at  $\delta$  2.02, and 4- and 6-Me of **21c** at  $\delta$  2.25 and 2.02, respectively.

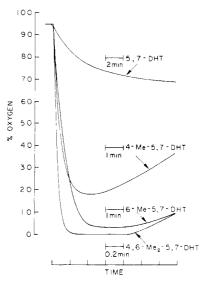



Figure 3. Oxygen electrode tracings of reaction of  $O_2$  using a 0.5 mM test solution in phosphate buffer at pH 7.4 and 37 °C.

UV-Visible Spectroscopic Studies. The UV-visible spectra were recorded in the presence or absence of  $O_2$  at pH 2.0, 4.0, 6.0, 7.0, 7.4, and 8.0. At every pH value the spectra were recorded at regular intervals over a period of time. Selected examples of absorption curves for each compound are shown in Figure 2. At pH 2.0 in the absence of  $O_2$  the absorption maxima for 5,7-DHT and **21a-c** were found to be qualitatively similar to each other (Figure 2a-d, Curve 1) and also similar to those for 5-HT and 5,6-DHT (Figure 2e,f). With increasing pH in the absence of  $O_2$ , the absorption at >340 nm for each compound increased in intensity. 5-HT and 5,6-DHT show essentially no pH dependence between pH 2.0 and 8.0 (Figure 2e,f). Schlossberger<sup>13</sup> first found that at pH 2.0-8.0, 5,7-DHT displays several isosbestic points. Among the probes only 6-Me-5,7-DHT displayed the presence of such isosbestic points, although there were deviations for pH 4.0 and 6.0 curves at one point (data not shown). At pH 7.4 in the absence of O<sub>2</sub>, 5,7-DHT and 6-Me-5,7-DHT displayed similar absorption curves ( $\epsilon_{348}$  7100 and  $\epsilon_{355}$  7000, respectively, Figure 2a,b, curve 2), while the corresponding peaks for 4-Me-5,7-DHT and 4,6-Me<sub>2</sub>-5,7-DHT were much smaller in intensity ( $\epsilon_{348}$  1200 and  $\epsilon_{364}$  1400, respectively, Figure 2c,d, curve 2).<sup>30</sup> At pH 7.4 in the presence of O<sub>2</sub> at 25 °C after 2 min (sample preparation time), 5,7-DHT and all its methylated derivatives displayed qualitatively similar absorption curves. In the case of 5,7-DHT and 6-Me-5,7-DHT at this short time the curves (not shown) were essentially those obtained at pH 7.4 in the absence of O<sub>2</sub>. But, in the case of 4-Me-5,7-DHT and 4,6-Me<sub>2</sub>-5,7-DHT these curves (curve 3 in Figure 2c,d) were both qualitatively and quantitatively different from those obtained in the absence of  $O_2$ . The striking observation was that, while 4-Me-5,7-DHT and 4,6-Me<sub>2</sub>-5,7-DHT did not display any further time-dependent change when monitored for up to 24 h, both 5,7-DHT and 6-Me-5,7-DHT showed the time-dependent appearance of low flat peaks at 520 and 540 nm, respectively. These peaks reached maximum intensity after 12 and 1 h, respectively.

**Polarographic Measurement of O<sub>2</sub> Consumption.** These measurements were made using a Clark O<sub>2</sub> electrode at 37 °C in 0.05 M phosphate buffer at pH 7.4. Representative O<sub>2</sub> electrode tracings for the oxidation of 0.5 mM 5,7-DHT and its methylated derivatives are shown in Figure 3. Surprisingly, in the case of the methylated derivatives at concentrations including and below 0.5 mM, within a short time after the initial O<sub>2</sub> consumption had ceased, levels of O<sub>2</sub> in solution started to increase. The rates at

<sup>(30)</sup> Because of essentially instantaneous reaction of 4-Me-5,7-DHT and 4,6-Me<sub>2</sub>-5,7-DHT with O<sub>2</sub> (vide infra) at pH 7.4 and because of the technical difficulty of maintaining a 100% O<sub>2</sub>-free atmosphere during the entire process of recording an absorption curve, it is not certain that the absorptions at 348 and 364 nm are solely due to unoxidized 4-Me-5,7-DHT and 4,6-Me<sub>2</sub>-5,7-DHT, respectively.

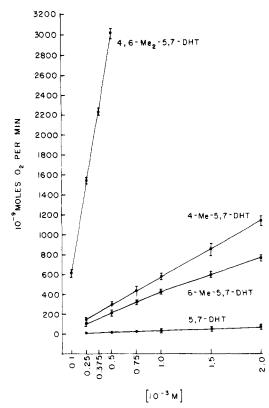
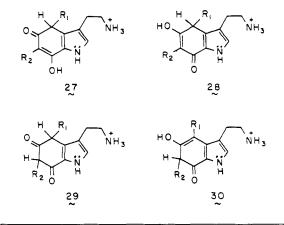



Figure 4. Plots of O<sub>2</sub> consumption rates in 0.05 M phosphate buffer at pH 7.4 and 37 °C, measured during the initial linear phase of the reaction as a function of concentration of the test compound. Bars denote mean  $\pm$  SD for 3-5 independent determinations.

which  $O_2$  was liberated after initial consumption varied from run to run but were 4-Me-  $\simeq 4,6-Me_2- > 6-Me-5,7-DHT$ . The amount of  $O_2$  returned to solution also varied but was generally <30% of the amount originally consumed for 6-Me-5,7-DHT and >50% for 4-Me- and 4,6-Me<sub>2</sub>-5,7-DHT after 30 min. A 0.5 mM solution of 5,7-DHT was found to return  $O_2$  very slowly after 45 min, about the same time at which initial consumption had stopped. At higher concentrations of the methylated DHT's, return of  $O_2$  started at 15-25 min after initial  $O_2$  consumption had ceased.


The rate of O<sub>2</sub> consumption for each compound at each concentration was measured during the initial linear phase of the reaction. The plots of these rates vs. concentration are shown in Figure 4. Because of technical difficulty associated with reliably measuring rates >3500 nmol/min in the present setup, rates of O<sub>2</sub> consumption by 4,6-Me<sub>2</sub>-5,7-DHT at concentrations greater than 0.5 mM could not be measured. The relative initial rates of O<sub>2</sub> consumption by a 0.5 mM solution of the test compound (in nmol/min) were 4,6-Me<sub>2</sub>- (3008) > 4-Me- (299) > 6-Me-5,7-DHT (214) > 5,7-DHT (16.9).<sup>31</sup> Thus, the 4-Me substituent causes a rate increase by 17.7-fold, 6-Me by 12.7-fold, and 4-Me and 6-Me jointly by 178-fold. The 178-fold increase in the rates for 4,6-Me<sub>2</sub>-5,7-DHT over 5,7-DHT is 79% of the strictly additive effect (225-fold) of the two methyl substituents. It should be noted that, except for 6-Me-5,7-DHT, all the test compounds displayed a linear dependence of rate on concentration. The deviation with 6-Me-5,7-DHT, however, was less than 6% at 1.5 mM and less than 10% at 2 mM concentration.

### Discussion

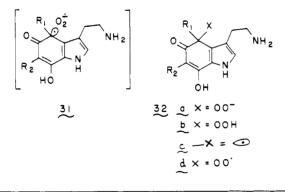
Nature of 5,7-DHTQ. The fact that none of the test compounds in cyclic voltammetric studies displayed the reverse of the reaction  $22b-e \rightarrow 23b-e$  at any pH studied and at scan rates of up to 400 mV/s suggests that 5,7-DHTQ and its methylated derivatives (23b-e) are highly unstable and undergo complete chemical transformation in less than 1 s.<sup>32</sup> These chemical transformations could conceivably involve nucleophilic attack of DHTQ's by H<sub>2</sub>O and/or by the amino group of the aminoethyl side chain. Only in the case of 5,7-DHT and 6-Me-5,7-DHT, one of these chemical transformations could be identified, that being Michael addition of  $H_2O$  at the 4-position of 23b and 23d, respectively. The products of these Michael additions, 4,5,7-trihydroxytryptamine (4,5,7-THT, 24b) and 6-methyl-4,5,7-trihydroxytryptamine (6-Me-4,5,7-THT, 24d), respectively, apparently underwent immediate electrochemical oxidation to form the corresponding quinones 25b (4,5,7-THTQ) and 25d (6-Me-4,5,7-THTQ), respectively. This is a classical case of an ECE mechanism with a rapid, intervening chemical reaction.<sup>33</sup> Subsequent detection of the reversible couple 4,5,7-THT  $\rightleftharpoons$  4,5,7-THTQ and 6-Me-4,5,7-THT  $\Rightarrow$  6-Me-4,5,7-THTQ may be taken as evidence that these THTQ's are more stable than the corresponding DHTQ's (23b and 23d, respectively) at least in 0.1 M  $H_2SO_4$ . It is not clear, however, why the THT-THTQ couple could not be detected at pH 4.0 and 7.4. These observations very strongly suggest that 5,7-DHTQ exists only transiently when generated in aqueous solution at pH 7.4.

Nature of Phenol-Keto Tautomers. Existence of phenol-keto tautomerism in 5,7-DHT is characterized by the appearance of a pH-dependent absorption maximum at 348 nm, while free reversibility among the different tautomeric forms is indicated by the presence of several isosbestic points. Among the methylated DHT's, only 6-Me-5,7-DHT behaved similar to 5,7-DHT. However, substitution of the 4-position of 5,7-DHT, as in 4-Meand 4,6-Me<sub>2</sub>-5,7-DHT, sharply reduced the extent of phenol-keto tautomerism. This is evidenced by the absence of isosbestic points and by the sharply reduced intensity of the absorption maxima at 348 nm for 4-Me-5,7-DHT and at 364 nm for 4,6-Me<sub>2</sub>-5,7-DHT (Figure 2c,d, curve 2), as compared to 5,7-DHT and 6-Me-5,7-DHT at pH 7.4. These results suggest that the predominant keto (tautomeric) forms of 5,7-DHT, responsible for the absorption at 348 nm, are those that involve proton transfer to the 4-position. NMR data on the rates of exchange of H-4 and H-6 of 5,7-DHT, on the other hand, indicate that proton transfer to position 6 is twice as fast as it is to position 4. Thus, proton transfer to position 4, although less favorable kinetically, leads to intermediates that are thermodynamically more stable.

In theory, 5,7-DHT can exist in eight different keto (tautomeric) forms, two of which are diketo and six are monoketo. In each set of three monoketo forms, arising from the ketonization of one hydroxyl group, there is one form with a maximum of 10e conjugation and two forms with (8 + 2)e cross conjugation. Only three of these eight forms involve proton transfer to position 4. These are **27–29**. Among these three forms, all of which maintain



<sup>(32)</sup> This number was derived as follows: with the assumption that the cathodic peak in 0.1 M H<sub>2</sub>SO<sub>4</sub> representing 23b-e + 2e  $\rightarrow$  22b-e could occur anywhere in the first two-thirds of the reverse sweep: range of reverse sweep of the triangular potential (1025 mV + 2) × 2/3 + maximum sweep rate (400 mV/s) = 0.85 s.


<sup>(31)</sup> The values obtained in the present study for 5,7-DHT agree very closely with those described in ref 12 and in: Creveling, C. R.; Lundstrom, J.; McNeal, E. T.; Tice, L.; Daly, J. W. *Mol. Pharmacol.* **1975**, *11*, 211-222.

<sup>(33)</sup> Bard, A. J.; Faulkner, L. R. "Electrochemical Methods: Fundamentals and Applications"; Wiley: New York, 1980, p 461.

aromaticity in the pyrrole ring,<sup>34</sup> only 27 still maintains the maximum 10e conjugation<sup>35</sup> and hence is expected to be the most stable keto tautomer of 5,7-DHT. It may be argued that although 28 and 29 are less stable than 27, they might contain sufficient delocalization energy to provide significant absorption at a wavelength as high as 348 nm. If this was the case, then tautomer 30 ( $R_1 = Me, R_2 = H$ ), which also contains the same 8e conjugated chromophore as 28 and 29 should have given rise to a prominent absorption band at 348 nm for 4-Me-5,7-DHT.<sup>36</sup> Compared to 5,7-DHT ( $\epsilon_{348}$  7100), 4-Me-5,7-DHT exhibits only a weak absorption at 348 nm ( $\epsilon$  1200). This suggests that tautomeric forms 28 and 29 for 5,7-DHT ( $R_1 = R_2 = H$ ) either do not absorb at 348 nm or have very low extinction coefficients at this wavelength. Thus, it appears very likely that the predominant keto (tautomeric) form of 5,7-DHT at pH 7.4 is 27 ( $R_1 = R_2 =$ H). Similarly, the predominant keto form of 6-Me-5,7-DHT is also 27 ( $R_1 = H, R_2 = Me$ ). Results of the present study, however, do not allow determination of the relative proportion of phenol vs. keto forms present in solution.

Autoxidation: Products and Mechanism. The reaction of each of the DHT's with  $O_2$  is first order in  $O_2$ , first order in the DHT, and, thus, overall second order, at least at the initial stages. These results are consistent with a mechanism of autoxidation involving incorporation<sup>37</sup> of O<sub>2</sub> into the DHT nucleus and are not consistent with the transformation of the DHT's to the corresponding DHTQ's (cf.  $22b - e \rightarrow 23b - e$ ). The initial products of autoxidation at pH 7.4 from each of the DHT's displayed an UV-visible absorption curve that is strikingly similar to the absorption curves of 5,7-DHT and 6-Me-5,7-DHT in the absence of O<sub>2</sub> at pH 7.4 (Figure 2). Since the latter absorption curves, which are similar to each other, are due mostly to tautomer 27 ( $R_1 = R_2 = H$  for 5,7-DHT and  $R_1 = H$ ,  $R_2 = Me$  for 6-Me-5,7-DHT, respectively) we conclude that for each of the DHT's, the initial incorporation of O<sub>2</sub> takes place primarily in the 4-position.

While meta disposition of the hydroxyl groups is essential for the existence of phenol-keto tautomerism and for the type of reactivity toward  $O_2$  under discussion, <sup>38,39</sup> it is not clear whether it is the 5-phenoxy form of 5,7-DHT and its methylated derivatives or the carbanion of the keto tautomer 27 that is the primary electron donor to  $O_2$ . The difference is subtle but the outcome is the same, namely, formation of free radical superoxide complex 31. Recombination<sup>38,40</sup> of superoxide with the incipient carbon



(34) The only other keto tautomer that maintains aromaticity in the pyrrole ring is 30.

the substitution of methyl groups on position 4 and/or 6. (36) Facile exchange of H-6 of 4-Me-5,7-DHT is best explained by invoking the intermediacy of tautomer 30 ( $R_1 = Me, R_2 = H$ ). This exchange of H-6 is also possible through the ketonization of 5-OH. However, the resulting ketone, an (8 + 2)e cross-conjugated system, is expected to be less stable than **30** as it does not maintain aromaticity in the pyrrole ring.

Wiley: New York, 1969; Vol. 1, Chapter VII.

free radical would produce hydroperoxide anion 32a, which upon proton abstraction would produce hydroperoxide 32b. Direct formation of 32a by a concerted interaction between the ground state (singlet) 5-phenoxy form of 5,7-DHT and its methylated derivatives and ground state (triplet) O<sub>2</sub> is unlikely<sup>40</sup> on the basis of the usual spin conservation rules. For the same reason, formation of 32a by the direct reaction between  $O_2$  and the carbanion generated from 27 is also unlikely.40 Indeed, essentially additive effects of methyl substitution on the rates of O<sub>2</sub> consumption strongly suggest a mechanism involving free radical-superoxide complex 31. While the stability of these hydroperoxides is not known, these are secondary and tertiary hydroperoxides and, as such, are expected to be moderately stable.<sup>41,42</sup> However, oxygen electrode tracings also show relatively rapid return of  $O_2$  to the solution soon after initial consumption had ceased for all the methylated DHT's. The precise reason for the return of  $O_2$  to the solution is not known at the present time, but the following possibilities are suggested. The carbon free radical in 31 could dissociate some of the time from the complex (to form 32c) and undergo reaction with  $O_2$  to give the peroxide radical 32d. This could react with the parent phenoxide of the DHT to produce 32c, setting up a chain reaction.<sup>40</sup> Disproportionation<sup>41,42</sup> of the peroxide radical, possibly at the later stages of the reaction when sufficient concentration has built up, will produce O2, as would dismutation<sup>43</sup> of  $O_2^{-1}$  and reaction<sup>43</sup> of  $O_2^{-1}$  with hydroperoxides. These types of reactions are probably not important at the initial stages, from which rates were calculated, but would be expected to become significant as the reaction proceeds to completion. Clearly, the key step in these processes is the formation of free radical 32c. The stability of 32c and the feasibility of its detection (by, e.g., ESR spectroscopy) remain to be determined.

From the foregoing discussion, it may appear that in the case of 5,7-DHT and its methylated derivatives (in contrast to 6-OHDA,<sup>44</sup> for example), it does make a difference whether, during oxidation, it is the electrode or  $O_2$  that acts as an electron acceptor. In fact there is probably no fundamental difference in the two modes of oxidation. Thus, in both modes of oxidation, initial electron transfer step may produce the same intermediate, namely, a 5-phenoxy radical. During electrochemicl oxidation, which is carried out in the absence of  $O_2$ , the phenoxy radical is simply converted to the p-quinone imines 23b-e by disproportionation of the corresponding semiquinone radicals, whereas, during autoxidation, the phenoxy radical, on its way to becoming a semiquinone radical, is trapped as 31 and/or 32d. The fact that 5,7-DHT reacts with O2 in a bimolecular fashion clearly suggests that very little, if any, of the carbon free radical in 31 ( $R_1 = R_2$ ) = H) or 32c escapes to become 5,7-DHTQ.

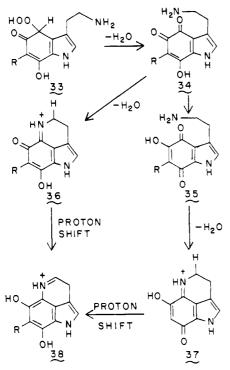
While the initial autoxidation products from 4-Me- and 4,6-Me<sub>2</sub>-5,7-DHT did not display any noticeable changes in UV-vis absorption spectra nor any change in color, even after 24 h, both 5,7-DHT and 6-Me-5,7-DHT showed time-dependent appearance of pink color and absorption in the visible region at 520 and 540 nm, respectively. As the hydroperoxides 33 (R = H or Me, Chart III) from the latter two compounds are secondary, they would be expected<sup>40,41</sup> to break down to generate a 4-keto function as in 34 (R = H or Me, respectively). Tautomerization of o-quinones 34 (R = H or Me) would readily produce the corresponding p-quinones 35 (R = H or Me), which, fortuitously, are identical with the postulated secondary products of electrochemical oxidation (Chart II) of 5,7-DHT (25b) and of 6-Me-5,7-DHT (25d), respectively. Lack of formation of colored compounds from 4-

<sup>(35)</sup> The only other keto tautomer that maintains 10e conjugation arises from the ketonization of 7-OH and proton transfer to position 7a. This form does not maintain aromaticity in the pyrrole ring and hence is expected to be less stable than 27. In addition, if this form made a significant contribution, then tautomerism of 5,7-DHT would not have been significantly affected by

<sup>(37)</sup> Unpublished observations of H. G. Schlossberger have been cited in ref 6 and 12 to suggest that oxygen may be incorporated into the indole ring. (38) (a) Haynes, R. K.; Musso, H. Chem. Ber. 1974, 107, 3723-3732. (b)

Haynes, R. K.; Hess, H.; Musso, H. Ibid. 1974, 107, 3733-3748. (39) Sosnovsky, G.; Zaret, E. H. In "Organic Peroxides"; Swern, D., Ed.;

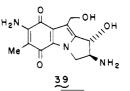
<sup>(40)</sup> Guthrie, R. D. In "Comprehensive Carbanion Chemistry-Part A, Structure and Reactivity"; Buncel, E., Durst, T., Eds.; Elsevier: Amsterdam, 1980; Chapter 5.


<sup>(41)</sup> Hiatt, R. In "Organic Peroxides"; Swern, D., Ed.; Wiley: New York, 1971; Vol. 2, Chapter I; Vol. 3, Chapter I.

<sup>(42) &</sup>quot;The Chemistry of Peroxides"; Patai, S., Ed.; Wiley: New York, 1983

<sup>(43) (</sup>a) Frimer, A. A. In ref 42, Chapter 14. (b) Sawyer, D. T.; Valentine, J. S. Acc. Chem. Res. 1981, 14, 393-400. (c) Nanni, E. J., Jr.; Stallings, M. D.; Sawyer, D. T. J. Am. Chem. Soc. 1980, 102, 4481-4485. (44) Dryhurst, G.; Kardish, K. M.; Scheller, F., Renneberg, R. "Biological Chapter Science Content of Content

Electrochemistry"; Academic Press: New York, 1982; Vol. 1, Chapter 2.


Chart III



Me-5,7-DHT supports the conclusion that the primary site of  $O_2$  incorporation in all the DHT's is the 4-position. Thus, if  $O_2$  incorporation did also take place in position 6, then, in the case of 4-Me-5,7-DHT, 6-hydroperoxy-4-Me-5,7-DHT would have been a side product which could have undergone decomposition to an *o*-quinone of 4-Me-5,6,7-trihydroxytryptamine with the concomitant appearance of color in solution. The observed shielding of C-6 substituents (H or Me) in NMR spectra suggests that the lack of  $O_2$  incorporation on C-6 is almost certainly due to the electronegative environment created by the oxygen atoms in C-5 and C-7.

Unfortunately, attempts to isolate either of the quinones 34 or 35 (R = H or Me) have not yet been successful, suggesting that these initially produced quinones are reactive intermediates in the formation of related structures. In analogy to the intramolecular cyclization reaction of 6-hydroxydopaminequinone,<sup>44</sup> the quinones 34 and 35 may condense with the respective 4-keto function resulting in the formation of 36 and 37, respectively. Proton shift from both 36 and 37 would produce 38. Hydrolysis of the iminium moiety of 38 followed by autoxidation of the resulting aminophenol should lead to another series of compounds containing the UVactive chromophores similar to that present in 35. Additional reactions of 34 and 35 may involve attack at position 2 by the amino group of the aminoethyl side chain. The view that the intramolecular reaction involving the amino group of the aminoethyl side chain is the major reason for the instability of **35** is supported by the demonstrated stability of **39**, a cleavage product of mitomycins, which contains a very similar quinone structure but lacks the aminoethyl side chain.<sup>45</sup> The absorption maxima displayed<sup>45</sup> by this compound ( $\epsilon_{530}$  700,  $\epsilon_{350}$  3200,  $\epsilon_{309}$  10 000) are strikingly similar to those observed with **35** and their degradation products. These data lend further support to our postulation that the primary quinone products from the autoxidation of 5,7-DHT are **34** and **35** (R = H).

To minimize the above-mentioned intramolecular reactions involving the amino group, we now plan to utilize a suitable amino-acyl derivative of 5,7-DHT in which nitrogen has been rendered essentially nonnucleophilic. Autoxidation as well as electrochemical oxidation of such an amino-acyl derivative of 5,7-DHT might lead to isolable products. In addition, unambiguous generation of **35** ( $\mathbf{R} = \mathbf{H}$ ) and its amino-acyl derivative and the study of their solution properties are planned. Results of these studies will be reported in due course.



#### Conclusions

The results of this investigation lead to the following conclusions: (1) Autoxidation of 5,7-DHT does not produce the postulated p-quinone imine, 5,7-DHTQ. This p-quinone imine, however, is the initial product of electrochemical oxidation of 5,7-DHT and is highly unstable and exists less than 1 s in aqueous solutions ranging in pH from 0.1 M  $H_2SO_4$  to pH 7.4; (2) at pH 7.4 the predominant keto tautomeric form of 5,7-DHT is 27 ( $R_1 = R_2$ = H). (3) 5,7-DHT reacts with  $O_2$  in a bimolecular fashion to initially produce the 4-hydroperoxy intermediate 32b ( $R_1 = R_2$ ) = H) essentially exclusively. Relative contributions of mechanisms involving recombination of superoxide with the incipient freeradical 31 ( $R_1 = R_2 = H$ ) vs. chain reaction with  $O_2$  involving **32c**  $(R_1 = R_2 = H)$  toward the formation of the 4-hydroperoxide could not be determined; (4) the eventual colored products formed from the autoxidation of 5,7-DHT appear to be the ortho and p-quinones of 4,5,7-trihydroxytryptamine (34 and 35, respectively, R = H) and their degradation products (Chart III).

Acknowledgment. The support of this work through a grant from the National Institute of Neurological and Communicative Disorders and Stroke (NS 15692) and a postdoctoral fellowship to A.K.S. from the American Heart Association-Kansas Affiliate is gratefully acknowledged.

<sup>(45)</sup> Tomasz, M.; Jung, M.; Verdine, G.; Nakanishi, K. J. Am. Chem. Soc. 1984, 106, 7367-7370.