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ABSTRACT: An efficient general method using a clean and
transition-metal-free photochemical strategy for the direct
Csp2-H radical difluoromethylation of coumarins with
HCF2SO2Na was developed. The visible-light-promoted
strategy proceeds with 5 mol % Eosin Y under mild reaction
conditions and showed excellent functional group compati-
bility. The control experiments illustrated that O2

•− partici-
pated in this process and plays an important role in the reactions. Moreover, the representative products exhibited excellent
antifungal activities in vitro. It was noted that the EC50 value of compound 3a was determined to be as low as 1.5463 μg/mL
against Rhizoctorzia solani, which was better than Boscalid (EC50 = 2.9767 μg/mL).

The incorporation of fluorine atoms in organic molecules
has emerged as a widely employed strategy in

pharmaceutical and agrochemical research. Due to lipophilic
hydrogen bond donors and bioisosteres of alcohols and thiols
for the difluoromethyl-containing molecules,1 the difluoro-
methyl-containing compounds have gained considerable
attention. For example, thiazopyr (herbicide),2a fluxapyroxad
(fungicide),2b and deracoxib (anti-inflammatory drug)2c have
shown promising biological activities. However, most of the
previous methods for difluoromethylation required hazardous
reagents or multistep sequences.3 Compared with the CF3
group, the CF2H group is weakly acidic and is capable of
hydrogen bonding interactions to improve the binding
selectivity of biologically active compounds,4 and the highly
developed methods for the incorporation of the CF3 group
into organic molecules have been studied.5 However, most of
the previous methods for difluoromethylation required hazard-
ous reagents or multistep sequences and are less than the
methods for trifluoromethylation.
There are several methods for the fluorination of

compounds; however, strategies for direct difluoromethylation
are less common, especially in the context of heteroarenes.6

Traditionally, difluoromethylation of organic compounds often
uses N,N-dimethylaminosulfur trifluoride (DAST) and bis(2-
methoxyethyl)aminosulfur trifluoride (Deoxo-Fluor).7 How-
ever, these methods often suffer from the need of expensive
and toxic fluorinating agents. In 2012, the Baran group
published the direct C−H difluoromethylation of N-hetero-
arenes utilizing tert-butyl hydroperoxide (TBHP) and zinc
sulfinate salts as difluoromethylation sources (Scheme 1a).8

Then, the Qing group found a silver-mediated oxidative
difluoromethylation of phenanthridines and 1,10-phenanthro-
lines with TMSCF2H to form Csp2-H difluoromethylation
products in 2017 (Scheme 1b).9 However, most of the reaction
systems involved transition metals, which were expensive,10

toxic, and recognized as undesirable impurities in pharmaceut-

icals. After that, Maruoka realized the direct Csp2-H
difluoromethylation of N-heteroarenes with hypervalent
iodine(III) reagents under UV radiation in 2017.11 In 2018,
Qing disclosed the direct introduction of the difluoromethyl
group into heteroarenes via the copper-mediated C−H
oxidative difluoromethylation of heteroarenes with
TMSCF2H.12 Hence, it is very important to develop
transition-metal-free and step-economical strategies for this
transformation.
Intriguingly, practices in visible-light photocatalysis have

actively responded to the demands of reaction economics,
operational simplicity, and environmental friendliness. Many
papers related to the direct C−H bond functionalization by
photoredox catalysis were reported.13 However, few examples
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Scheme 1. Synthesis of 3-Difluoromethylated Coumarins
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have been reported about the visible-light-induced radical
difluoromethylation of heteroarenes,10,11,14 especially the
visible-light-induced direct Csp2-H radical difluoromethylation
of O-heteroarenes. Therefore, we focused our attention on
developing an efficient and general method for the direct Csp2-
H radical difluoromethylation of O-heteroarenes; it has been
proven much more challenging by visible light.
Coumarins are an important class of natural products, which

exhibit a broad scope of biological activities and have been
extensively investigated for their outstanding optimal proper-
ties.15 In this research, we report an approach to the first direct
Csp2-H visible-light-mediated radical difluoromethylation of
coumarins with sodium sulfinate (Scheme 1B).
Initially, HCF2SO2Na was used as a fluorine source and

eosin Y as a photosensitizer under 12 W blue LEDs for the
difluoromethylation of coumarin (3a). The desired product
was obtained in 57% yield (Table 1, entry 1), and eosin B, rose

bengal, riboflavin, and fluorescein did not improve the yield
compared to eosin Y. Many solvents were studied (DMF,
DMSO, acetone, MeOH, Et2O, and H2O). The results show
that DMF was 23% yield (Table 1, entry 4), and acetone was
10% (Table 1, entry 5). MeOH did not give the desired
product. Unfortunately, additives such as CH3COOH,
CF3COOH, pyridine, benzoic acid, and other acids or bases
did not promote the reaction. Using the pyridine condition, we
obtained the product with 24% yield (entry 6) and 34% yield
with glacial acetic acid (entry 7). When the reaction was
performed with HCF2SO2Py or HCF2SO2Ph, there was no
desired product. The reason for this phenomenon may be due
to the decomposition of substrate (Table 1, entries 8 and 9).
When 2 (3 equiv) was used as a substrate in this reaction, it
gave a 65% yield (Table 1, entry 10). Meanwhile, without
photocatalyst or light the desired product was not found
(Table 1, entries 12 and 13). Eventually, the optimized
conditions for this reaction were determined as 1a (0.2 mmol)

and 2 (3 equiv) in the presence of eosin Y (5 mol %) with
DMSO as solvent at room temperature for 24 h (more details
are shown in the Supporting Information (SI)).
With the optimized reaction conditions in hand, the scope of

difluoromethylation of coumarins was examined (Scheme 2).

Generally, a range of courmains, containing both electron-
donating and electron-withdrawing groups, were tolerated
under our reaction conditions. The reactions involving
coumarins with electron-rich groups such as Me, OMe, and
alkenyl proceeded well, affording the desired products 3b−3n
in 45−73% yields. Especially, Osthole (1h) led to a 47% yield
of 3h. Meanwhile, 7-hydroxyl coumarins were well tolerated.
Reactions with 3o and 3p proceeded with yields up to 75% and
82%, and using 1 mmol scale of 1o led to a 52% yield of 3o;
however, 4-hydroxyl-substituted coumarin (1q) did not lead to
the desired product. The strong electron-donating group
diethylamine led to lower reactivity, with a 45% yield of 3r.

Table 1. Optimization of the Reaction Conditionsa

entry
photocatalyst
(5 mol %)

solvent
(2 mL)

additives
(2 equiv)

yieldb

(%)

1 eosin Y DMSO 57
2 rose bengal DMSO 56
3 eosin B DMSO 55
4 eosin Y DMF 23
5 eosin Y acetone 10
6 eosin Y DMSO pyridine 24
7 eosin Y DMSO AcOH 34
8c eosin Y DMSO N.R.
9d eosin Y DMSO 20
10e eosin Y DMSO 65
11f eosin Y DMSO 5
12 DMSO N.R.
13g eosin Y DMSO N.R.

aStandard conditions: coumarins (1a, 0.3 mmol), HCF2SO2Na (2a,
0.6 mmol), and photocatalysts (0.015 mmol, 5.0 mol %), solvent (2.0
mL), 12 W blue LED, 24 h, rt; N.R. = no reaction. bIsolated yields.
cHCF2SO2Ph instead of HCF2SO2Na.

dHCF2SO2Py instead of
HCF2SO2Na.

eHCF2SO2Na (2a, 0.9 mmol). fIn N2.
gIn the dark.

Scheme 2. Scope for Difluoromethylation of Coumarinsa

aReaction conditions: 0.3 mmol coumarin, 0.9 mmol HCF2SO2Na, 5
mol % photocatalyst, 2 mL of DMSO, 12 W blue LED, 24 h, rt;
isolated yields.

Organic Letters Letter

DOI: 10.1021/acs.orglett.8b02965
Org. Lett. XXXX, XXX, XXX−XXX

B

http://pubs.acs.org/doi/suppl/10.1021/acs.orglett.8b02965/suppl_file/ol8b02965_si_001.pdf
http://dx.doi.org/10.1021/acs.orglett.8b02965


However, a 6-Cl-substituted compound provided a 37% yield,
but 6-F coumarin only gave a trace of product (3t). The nitro
group, strongly electron-withdrawing, led to a 43% yield of 3u.
The introduction of the difluoromethyl group on benzocou-
marins afforded 3v and 3w with 33% and 53% yields.
To gain some mechanistic insight into the reaction, the

radical scavenger 2,2,6,6-tetramethyl-1-piperidinoxyl
(TEMPO, 2 equiv) was added to the standard reaction
mixture of 1a and 2 (Scheme 3). No desired product was

formed. When 1,1-diphenylethylene (2 equiv) was added to
the standard reactions, the reaction provided the product 4
with 65% yield and a trace of 5 instead with forming 3a. In
addition, to determine the role of oxygen in the reaction,
capturing agents such as 5,5-dimethyl-1-pyrroline-N-oxide
(DMPO) were used to trap O2. Peroxide radical anion
(O2

•−) was trapped under standard reaction conditions by
using the DMPO spin trapping (Figure 1).16

Based on the previous control experiments, we propose the
reaction mechanism in Scheme 4. First, the excited eosin Y* is
formed under irradiation, and then a single electron is
transferred from difluoromethylsulfone 2 to eosin Y*, which
generates eosinY•− species and a highly reactive CF2H radical.
Subsequently, radical intermediate A was generated. Then one
electron transfers from Y•− to O2 to give eosin Y and O2

•−, and
eosin Y is regenerated. This is then further reacted with A to
form O2

2− and intermediate B through an electron transfer.
Finally, deprotonation of this species furnishes the desired
product 3a.
The promising antifungal activities of the 3-difluoromethyl

coumarins against phytopathogenic fungi were also tested. At
first, the antifungal activities of 3a were tested against five

phytopathogenic fungi (Botrytis cinerea, Alternaria solani,
Gibberella zeae, Rhizoctorzia solani, and Alternaria leaf spot)
using mycelia growth inhibitory rate methods, with boscalid or
carbendazim used as the positive control (Table 2).17 The

EC50 values of 3a18 possessing good activity were further
evaluated using different concentrations by diluting the
solution. Preliminary bioassay results indicate that 3-difluor-
omethylcoumarin exhibited potential antifungal activities at the
concentration of 20 μg/mL. It is worth noting that the EC50

value of compound 3a was determined as low as 1.5463 μg/
mL against Rhizoctorzia solani, which exhibited competitive
activity to that of the positive control (boscalid EC50 = 2.9767
μg/mL) (all of the above details are shown in the SI).
In summary, we have successfully developed a visible-light-

promoted difluoromethylation of coumarins. Mechanistic
investigations demonstrated that O2 participated in this
reaction as the oxidant. This reaction provided an efficient
protocol for preparing useful 3-difluoromethylcoumarins that
may be used as potential intermediates in organic synthesis and
medicinal chemistry. This new method provided a green and
operationally simple procedure of direct Csp2-H bond
functionalization. In addition, we evaluated preliminary
bioactivity of a representative compound 3a against five
phytopathogenic fungi exemplified by their promising anti-
fungal activities. Further synthetic applications and bioactivity
tests are ongoing in our laboratory.

Scheme 3. Radical Trap Experiments

Figure 1. DMPO spin-trapping ESR spectra for peroxide radical anion
(O2

•−) in standard reaction conditions.

Scheme 4. Proposed Reaction Mechanism

Table 2. EC50 Values of Selected Compoundsa,b

compounds BOT ALT GIB RHI ALS

3a 7.0906 10.1533 23.7796 1.5463 11.8494
boscalid 0.5096 3.3253  2.9767 0.3445
carbendazim   0.4947  

aEC50 values of 3a. bBOT: Botrytis cinerea; ALT: Alternaria solani;
GIB: Gibberella zeae; RHI: Rhizoctorzia solani; ALS: Alternaria leaf
spot.
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