Transition metal complexes with sulfur ligands. Part CXXVII ${ }^{1}$. Azido, halido and nitrido ruthenium complexes with sulfur-rich coordination spheres ${ }^{2}$

Dieter Sellmann *, Torsten Gottschalk-Gaudig, Frank W. Heinemann
Institut für Anorganische Chemie der Universität Erlangen-Nürnberg, Egerlandstrasse I, D-91058 Erlangen, Germany

Received 4 April 1997; revised 2 June 1997; accepted 12 June 1997

Abstract

Ru (II) and Ru (III) azido complexes were synthesized as potential precursors for dinitrogen complexes with sulfur-dominated coordination spheres. $\mathrm{NEt}_{4}\left[\mathrm{Ru}\left(\mathrm{N}_{3}\right)\right.$ (PCy_{3}) (' S_{4} ')] (1) was obtained from the reaction of $\left[\mathrm{Ru}(\mathrm{DMSO})\left(\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right)\right]$ with $\mathrm{NEt}_{4} \mathrm{~N}_{3}$ (${ }^{\prime} \mathrm{S}_{4}{ }^{\prime 2-}=1,2$-bis(2- The iodo ligand in $\mathbf{2 a}$ and $\mathbf{2 b}$ could be exchanged for azide and chloride yielding [$\left.\mathrm{Ru}\left(\mathrm{N}_{3}\right)\left(\mathrm{PR}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right)\right]\left(\mathrm{R}=\mathrm{Cy} \mathbf{3 a},{ }^{\text {, }} \mathrm{Pr} 3 \mathrm{~b}\right.$) and $\left[\mathrm{Ru}(\mathrm{Cl})\left(\mathrm{PCy}_{3}\right)\right.$ (S_{4} ')] (4). The azido ligand of 1 could not be transformed into a N_{2} ligand, and the reaction of 3 a with HBF_{4} yielded the nitrido complex [$\left.\mu-\mathrm{N}\left\{\mathrm{Ru}\left(\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right)\right]_{2}\right]\left(\mathrm{PF}_{6}\right)\left([5] \mathrm{PF}_{6}\right)$ via a labile intermediate exhibiting an IR band at $2070 \mathrm{~cm}^{-1}$ at $-40^{\circ} \mathrm{C}$. The molecular structures of $2 \mathrm{a}, 4$ and $[5]^{+}$as the $\mathrm{BPh}_{4}{ }^{-}$salt were determined by X-ray structure analysis. Crystal data of (a) $\mathbf{2 a} \cdot \mathrm{C}_{7} \mathrm{H}_{8}$: triclinic space group $P \overline{1} ; a=1087.4(1), b=1089.5(1), c=1988.8(1) \mathrm{pm} ; \alpha=74.13(1), \beta=78.66(1), \gamma=61.22(1)^{\circ} ; Z=2 ;(b) 4 \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$: triclinic space group $P 1 ;$; $a=1088.7(5), b=1065.6(3), c=1778.4(6) \mathrm{pm} ; \alpha=80.66(2), \beta=72.10(4), \gamma=67.52(3)^{\circ} ; Z=2$; (c) [5]BPh ${ }_{4} \cdot 3 \mathrm{THF}$: orthorhombic space group Pna ${ }_{1} ; a=1972.9(6), b=2606.3(6), c=1831.1(12) \mathrm{pm} ; Z=4$. The metal centers of all three complexes show pseudo-octahedral coordination and exhibit no anomalies in distances and angles. The two Ru centers in [5] $\left(\mathrm{BPh}_{4}\right) \cdot 3 \mathrm{THF}$ are linked via a bent nitrido bridge. © 1998 Elsevier Science S.A.

Keywords: Ruthenium complexes; Halido complexes; Sulfur complexes; Azido complexes; Nitrido complexes

1. Introduction

Transition metal azido complexes exhibit a versatile chemistry which is due to the inherent instability of the azido ion [2]. Azido complexes can serve as precursors in the synthesis of isocyanato, isothiocyanato [3], nitrene [4], nitrido [5], cyano [6], phosphorane-iminato [7], nitrosyl [8], or isotetrazene complexes [9]. A rich chemistry has also been developed, in particular by Beck's group, using azido complexes for the synthesis of five membered heterocyclic ligands via 1,3 dipolar addition reactions [10]. Our interest in azido complexes results from thermal, photolytic, or protolytic

[^0]decomposition reactions of azido complexes that in a few cases have yielded dinitrogen complexes [11]. One of the very first examples was $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{~N}_{2}\right)\right]^{2+}$ that forms according to Eq. (1) [11a].
$$
\left[\mathrm{Ru}\left(\mathrm{~N}_{3}\right)\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+} \rightarrow\left[\mathrm{Ru}\left(\mathrm{~N}_{2}\right)\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}+0.5 \mathrm{~N}_{2}
$$

It is noted that in this reaction a Ru (III) center is reduced to Ru (II) by the electron which is formally released according to $\mathrm{N}_{3}{ }^{-} \rightarrow 1.5 \mathrm{~N}_{2}+\mathrm{e}^{-}$. We have tried to use azido complexes as precursors for dinitrogen complexes with sul-fur-rich coordination spheres, which are of interest as functional model compounds for nitrogenases [12]. In the course of these investigations we have synthesized Ru (II) and Ru (III) complexes of the type [$\mathrm{Ru}(\mathrm{L})\left(\mathrm{PR}_{3}\right)\left(' \mathrm{~S}_{4}\right.$ ')] ($\mathrm{L}=$ halide, azide, $R=C y,{ }^{i} \operatorname{Pr},{ }^{'} \mathbf{S}_{4}{ }^{\prime 2-}=1,2$-bis(2 -mercapto-phenylthio)ethane(2-)):

Attempts to obtain dinitrogen complexes remained unsuccessful, although protonation and subsequent decomposition of $\left[\mathrm{Ru}\left(\mathrm{N}_{3}\right)\left(\mathrm{PCy}_{3}\right)\right.$ (${ }^{\prime} \mathrm{S}_{4}$ ')] (3a) gave the μ-nitrido complex
 pounds have been the [Ru(DMSO) $\left.\left(\mathrm{PR}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right)\right]$ complexes ($R={ }^{i} \mathrm{Pr}, \mathrm{Cy}$) that contain labile DMSO ligands [13].

2. Experimental

2.1. General

Unless noted otherwise, all reactions and operations were carried out at room temperature under nitrogen using standard Schlenk techniques. Solvents were dried and distilled before use. As far as possible, reactions were monitored by IR or NMR spectroscopy. Spectra were recorded on the following instruments. IR: Perkin-Elmer 983, 1620 FT IR, and 16PC FT-IR. Spectra of solids were recorded in KBr discs. Spectra of solutions were recorded in CaF_{2} cuvettes. Low temperature measurements were carried out with CaF_{2} cuvettes whose windows were heated. Solvent bands were compensated. NMR: Jeol FT-JNM-GX 270, EX 270, and Lambda LA 400 spectrometers with the protio-solvent signal used as a reference. Chemical shifts are quoted on the δ scale (downfield shifts are positive) related to tetramethylsilane ($\left.{ }^{1} \mathrm{H},{ }^{13} \mathrm{C} \mid{ }^{1} \mathrm{H}\right\}$ NMR) or $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ ($\left.{ }^{3 \prime} \mathrm{P}\left({ }^{\prime} \mathrm{H}\right) \mathrm{NMR}\right)$. Electron paramagnetic resonance (EPR): Bruker ESP 300 (diphenylpikrylhydrazyl as external standard $(\langle g\rangle=2.0036)$ [14]). Magnetic moments of solids were determined on a Johnson Matthey magnetic susceptibility balance at room temperature. Mass spectra: Varian MAT 212 and Jeol MSTATION 700 spectrometers. UV-Vis: Shimadzu UV-3101 PC. Elemental analysis: Carlo Erba EA 1106 or 1108 analyzer. Cyclic voltammetry was performed with a PAR 264A potentiostat using a three electrode cell with glassy carbon ROTEL A working, $\mathrm{Ag} / \mathrm{AgCl}$ reference and Pt counter electrodes. Solutions were $10^{-3} \mathrm{M}$ in substance. TBA [$\left.\mathrm{PF}_{6}\right]\left(10^{-1} \mathrm{M}\right)$ was used as conducting electrolyte. Potentials were referenced to normal hydrogen electrode via $\mathrm{Fc} / \mathrm{Fc}^{+}$as internal standard ($\mathrm{E}_{\mathrm{FL} / \mathrm{Fs}+}=+0.4 \mathrm{~V}$ versus normal hydrogen electrode [15]).
[Ru(DMSO) (PCy_{3})(${ }^{\prime} \mathrm{S}_{4}$ ')] [13], [Ru(DMSO)($\mathrm{P}^{\prime} \mathrm{Pr}_{3}$). (' S_{4} ')] [13], and $\mathrm{NEt}_{4} \mathrm{~N}_{3}$ [16] were prepared as described in the literature. $\mathrm{HBF}_{4}\left(54 \%\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ was purchased from Merck-Schuchardt.

2.2. Syntheses

2.2.1. $\mathrm{NEt}_{4}\left[\mathrm{Ru}\left(\mathrm{N}_{3}\right)\left(\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}\right.\right.$ ')](I)

$\mathrm{NEt}_{4} \mathrm{~N}_{3}$ ($310 \mathrm{mg}, 1.80 \mathrm{mmol}$) was added to a yellowgreen suspension of [Ru (DMSO) (PCy_{3}) (' S_{4} ')] (478 mg , 0.62 mmol) in acetone (25 ml). Under exclusion of light, the suspension was stirred for 2.5 days during which time a bright yellow solid precipitated. It was separated, washed with acetone (35 ml), THF (10 ml), and $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{ml}$), and dried in vacuo. The yellow solid was redissolved in $\mathrm{CH}_{2} \mathbf{C l}_{2}$ (8 ml), filtered, and $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{ml})$ was added dropwise to the yellow filtrate. The resulting yellow precipitate was separated, washed with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$ and dried in vacuo. Yield: $320 \mathrm{mg}(56 \%)$. Anal. Calc. for $1 \cdot 0.75 \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{C}_{40.75} \mathrm{H}_{66.5}$. $\mathrm{Cl}_{1.5} \mathrm{~N}_{4} \mathrm{PRuS}_{4}$ (925.99): C, 52.86; H, 7.24; N, 6.05; S, 13.85. Found: C, 52.87; H, 7.39; N, 5.90; S, 13.64\%. IR (KBr): $\tilde{\nu}=2028 \mathrm{~cm}^{-1}\left(\mathrm{~N}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($269.6 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=7.50-7.35\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.30\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.95-6.70$ (m, 4H, $\mathrm{C}_{6} \mathrm{H}_{4}$), 3.15 (q, $8 \mathrm{H}, \mathrm{NCH}_{2}$), $2.95\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$), 2.65 (d, $1 \mathrm{H}, \mathrm{CH}_{2}$), $2.30-0.85\left(\mathrm{~m}, 47 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{CH}_{3}, \mathrm{C}_{6} \mathrm{H}_{11}\right.$). ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right) \mathrm{NMR}\left(109.38 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=+32.26(\mathrm{~s})$.

2.2.2. [Ru(I)(PCy $)$ (' $\left.\left.S_{4}{ }^{\prime}\right)\right](2 a)$

Elemental I_{2} ($127 \mathrm{mg}, 0.5 \mathrm{mmol}$) was added to a stirred suspension of [$\mathrm{Ru}\left(\mathrm{DMSO}^{2}\right)\left(\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}\right.$ ')] (752 mg , 0.98 mmol) in THF (15 ml). In the course of 5 min a clear red solution resulted from which dark red microcrystals crystallized. The solution was ccoled to $-78^{\circ} \mathrm{C}$ for 2 h to complete crystallization. The precipitated crystals were separated, washed with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{ml})$ and dried in vacuo. Yield: 540 mg (62%). Anal. Calc for $2 \mathrm{a} \cdot 0.5 \mathrm{THF}, \mathrm{C}_{34} \mathrm{H}_{49} \mathrm{IO}_{0.5} \mathrm{PRuS}_{4}$ (852.97): C, 47.88; H, 5.79; S, 15.04. Found: C, 47.61; H, $5.61 ; \mathrm{S}, 14.72 \%$. EPR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 120 \mathrm{~K}\right):\langle g\rangle=2.1275$. $\mathrm{FD}-$ MS (${ }^{102} \mathrm{Ru}_{1} \mathrm{CH}_{2} \mathrm{Cl}_{2}$); m/z: $817\left[\mathrm{Ru}(\mathrm{I})\left(\mathrm{PCy}_{3}\right)\left(\mathrm{S}_{4}\right.\right.$ ')] ${ }^{1}$. $\mu_{\mathrm{elf}}=1.84 \mu_{\mathrm{B}}\left(298^{\circ} \mathrm{C}\right)$.

2.2.3. [Ru(I)($\left.\left.\boldsymbol{P}^{i} \mathrm{Pr}_{3}\right)\left({ }^{\left(S S_{4}\right.}\right)\right](2 b)$

A green-yellow suspension of $\left[\mathrm{Ru}(\mathrm{DMSO})\left(\mathrm{P}^{\mathrm{i}} \mathrm{Pr}_{3}\right)\right.$ (${ }^{\prime} \mathrm{S}_{4}{ }^{\prime}$)] ($229 \mathrm{mg}, 0.35 \mathrm{mmol}$) in THF (10 ml) was combined with elemental I_{2} ($44 \mathrm{mg}, 0.17 \mathrm{mmol}$) and stirred for 5 h . The resulting red solution was heated to reflux for 5 min , cooled to room temperature, filtered, and MeOH (25 ml) was added dropwise to the filtrate. Dark red microcrystals precipitated that were separated after 2 h , washed with MeOH (30 ml) and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$ and dried in vacuo. Yield: 115 mg (47\%). Anal. Calc. for $\mathrm{C}_{23} \mathrm{H}_{33}$ IPRuS $_{4}$ (696.72): C, 39.65; H, 4.77; S, 18.41. Found: C, 39.85; H, 4.71; S, 18.42\%. EPR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 6.8 \mathrm{~K}\right):\langle g\rangle=2.1249$. FD-MS $\left({ }^{102} \mathrm{Ru}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $m / z: 697\left[R u(I)\left(P^{i} \mathrm{Pr}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right)\right]^{+}$.

2.2.4. $\left[R u\left(N_{3}\right)\left(P C y_{3}\right)\left(S_{4}{ }^{\prime}\right)\right](3 a)$

[$\mathrm{Ru}(\mathrm{I})\left(\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}\right.$ ')] (2a) was prepared in situ from elemental $\mathrm{I}_{2}(105 \mathrm{mg}, 0.41 \mathrm{mmol})$ and $\left[\mathrm{Ru}(\mathrm{DMSO})\left(\mathrm{PCy}_{3}\right)\right.$ (' S_{4} ')] ($626 \mathrm{mg}, 0.81 \mathrm{mmol}$) in THF (20 ml) according to the procedure given above. A red suspension resulted to which $\mathrm{NEt}_{4} \mathrm{~N}_{3}$ ($418 \mathrm{mg}, 2.43 \mathrm{mmol}$) was added. In the
course of 12 h the suspension changed its color to yellowgreen. MeOH (35 ml) was added, the yellow-green precipitate separated, washed with $\mathrm{MeOH}(60 \mathrm{ml})$, acetone (40 ml), and $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{ml})$ and dried in vacuo. Yield: 350 mg (60\%). Anal. Calc. for $\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{~N}_{3}$ PRuS S_{4} (732.04): C, 52.50; H, 6.20; N, 5.74; S, 17.52. Found: C, 52.64; H, 6.43; N, 5.56; $\mathrm{S}, 17.23 \%$. IR (KBr): $\tilde{\nu}=2019 \mathrm{~cm}^{-1}\left(\mathrm{~N}_{3}\right)$.

2.2.5. $\left[R u\left(N_{3}\right)\left(P^{i} P r_{3}\right)\left({ }^{(S} S_{4}\right)\right](3 b)$

$\left[\mathrm{Ru}(\mathrm{I})\left(\mathrm{P}^{\mathrm{P}} \mathrm{Pr}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right)\right]$ (2b) was prepared in situ from elemental $\mathrm{I}_{2}(61 \mathrm{mg}, 0.24 \mathrm{mmol})$ and [$\mathrm{Ru}(\mathrm{DMSO})$ $\left(\mathrm{P}^{\mathrm{i}} \mathrm{Pr}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right)$] ($313 \mathrm{mg}, 0.48 \mathrm{mmol}$) in THF (10 ml) according to the procedure given above. A red solution of $\mathbf{2 b}$ resulted, because 2 b is more soluble than $\mathbf{2 a}$. $\mathrm{NEt}_{4} \mathrm{~N}_{3}$ ($250 \mathrm{mg}, 1.44 \mathrm{mmol}$) was added and the mixture was stirred for 24 h resulting in a yellow-brown suspension. It was filtered, the filtrate was reduced in volume to 2 ml and $\mathrm{Et}_{2} \mathrm{O}$ (50 ml) was added. The resultant brown precipitate was separated, washed with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{ml})$ and dried in vacuo. Yield: $\mathbf{9 5 ~ m g ~ (3 3 \%) . ~ D e s p i t e ~ r e p e a t e d ~ r e c r y s t a l l i z a t i o n , ~} \mathbf{2 b}$ could not be obtained in analytically pure form. Anal. Calc. for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{PRuS}_{4}$ (611.84): C, 45.15; H, 5.44; N, 6.87; S, 20.96. Found: C, 44.65; H, 5.54; N, 5.03; S, 21.38\%. IR (KBr): $\tilde{\nu}=2014 \mathrm{~cm}^{-1}\left(\mathrm{~N}_{3}\right)$. FD-MS $\left({ }^{102} \mathrm{Ru}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $m / z: 542\left[\operatorname{Ru}\left(\mathrm{P}^{\prime} \mathrm{Pr}_{3}\right)\left({ }^{\prime} \mathrm{S}_{2}{ }^{\prime}\right)_{2}\right]^{+}$.

2.2.6. [Ru(Cl)(PCy $\left.\left.y_{3}\right)\left({ }^{\prime} S_{4}\right)\right](4)$

[$\left.\mathrm{Ru}(\mathrm{I})\left(\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right)\right]$ (2a) ($\left.119 \mathrm{mg}, 0.14 \mathrm{mmol}\right)$ and $\mathrm{NEt}_{4} \mathrm{Cl}(100 \mathrm{mg}, 0.6 \mathrm{mmol})$ were combined in THF (15 ml) and stirred for 48 h . The resultant green suspension was filtered and $\mathrm{MeOH}(30 \mathrm{ml})$ was added to the filtrate. Yellowgreen microcrystals precipitated which were separated after 2 h , washed with $\mathrm{MeOH}(20 \mathrm{ml})$ and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$ and dried in vacuo. Yield: 80 mg (79%). Anal. Calc. for $4 \cdot \mathrm{McOH}$, $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{ClOPRuS}_{4}$ (757.51): C, 52.32; H, 6.52; S, 16.93. Found: C, 52.38; H, 6.40; S, 17.30\%. FD-MS (${ }^{102} \mathrm{Ru}$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; m / z: 725\left[\mathrm{Ru}(\mathrm{Cl})\left(\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}\right.\right.$ ')] ${ }^{+}$.

2.2.7. $/ \mu-N\left\{R u\left(P C y_{3}\right)\left(S_{4}{ }^{\prime}\right)\right\}_{2} /\left(P F_{6}\right)\left(\mid 5 / P F_{6}\right)$

Addition of $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}(0.033 \mathrm{ml}, 0.24 \mathrm{mmol})$ to a stirred yellow-green suspension of $\left[\mathrm{Ru}\left(\mathrm{N}_{3}\right)\left(\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}\right.\right.$ ')] (3a) ($179 \mathrm{mg}, 0.24 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$ instantaneously resulted in the formation of a clear red-violet solution. The solution was warmed to room temperature, stirred for 2 h and evaporated to dryness. The resultant brown residue was dissolved in MeOH (10 ml), insoluble material was removed by filtration and a solution of $\mathrm{NBu}_{4} \mathrm{PF}_{6}$ (95 mg , 0.25 mmol) in MeOH (3 ml) was added to the red filtrate. Violet microcrystals precipitated, which were separated after 2 h , washed with $\mathrm{MeOH}(5 \mathrm{ml})$ and $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{ml})$ and dried in vacuo. Yield: $50 \mathrm{mg}(25 \%)$. Anal. Calc. for [5] $\mathrm{PF}_{6} \cdot \mathrm{Et}_{2} \mathrm{O}$, $\mathrm{C}_{68} \mathrm{H}_{100} \mathrm{~F}_{6} \mathrm{NOP}_{3} \mathrm{Ru}_{2} \mathrm{~S}_{\mathrm{K}}$ (1613.13): $\mathrm{C}, 50.63 ; \mathrm{H}, 6.25 ; \mathrm{N}, 0.87$; $\mathrm{S}, 15.90$. Found: C, $50.38 ; \mathrm{H}, 5.94 ; \mathrm{N}, 0.64 ; \mathrm{S}, 16.11 \%$. IR (KBr): $\tilde{\nu}=842 \mathrm{~cm}^{-1} \quad\left(\mathrm{PF}_{6}\right) .{ }^{1} \mathrm{H}$ NMR $\quad(269.6 \mathrm{MHz}$, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=7.6\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.35\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.25-$ $6.6\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 3.75-0.5\left(\mathrm{~m}, 74 \mathrm{H}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{H}_{11}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(67.9 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=156.94,154.11$ (d), 132.36, 130.77, 130.51, 130.39, 130.23, 129.74, 127.96, 124.47, 123.81 [$\mathrm{C}($ aryl $)$], 42.24 (d) , $41.09\left(\mathrm{C}_{2} \mathrm{H}_{4}\right), 31.62$ 31.20, 29.02-28.35, 27.00-26.62 (br, $\left.\mathrm{C}_{6} \mathrm{H}_{41}\right) \cdot{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(109.38 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=+29\left(\mathrm{~s}, P \mathrm{Py}_{3}\right),-150(\mathrm{~m}$, $\left.P \mathrm{~F}_{6}\right)$. UV-Vis $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2},(\mathrm{~nm})\right]: 546\left(=40941 \mathrm{~mol}^{-1}\right)$.

2.3. X-ray structure determination of $\left[R u(I)\left(P C y_{3}\right)\left(S_{4}\right.\right.$ ')]$\mathrm{C}_{7} \mathrm{H}_{8}\left(2 a \cdot \mathrm{C}_{7} \mathrm{H}_{8}\right)$, $\left[\mathrm{Ru}(\mathrm{Cl})\left(\mathrm{PCy}_{3}\right)\left(\mathrm{S}_{4}\right.\right.$ ')] $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) and $\left[\mu-\mathrm{N}\left\{\mathrm{Ru}\left(\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4} \text { ') }\right\}_{2}\right]\left(\mathrm{BPh}_{4}\right) \cdot 3 T H F\right.$ ([5]BPh $\left.{ }_{4} \cdot 3 T H F\right)$

Black plates of $\left[\mathrm{Ru}(\mathrm{I})\left(\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right)\right] \cdot \mathrm{C}_{7} \mathrm{H}_{8}\left(\mathbf{2 a} \cdot \mathrm{C}_{7} \mathrm{H}_{8}\right)$ were oblained from a saturated solution of 2 a in toluene that was kept at room temperature for 10 days. Green columns of $\left[\mathrm{Ru}(\mathrm{Cl})\left(\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right)\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \quad\left(4 \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ were obtained by layering a solution of 4 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with n-hexane. Black columns of $\left[\mu-N\left\{R u\left(\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right)\right\}_{2}\right]\left(\mathrm{BPh}_{4}\right) \cdot 3 \mathrm{THF}$ ([5]BPh $\cdot 3 \mathrm{THF}$) formed by diffusion of a saturated solution of NaBPh_{4} in MeOH through a glass frit (porosity G4) into a solution of [5] PF_{6} in THF. Suitable crystals were sealed in glass capillaries. The structures were solved by direct methods (SHELXTL 5.03 [17]). Non-hydrogen atoms were refined anisotropically (SHELXTL 5.03) with the exception of one THF molecule in [5] $\mathrm{BPh}_{4} \cdot 3 \mathrm{THF}$ whose atoms were refined with a common isotropic temperature factor. The positions of the hydrogen atoms in $2 \mathrm{a} \cdot \mathrm{C}_{7} \mathrm{H}_{8}$, $4 \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and [5]BPh $\cdot 3$ THF were taken from difference Fourier syntheses except for the solvent molecule hydrogen atoms which were calculated in their ideal geometries. Hydrogen atoms of $2 \mathrm{a} \cdot \mathrm{C}_{7} \mathrm{H}_{8}$ were refined isotropically while those of $4 \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $[5] \mathrm{BPh}_{4} \cdot 3 \mathrm{THF}$ were kept restricted with a common isotropic temperature factor during the refinement. Selected crystallographic data for $2 \mathrm{a} \cdot \mathrm{C}_{7} \mathrm{H}_{8}, 4 \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $[5] \mathrm{BPh}_{4} \cdot 3 \mathrm{THF}$ are summarized in Table 1, the fractional atomic coordinates and isotropic parameters are listed in Tables 2-5.

3. Results

3.1. Syntheses and reactivity

The reaction according to Eq. (2) yielded the Ru (II) azido complex $\mathrm{NEt}_{4}\left[\mathrm{Ru}\left(\mathrm{N}_{3}\right)\left(\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right)\right]$ (1).

$$
\begin{aligned}
& \left.\mathrm{Ru}(\mathrm{DMSO})\left(\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right)\right]+\mathrm{NEt}_{4} \mathrm{~N}_{3} \xrightarrow[-\mathrm{DMSO}]{\text { acelone. } 20^{\circ} \mathrm{C}} \\
& \mathrm{NEt}_{4}\left[\mathrm{Ru}\left(\mathrm{~N}_{3}\right)\left(\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right)\right] \\
& 1
\end{aligned}
$$

Complex 1 proved to be inert toward dioxygen and $\mathrm{H}_{2} \mathrm{O}_{2}$. Photolysis of 1 by UV irradiation or treating 1 with Brönsted acids such as HBF_{4} yielded products which did not contain nitrogen nor could be identified. Treatment of 1 with NOBF_{4} or $\mathrm{NO}_{2} \mathrm{BF}_{4}$ resulted in mixtures of products showing several

Table 1
Selected crystallographic data for $2 \mathrm{a} \cdot \mathrm{C}_{7} \mathrm{H}_{8}, \mathbf{4} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, and $[5] \mathrm{BPh}_{4} \cdot \mathbf{3 T H F}$

	$\mathbf{2 a} \cdot \mathrm{C}_{7} \mathrm{H}_{8}$	$4 \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$	[5] $\mathrm{BPh}_{4} \cdot 3 \mathrm{THF}$
Formula	$\mathrm{C}_{39} \mathrm{H}_{53} \mathrm{IPRuS}_{4}$	$\mathrm{C}_{33} \mathrm{H}_{47} \mathrm{Cl}_{3} \mathrm{PRuS}_{4}$	$\mathrm{C}_{100} \mathrm{H}_{134} \mathrm{BNO}_{3} \mathrm{P}_{2} \mathrm{Ru}_{2} \mathrm{~S}_{8}$
FW	908.99	810.34	1929.45
Crystal dimensions (mm)	$0.60 \times 0.30 \times 0.15$	$0.40 \times 0.40 \times 0.20$	$0.50 \times 0.40 \times 0.40$
$\boldsymbol{F (0 0 0)}$	926	838	4064
Space group	P1	Pİ	Pna2,
Crystal system	triclinic	triclinic	orthorhombic
$a(\mathrm{pm})$	1087.4(1)	1088.7(5)	1972.9(6)
b (pm)	1089.5(1)	1065.6(3)	2606.3(6)
$c(\mathrm{pm})$	1988.8(1)	1778.4(6)	1831.1(12)
$\alpha\left({ }^{\circ}\right)$	74.13(1)	80.66(2)	90
$\beta\left({ }^{\circ}\right)$	78.66(1)	72.10(4)	90
$\boldsymbol{\gamma}\left({ }^{\circ}\right)$	61.22(1)	67.52(3)	90
$V\left(\mathrm{~nm}^{3}\right)$	1.9805(3)	1.812(1)	9.415(7)
2	2	2	4
Pask $\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.524	1.485	1.361
$\mu\left(\mathrm{mm}^{-1}\right)$	1.453	0.952	0.583
Diffractometer	Siemens P4	Siemens P4	Siemens P4
Radiation (pm)	Mo Ka ($\lambda=71.073$)		
Temperature (K)	200	200	153
Scan technique	ω-scan	ω-scan	ω-scan
20 range (${ }^{\circ}$)	4-54	4-54	4-54
Scan speed (${ }^{\circ} \mathrm{min}^{-1}$)	3.0-30.0	3.0-30.0	3.0-30.0
Measured reflections	9978	10106	12941
Independent reflections	8590	7881	12922
Observed reffections	5468	4012	7947
σ criterion	$F_{0}>4 \sigma\left(F_{0}\right)$	$F_{0}>4 \sigma\left(F_{0}\right)$	$F_{0}>4 \sigma\left(F_{0}\right)$
$R_{1} ; w R_{2}(\%)$	5.68; 15.22	8.41: 25.66	4.06; 9.22
Refined parameters	596	380	1023
S	0.901	0.894	0.811

Table 2
Fractional atomic coordinates ($\times 10^{4}$) and isotropic thermal parameters $\left(\mathrm{pm}^{2} \times 10^{-1}\right)$ of the non-hydrogen atoms of $2 a \cdot \mathrm{C}, \mathrm{H}_{x}$

Alom	x					
II	$2657(1)$	$5192(1)$	$3149(1)$	$40(1)$		
RuI	$728(1)$	$7693(1)$	$3527(1)$	$30(1)$		
S1	$2152(2)$	$8324(2)$	$3905(1)$	$37(1)$		
S2	$823(2)$	$6175(2)$	$4646(1)$	$36(1)$		
S3	$-1160(2)$	$9547(2)$	$4002(1)$	$35(1)$		
S4	$-1011(2)$	$7082(2)$	$3345(1)$	$36(1)$		
P1	$782(2)$	$9084(2)$	$2359(1)$	$32(1)$		
C10	$2744(7)$	$7104(6)$	$4701(3)$	$34(1)$		
C11	$3824(8)$	$7048(6)$	$5000(3)$	$38(2)$		
C12	$4312(9)$	$6098(7)$	$5617(3)$	$44(2)$		
C13	$3698(8)$	$5216(7)$	$5961(3)$	$47(2)$		
C14	$2630(8)$	$5250(7)$	$5674(3)$	$43(2)$		
C15	$2139(7)$	$6205(6)$	$5038(3)$	$36(1)$		
C16	$-793(8)$	$7242(7)$	$5137(3)$	$40(2)$		
C20	$-2629(7)$	$8527(6)$	$3516(3)$	$36(1)$		
C21	$-3882(8)$	$8639(7)$	$3358(4)$	$44(2)$		
C22	$-5165(9)$	$9774(8)$	$3493(4)$	$52(2)$		
C23	$-5226(94$	$10829(9)$	$3777(5)$	$56(2)$		
C24	$-3995(9)$	$10735(8)$	$3936(4)$	$48(2)$		
C25	$-2719(7)$	$9590(6)$	$3815(3)$	$36(1)$		
C26	$-1145(9)$	$8812(7)$	$4952(3)$	$43(2)$		
C30	$-339(7)$	$8990(7)$	$1793(3)$	$37(1)$		
C31	$287(8)$	$7521(7)$	$1601(3)$	$40(2)$		
				(continued)		

Table 2 (comtinued)

Alom	r	v		$U_{\text {*UI }}$
C32	$-780(9)$	$7375(8)$	$1279(3)$	$48(2)$
C33	$-1287(10)$	$8525(9)$	$618(4)$	$53(2)$
C34	$-1893(10)$	$10008(9)$	$788(4)$	$55(2)$
C35	$-822(9)$	$10150(8)$	$1119(4)$	$49(2)$
C40	$2569(7)$	$8436(6)$	$1877(3)$	$34(1)$
C41	$3825(7)$	$7985(7)$	$2291(3)$	$38(2)$
C42	$5191(8)$	$7261(8)$	$1871(4)$	$45(2)$
C43	$5331(9)$	$8185(10)$	$1172(4)$	$57(2)$
C44	$4084(9)$	$8721(11)$	$757(4)$	$57(2)$
C45	$2691(8)$	$9445(8)$	$1179(3)$	$46(2)$
C50	$130(7)$	$11048(6)$	$2243(3)$	$36(1)$
C51	$-1429(9)$	$11870(8)$	$2461(5)$	$48(2)$
C52	$-1926(10)$	$13485(7)$	$2257(5)$	$58(2)$
C53	$-1057(11)$	$13889(8)$	$2584(5)$	$65(3)$
C54	$497(11)$	$13067(8)$	$2403(5)$	$61(2)$
C55	$998(9)$	$11439(7)$	$2593(4)$	$45(2)$
C60	$6159(22)$	$6180(29)$	$-947(15)$	$197(14)$
C61	$6338(28)$	$4990(33)$	$-646(22)$	$274(22)$
C62	$7451(30)$	$4440(23)$	$-21(16)$	$219(17)$
C63	$7958(25)$	$5303(29)$	$27(11)$	$174(10)$
C64	$7481(29)$	$6601(27)$	$-488(13)$	$168(10)$
C65	$6609(26)$	$6943(28)$	$-944(12)$	$170(9)$
C66	$5116(21)$	$6900(31)$	$-1590(11)$	$294(21)$

[^1]Table 3
Fractional atomic coordinates ($\times 10^{4}$) and isotropic thermal parameters ($\mathrm{pm}^{2} \times 10^{-1}$) of the non-hydrogen atoms of $4 \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$

Atom	\boldsymbol{x}	y	2	$U_{\text {ciq }}{ }^{\text {a }}$
Rul	3321.9(9)	2956.1(7)	6581.4(4)	13.4(3)
Cll	1753(3)	5179(2)	7004(1)	23.5(9)
S1	1894(3)	2271(2)	6159(1)	18.1(9)
S2	3774(3)	4085(2)	5317(1)	17.6(9)
S3	5104(3)	1011(2)	6031(1)	16.2(9)
S4	5127(3)	3548(2)	6776(1)	18.3(9)
C15	2630(10)	3870(9)	4856(5)	18(4)
C14	2570(10)	4500(10)	4111(6)	24(4)
Cl3	162(10)	4440(10)	3768(6)	30(4)
$\mathrm{Cl2}$	700(10)	3769(10)	4174(6)	26(4)
Cll	790(10)	3128(9)	4915(6)	18(4)
C10	1790(10)	3172(9)	5250(5)	18(4)
C25	6650(10)	992(9)	6210(5)	18(4)
C24	7820(10)	-150(10)	6029(7)	? ! (4)
C23	9030(10)	-220(10)	6158(8)	37(5)
C22	9020(10)	890(10)	6502(8)	34(5)
C21	7810(10)	2020(10)	6695(6)	26(4)
C20	6570(10)	2087(9)	6560(6)	20(4)
C16	5450(10)	2899(10)	4778(6)	26(4)
C26	5480(10)	1457(9)	4967(6)	20(4)
P1	2719(3)	1991(2)	7908(1)	14.7(9)
C30	3579(10)	2393(9)	8561(5)	17(3)
C31	3070(10)	3897(10)	8683(6)	21 (4)
C32	4010(10)	4220(10)	9079(6)	28(4)
C33	4010(10)	3420(10)	9863(6)	27(4)
C34	4450(10)	1900(10)	9774(6)	30(5)
C35	3500(10)	1610(10)	9369(6)	26(4)
C40	810(10)	2660(10)	8458(5)	20(4)
C41	- 190(10)	3070(10)	7963(6)	28(4)
C42	- 1680(10)	3870(10)	8434(7)	37(5)
C43	-2130(10)	3020(20)	9172(8)	46(6)
C44	- 1130(10)	2550(20)	9662(7)	47(6)
C45	370(10)	1750(10)	9179(7)	35(5)
C50	3210(10)	100(10)	8029(5)	25(4)
C51	4770(10)	-680(10)	7884(6)	27(4)
C.52	5080(20)	-2220 (10)	8044(7)	44(5)
C53	4450(10)	-2750(10)	7543(7)	40(5)
C54	2980(10)	-2000(10)	7692(7)	37(5)
C55	2630(10)	-450(10)	7530(6)	$31(5)$
Cl	1190(40)	2250(20)	1880(10)	240(20)
C12	296(6)	3271 (6)	1084(3)	100(3)
Cl3	1630(10)	571 (6)	1502(4)	208(6)

${ }^{\text {a }}$ Equivalent isotropic U_{ex} is defined as one third of the trace of the orthogonalized $U_{i j}$ tensors.
$\nu($ NO) bands in the IR spectrum. One of these bands ($1840 \mathrm{~cm}^{-1}$) indicated the formation of the $[\mathrm{Ru}(\mathrm{NO})$ $\left(\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}\right.$ ')] ${ }^{+}$cation that was subsequently obtained by an independent route from [$\mathrm{Ru}(\mathrm{DMSO})\left(\mathrm{PCy}_{3}\right)$ ($\left.\left.{ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right)\right]$ and NOBF_{4} [18]. Oxidation of 1 by equimolar amounts of elemental iodine gave a mixture of the $\mathrm{Ru}(\mathrm{III})$ complexes $\left[\mathrm{Ru}(\mathrm{I})\left(\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right)\right]$ (2a) and [$\left.\mathrm{Ru}\left(\mathrm{N}_{3}\right)\left(\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right)\right]$ (3a). The formation of $\mathbf{2 a}$ and $3 a$ could be ascertained by mass spectroscopy and IR spectrocopy, however, the mixture of both complexes was difficult to separate. For this reason, we tried to directly obtain the iodo complex from [Ru (DMSO) $\left(\mathrm{PCy}_{3}\right)$ (' S_{4} ')] and I_{2}. The reaction according to Eq. (3) gave [Ru(I) $\left.\left(\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right)\right]$ (2a).

Table 4
Fractional atomic coordinates ($\times 10^{4}$) and isotropic thermal parameters ($\mathrm{pm}^{2} \times 10^{-1}$) of the non-hydrogen atoms of $[5] \mathrm{BPh}_{4} \cdot 3 \mathrm{THF}$

Table 4 (continued)

Atom	x	y	z	$U_{\text {cq }}{ }^{\text {a }}$
C81	13009(4)	5114(3)	8957(5)	23(2)
C82	13072(4)	4932(3)	9732(4)	27(3)
C83	12606(5)	4484(3)	9910(5)	42(3)
C84	11885(5)	4623(3)	9735(5)	41(3)
C85	11792(4)	4805(3)	8964(5)	32(3)
C90	12185(4)	5065(3)	7142(4)	25(2)
C91	11547(4)	4724(3)	7033(5)	38(3)
C92	11646(5)	4371(3)	6358(5)	49(4)
C93	12271(4)	4030(3)	6440(4)	37(3)
C94	12897(4)	4356(2)	6555(5)	$28(2)$
C95	12802(4)	4711(3)	7247(4)	25(2)
C100	11181(4)	5685(3)	7930(5)	25(2)
C101	10937(4)	5969(3)	8607(4)	33 (3)
C102	10166(4)	5995(4)	8633(5)	44(3)
C103	9860(4)	6219(4)	7916(6)	54(4)
C104	10111(4)	5931(3)	7268(5)	37(3)
C105	10896(4)	5943(3)	7244(5)	33(3)
BI	14312(5)	6213(3)	1611(7)	$31(3)$
Clio	14041(4)	6796(3)	1439(4)	26(2)
Clli	14388(4)	7114(3)	944(5)	29(3)
C112	14198(4)	7620(3)	768(6)	45(3)
C113	13624(5)	7812(3)	1099(5)	46(4)
CII4	13259(4)	7515(3)	1575(6)	45(3)
C115	13467(4)	7022(3)	1748(5)	33(3)
Cl20	14739(4)	6028(3)	902(4)	23(3)
C121	14459(4)	5833(3)	251(4)	27(3)
C122	14831(5)	5744(3)	-362(4)	30(3)
C123	15519(5)	5848(3)	-378(5)	36(3)
C124	15834(4)	6030(3)	229(5)	$32(3)$
C125	15453(4)	6120(3)	860(5)	31(3)
C130	$14737(4)$	6204 (3)	2370(5)	$33(3)$
C131	14637(4)	6540(3)	2948(5)	$35(3)$
C132	14955(5)	6505(4)	3624(5)	$42(3)$
C133	15408(6)	6105(5)	3752(5)	$64(5)$
C134	15522(6)	5752(5)	3206(6)	79(5)
C133	15211(5)	5800(3)	2523(5)	57(4)
C140	13652(5)	5815(3)	1714(7)	41(3)
C141	$13651(6)$	5386(3)	2179(6)	66(4)
C142	$13110(8)$	5039(4)	2213(8)	89(6)
C143	12544(7)	5126(6)	1827(9)	95(7)
C144	12504(6)	5337(5)	1379(6)	70(5)
C145	13050(5)	5868(4)	1346(5)	52(4)
0150	8418(5)	2499(3)	7144(5)	107(4)
C150	8480(7)	3039(4)	7338(9)	122(6)
C151	9259(7)	3168(5)	7270(10)	220(1)
C152	9556(6)	2706(6)	7532(9)	134(7)
C153	9091(6)	2270(5)	7189(8)	119(6)
0160	12711(5)	4050(4)	3669(7)	143(6)
C160	12182(8)	4361(5)	3920(10)	180(1)
C161	11692(9)	4135(6)	4250(10)	160(10)
C162	11885(9)	3567(6)	4240(10)	146(8)
C163	12557(10)	3554(6)	3913(9)	128(7)

- Equivalent isotropic U_{vy} is defined as one third of the trace of the orthogonalized $U_{1 y}$ tensors.

$$
\left[\mathrm{Ru}(\mathrm{DMSO})\left(\mathrm{PCy}_{3}\right)\left(\mathrm{S}_{4}{ }^{\prime}\right)\right]+0.5 \mathrm{I}_{2} \underset{- \text { OMSO }}{\mathrm{THF}, 20{ }^{\circ} \mathrm{C}}
$$

$$
\begin{equation*}
\underset{2 a}{\left[R u(I)\left(P C y_{3}\right)\left(' S_{4} '\right)\right]} \tag{3}
\end{equation*}
$$

Table 5
Fractional atomic cocadinates ($\times 10^{4}$) and isotropic thermal parameters ($\mathrm{pm}^{2} \times 10^{-1}$) of the isotropically refined non-hydrogen atoms of $[5] \mathrm{BPh}_{4} \cdot 3 \mathrm{THF}$

Atom	x	y	z	$U_{\text {iso }}$
O170	$9720(10)$	$4917(7)$	$5900(20)$	$360(7)$
C170	$9910(20)$	$4560(10)$	$5320(10)$	$360(7)$
C171	$9310(10)$	$4123(10)$	$5600(20)$	$360(7)$
C172	$9690(20)$	$4043(9)$	$6290(20)$	$360(7)$
C173	$9500(10)$	$4650(10)$	$6550(10)$	$360(7)$

In quite an analogous way $\left[\mathrm{Ru}(\mathrm{I})\left(\mathrm{P}^{\mathrm{i}} \mathrm{Pr}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right)\right]$ (2b) was obtained. The iodo ligands in 2a and 2b proved labile and could be exchanged for chloride or azide when 2a or 2b were treated with an excess of $\mathrm{NEt}_{4} \mathrm{Cl}$ or $\mathrm{NEt}_{4} \mathrm{~N}_{3}$ according to Eq. (4).

The resultant complexes $\left[\mathrm{Ru}\left(\mathrm{N}_{3}\right)\left(\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right)\right]$ (3a), $\left[\mathrm{Ru}\left(\mathrm{N}_{3}\right)\left(\mathrm{P}^{\prime} \mathrm{Pr}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right)\right]$ (3b), and $\left[\mathrm{Ru}(\mathrm{Cl})\left(\mathrm{PCy}_{3}\right)\left(\mathrm{S}_{4}\right.\right.$ ')] (4) have been isolated and characterized. The molecular structures of 2a and $\mathbf{4}$ were determined by X-ray structure analysis.

Anticipating that the sterically demanding PC_{3} rather than the less bulky $\mathrm{P}^{\mathbf{i}} \mathrm{Pr}_{3}$ ligand might better stabilize unstable species resulting from reactions of the azide ligand, we focused our efforts on 3a. Heating in order to induce an intrannolecular redox reaction between the Ru (III) center and the azide ligand as shown in Eq. (1) revealed that 3 a is stable up to $100^{\circ} \mathrm{C}$ in solid state. In contrast, 3a instantaneously reacted when treated with HBF_{4}. Addition of equimolar amounts of HBF_{4} in $\mathrm{Et}_{2} \mathrm{O}$ to a yellow-green suspension of 3a in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$ immediately resulted in the formation of a clear red-violet solution. Monitoring the reaction by IR spectroscopy at $-40^{\circ} \mathrm{C}$ showed that the $\boldsymbol{\nu}\left(\mathrm{N}_{3}\right)$ band of 3 a at $2020 \mathrm{~cm}^{-1}$ had disappeared and a new band at $2070 \mathrm{~cm}^{-1}$ had emerged (Fig. 1).

Fig. 1. IR spectra of (a) $\left[\mathrm{Ru}\left(\mathrm{N}_{3}\right)\left(\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right)\right](3 \mathrm{a}) \mathrm{at}-40^{\circ} \mathrm{CinCH}_{2} \mathrm{Cl}_{2}$. (b) after addition of $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$, and (c) at room temperature ($*$, solvent bands due to insufficient compensation).

An additional small absorption at $2130 \mathrm{~cm}^{-1}$ could be assigned to the $\nu\left(\mathrm{N}_{3}\right)$ band of dissolved HN_{3}. When the solution was gradually warmed to room temperature, the bands at 2070 and $2130 \mathrm{~cm}^{-1}$ slowly disappeared and the resulting red-violet solution no longer exhibited any band in the region of $2200-1950 \mathrm{~cm}^{-1}$. Addition of $\mathrm{NBu}_{4} \mathrm{PF}_{6}$ and work-up of the red-violet solution yielded purple microcrystals that were identified as the diamagnetic dinuclear complex $\left.\left[\mu-N\left\{R u\left(P C y_{3}\right)\left({ }^{\prime} S_{4}\right)\right\}_{2}\right]\left(\mathrm{PF}_{6}\right)\left([5] \mathrm{PF}_{6}\right)\right]$ which contains formally $\mathrm{Ru}(\mathrm{IV})$ centers. Thus protonation of 3 a has led to decomposition of the azide ligand and a simultaneous Ru (III) $\rightarrow \mathrm{Ru}$ (IV) oxidation according to Eq. (5).

$$
\begin{gather*}
{\left[\mu-\mathrm{N}\left\{\mathrm{Ru}\left(\mathrm{PCy}_{3}\right)\left({ }_{[5]^{+}}{ }^{\prime}\right)\right\}_{2}\right]^{+}} \tag{5}
\end{gather*}
$$

The labile species giving rise to the IR band at $2070 \mathrm{~cm}^{-1}$ could not yet be identified. This band possibly indicates the intermediate formation of an N_{2} complex such as [$\mathrm{Ru}\left(\mathrm{N}_{2}\right)$ $\left(\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}\right.$ ')], but neither this complex nor the potentially formed dinuclear derivative $\left[\mu-\mathrm{N}_{2}\left\{\mathrm{Ru}\left(\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right)\right\}_{2}\right]$ could be isolated from the reaction solution.

3.2. Characterization of the complexes

The yellow Ru (II) complex $\mathrm{NEt}_{4}\left[\mathrm{Ru}\left(\mathrm{N}_{3}\right)\left(\mathrm{PCy}_{3}\right)\right.$ (' S_{4} ')] (1) is diamagnetic and soluble in polar organic solvents such as $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{3} \mathrm{CN}$, or DMF. All Ru (III) complexes are paramagnetic as indicated by their ${ }^{1} \mathrm{H}$ NMR spectra. The colors of the complexes range from yellow-green (4) over brown (3a, 3b), to red ($\mathbf{2 a}, \mathbf{2 b}$). The magnetic moment of $\left[\mathrm{Ru}(\mathrm{I})\left(\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right)\right]$ (2a) has been determined ($\mu_{\mathrm{eff}}=1.84 \mu_{\mathrm{B}}, 298^{\circ} \mathrm{C}$). It is compatible with one unpaired electron and a low-spin $\mathrm{d}^{5} \mathrm{Ru}$ (III) center. The EPR spectrum of the iodo complex $\left[\mathrm{Ru}(\mathrm{I})\left(\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}\right.\right.$ ')] (2a) shows one signal.

The IR spectra of all complexes in KBr exhibit the typical absorptions of [$\mathrm{M}\left({ }^{\prime} \mathrm{S}_{4}\right.$ ')] fragments. The azido complexes show characteristic $\nu\left(\mathrm{N}_{3}\right)$ bands at $2019 \mathrm{~cm}^{-1}$ (3a), $2014 \mathrm{~cm}^{-1}$ (3b), and $2028 \mathrm{~cm}^{-1}$ (1). The nitrido complex [5] PF_{6} exhibits the characteristic $\nu\left(\mathrm{PF}_{6}\right)$ band of the $\mathrm{PF}_{6}{ }^{-}$ ion at $842 \mathrm{~cm}^{-1}$, but no $\nu(\mathrm{RuN})$ band could be detected.

The splitting pattern of the ${ }^{1} \mathrm{H}$ NMR spectrum of [5] PF_{6} and the number of the ${ }^{13} \mathrm{C}$ signals in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum indicate that $[5]^{+}$possesses an overall C_{2} or C_{S} symmetry in solution.

Fig. 2. Cyclic voltammograms of (a) $\mathrm{NEt}_{4}\left[\mathrm{Ru}^{\left(\mathrm{N}_{3}\right)}\right.$) PCy_{3}) (' $\left.\left.\mathrm{S}_{4}{ }^{\prime}\right)\right]$ (1) $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 50 \mathrm{mV} \mathrm{s}^{-1}\right)$, (b) $\left[\mathrm{Ru}(\mathrm{I})\left(\mathrm{PCy}_{3}\right)\left(\mathrm{S}_{4}{ }^{\prime}\right)\right]$ (2a) ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20 \mathrm{mV} \mathrm{s}{ }^{-1}\right)$, and (c) $\left[\mu-\mathrm{N}\left(\mathrm{Ru}\left(\mathrm{PCy}_{3}\right)\left(\mathrm{S}_{4}{ }^{\prime}\right)\right\rangle_{2}\right]\left(\mathrm{PF}_{6}\right)\left([5] \mathrm{PF}_{6}\right)\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 50 \mathrm{mV} \mathrm{s}{ }^{-1}\right)$.

3.3. Cyclic voltammetry

Cyclic voltammograms (CVs) were recorded of 1, 2a and [5] PF_{6} (Fig. 2).
$\mathrm{NE}_{4}\left[\mathrm{Ru}\left(\mathrm{N}_{3}\right)\left(\mathrm{PCy}_{3}\right)\right.$ (' S_{4} ')] (1) exhibits one quasireversible cathodic and one irreversible anodic redox wave. The chemical results demonstrating the ready oxidation $1 \rightarrow 3 \mathrm{a}$ (cf. above) suggest that the cathodic wave is to be assigned to a $1 \leftrightarrow 3 \mathrm{a}$ redox process. Accordingly, the irreversible anodic wave can be assigned to a Ru (III) $\rightarrow \mathrm{Ru}$ (IV) oxidation. The iodo complex $2 a$ shows a surprisingly extensive electrochemistry. In agreement with the assignment of the redox waves of 1 , the cathodic redox wave of $2 a$ can be assigned to a Ru (II) $/ \mathrm{Ru}$ (III) redox process in which 2 a is reversibly reduced to give [2a] ${ }^{-}$. The three anodic redox waves indicate that 2a can be further oxidized, but the nature of the resulting species so far remains speculative. The CV of $\left[\mu-\mathrm{N}\left\{\mathrm{Ru}\left(\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right)\right]_{2}\right]\left(\mathrm{PF}_{6}\right)\left([5] \mathrm{PF}_{6}\right)$ indicates that the $[5]^{+}$cation can be reversibly oxidized to give a $[R u(I V) / R u(V)]$ species, but that reduction leads to decomposition.

3.4. Molecular structures of $\left[R u(I)\left(P C y_{3}\right)\left(S_{4} '\right)\right](2 a)$, [$\left.\mathrm{Ru}(\mathrm{Cl})\left(P C y_{3}\right)\left({ }^{\prime} S_{4}{ }^{\prime}\right)\right](4)$ and $\left[\mu-N\left\{R u\left(P C y_{3}\right)\left(S_{4}{ }^{\prime}\right)\right\}_{2}\right]$ $\left(\mathrm{BPh}_{4}\right)\left([5] B P h_{4}\right)$

The X-ray structure determinations of $\left[\mathrm{Ru}(\mathrm{I})\left(\mathrm{PCy}_{3}\right)\right.$ (S_{4} ')] $\mathrm{C}_{7} \mathrm{H}_{8}\left(2 \mathrm{a} \cdot \mathrm{C}_{7} \mathrm{H}_{8}\right.$), $\left[\mathrm{Ru}(\mathrm{Cl})\left(\mathrm{PCy}_{3}\right)\left({ }^{(} \mathrm{S}_{4}\right.\right.$ ')] $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($4 \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$), and $\left[\mu-\mathrm{N}\left\{\mathrm{Ru}\left(\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right)\right\}_{2}\right]\left(\mathrm{BPh}_{4}\right) \cdot 3 \mathrm{THF}$ ([5]BPh ${ }_{4} \cdot 3$ THF) revealed that the Ru centers in all three complexes exhibit pseudo-octahedral coordination. The ${ }^{\prime} \mathrm{S}_{4}{ }^{\prime 2-}$ ligands bind to the Ru centers in their characteristic helical way such that the thiolate S donors occupy trans positions and chiral [$\mathrm{Ru}\left({ }^{\prime} \mathrm{S}_{4}\right.$ ')] fragments result. Fig. 3 depicts the molecular structures of $2 \mathrm{a}, 4$ and [5] ${ }^{+}$, Table 6 lists selected distances and angles.

Numerous C_{2} symmetrical [$\mathrm{Ru}(\mathrm{L})_{2}\left({ }^{\prime} \mathrm{S}_{4}\right.$ ')] complexes exhibit equidistant $\mathrm{M}-\mathrm{S}$ (thiolate) and $\mathrm{M}-\mathrm{S}$ (thioether) bonds [13]. In contrast, these bonds differ in the C_{1} symmetrical complexes $2 \mathrm{a}, 4$ and $[5]^{+}$. This can be plausibly traced back to the lower symmetry, and, in addition, to the steric influence of the very bulky PCy_{3} ligand and the dissimilar trans influence of PCy_{3}, halide, and nitride ligands, respectively. In this respect, the distances and angles of 2a

Fig. 3. Molecular structures of (a) [Ru(I)(PCy $\left.)\left({ }^{\prime} S_{4}{ }^{\prime}\right)\right]$ ($\left.2 a\right)$, (b) [$\left.R u(C l)\left(P C y_{3}\right)\left({ }^{\prime} S_{4} '\right)\right]$ (4), and (c) the cation of $\left[\mu-N\left\{R u\left(P C y_{3}\right)\left({ }^{\prime} S_{4}{ }^{\prime}\right)\right\}_{2}\right]\left(B P h_{4}\right)$ ($\mathrm{S}^{2} \mathrm{BP}_{4}$) drawn with 50 卷 probability ellipsoids (solvent molecules, counter ions, and H atoms omitted, cyclohexyl ring dotted).

Table 6

	2a	4		5^{+}	
Rul-Sl	228.0(2)	229.7(3)	236.5(2)	Ru2-S5	236.4(2)
Rul-S2	236.8(2)	237.6(3)	240.2(2)	Ru2-S6	240.5(2)
Rul-S3	234.0(2)	233.1(3)	251.4(3)	Ru2-S7	252.1(3)
Rul-S4	240.1(2)	241.1(3)	243.4(2)	Ru2-S8	243.9(2)
Rul-PI	241.0(2)	241.4(3)	249.8(2)	Ru2-P2	249.4(2)
Rul-II	271.78(7)				
Rul-Cll		240.6(3)			
Rul-N1			176.2(10)	Ru2-N1	180.4(10)
S1-Rul-S4	169.06(6)	168.86(9)	166.11(7)	S.5-Ru2-S8	167.99(8)
S2-Rul-S3	87.88(6)	87.49(9)	85.14(7)	S6-Ru2-S7	84.61(8)
S1-Rul-II	100.67(5)				
Si-Rul-Cat		99.49(10)			
S2-RuI-P1	175.62(6)	175.14(9)	171.17(7)	S6-Ru2-P2	170.94(7)
S3-Rul-NI			171.2(2)	S7-Ru2-N1	171.3(2)
Rul-N1-Ru2			168.0(3)		

and 4 show no anomalies and are comparable with those of the analogous complex $\left[\mathrm{Ru}(\mathrm{Cl})\left(\mathrm{PPh}_{3}\right)\right.$ ($\left.\left.{ }^{\text {hu }} \mathrm{S}_{4}{ }^{\prime}\right)\right]$ (${ }^{\text {thu }} \mathrm{S}_{4}{ }^{2 \text { 2- }}$ $=1,2$-bis (3,5 -di(t-butyl)-2-mercaptophenylthioethane ($2-$)) [19]. Furthermore, corresponding distances and angles in the two halide complexes 2 a and 4 are virtually identical.

When 2a or 4 are compared with the nitrido complex $[5]^{+}$, it is to be noted that all corresponding Ru-S distances in $[5]^{+}$are significantly elongated despite the formaily higher oxidation state of the $\mathrm{Ru}(\mathrm{IV})$ centers. The particularly long $\mathrm{Ru}-\mathrm{S}$ distances (251.4(3) and 252.1(3) pm) of [5] ${ }^{+}$certainly reflect the very strang trans influence of the nitrido ligand. It is further noted that the $\mathrm{Ru}-\mathrm{N}-\mathrm{Ru}$ bridge of $[5]^{+}$ is more strongly bent (168°) than in other [$\mathrm{Ru}-\mathrm{N}-\mathrm{Ru}$] complexes $\left(175^{\circ}\right)[20]$. This bending is probably due to the sterical crowding in $[5]^{+}$, which on the other hand is caused by the bonding in the $[\mathrm{Ru}-\mathrm{N}-\mathrm{Ru}]$ entity. In the cation $[5]^{+}$, the nitrido bridge connects two homochiral and sterically very demanding $\mid \mathrm{Ru}\left(\mathrm{PCy}_{3}\right)$ ($\left.\left.{ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right)\right]$ fragments. Because the $\left[\mathrm{Ru}\left(\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right)\right]$ fragments are homochiral, the acceptor orbitals of the fragments must be identical. Interaction of the (identical) π-acceptor orbitals of the [Ru($\left.\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}\right.$ ')] fragments with the orthogonal p-electron pairs at the N bridge then results in an allene-like [$\mathrm{Ru}=\mathrm{N}=\mathrm{Ru}$] bonding system. It allows the $\mathrm{Ru}(\mathrm{IV})$ centers to reach an 18 valence electron configuration, but also results in the sterical crowding of $[5]^{+}$. This bonding system is analogous to that of $\left[\mu-\mathrm{O}\left\{\mathrm{Mo}(\mathrm{NO})\left({ }^{\prime} \mathrm{S}_{4} \text { ') }\right\}_{2}\right]\right.$ which has previously been discussed in detail [21].

4. Discussion and summary

The lability of the DMSO ligand in the recently reported [$\left.\mathrm{Ru}(\mathrm{DMSO})\left(\mathrm{PR}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right)\right]$ complexes ($\mathrm{R}=\mathrm{Cy}$, ${ }^{\mathrm{i}} \mathrm{Pr}$) has opened the access to $\left[\mathrm{Ru}(\mathrm{L})\left(\mathrm{PCy}_{3}\right)\right.$ (S_{4} ')] complexes that had previously been inaccessible. This work describes complexes that were intended to serve as potential precursors for dinitrogen complexes.

Exchange of DMSO in [Ru(DMSO) $\left(\mathrm{PCy}_{3}\right)\left({ }^{(} \mathrm{S}_{4}{ }^{\prime}\right)$] by azide ions yielded the $\mathrm{Ru}(\mathrm{II})$ species $\mathrm{NEt}_{4}\left[\mathrm{Ru}\left(\mathrm{N}_{3}\right)\right.$ (PCy_{3}) (' S_{4} ')] (1). Complex 1 proved surprisingly inert toward O_{2} or $\mathrm{H}_{2} \mathrm{O}_{2}$, but it could be readily oxidized by I_{2} to give a mixture of the $\mathrm{Ru}(\mathrm{III})$ complexes [$\mathrm{Ru}(\mathrm{I})\left(\mathrm{PCy}_{3}\right)$ (' S_{4} ')] (2a) and [$\mathrm{Ru}\left(\mathrm{N}_{3}\right)\left(\mathrm{PCy}_{3}\right)$ (' S_{4} ')] (3a). Complex 2a could be obtained directly from [Ru(DMSO)(PCy_{3})(' S_{4} ')] and elemental iodine and proved to be a well-suited precursor for the synthesis of the Ru (III) azido complex 3a in pure state, because it readily exchanges its iodo ligand for azide from $\mathrm{NEt}_{4} \mathrm{~N}_{3}$. Complex 2a exchanges its iodo ligand also for chloride and allows the synthesis of $\left[\mathrm{Ru}(\mathrm{Cl})\left(\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}\right.\right.$ ')] (4) which is not accessible from [$\mathrm{Ru}(\mathrm{DMSO})\left(\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}\right.$ ')] and elemental chlorine. The $\mathrm{Ru}\left(\right.$ III) complex $\mid \mathrm{Ru}\left(\mathrm{N}_{3}\right)\left(\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}\right.$ ')] (3a) is thermally stable up to $100^{\circ} \mathrm{C}$, but it instantaneously reacts with HBF_{4} at $-78^{\circ} \mathrm{C}$. IR monitoring of the reaction showed that small amounts of free HN_{3} and an unstable intermediate formed exhibiting an IR band at $2070 \mathrm{~cm}^{-1}$. This unstable intermediate is possibly the N_{2} complex [$\left.\mathrm{Ru}\left(\mathrm{N}_{2}\right)\left(\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right)\right]$, but it could not yet be isolated or identified. The dinuclear $\mathrm{Ru}(\mathrm{IV})$ complex $\left[\mu-\mathrm{N}\left\{\mathrm{Ru}\left(\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right)\right\}_{2}\right]\left(\mathrm{PF}_{6}\right)$ ([5]PF_{6}), however, could be isolated and completely characterized. The formation of [5] PF_{6} proves that protonation of 3a, at least partially, leads to removal of N_{2} from the azido ligand in 3a and the formation of a $\left[\mathrm{Ru}(\mathrm{N})\left(\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right)\right]$ species that is stabilized as binuclear $[5]^{+}$. The formation of $|5|^{+}$can be rationalized according to Eq. (6).

$[5]^{+}$
Eq. (6) indicates that the addition of protons is necessary to induce the cleavage of the azido ligand in 3 a and to facilitate the release of $\mathrm{N}_{3}{ }^{-}$from another molecule of 3a. Intra-
molecular electron transfer from the Ru (III) centers to the \mathbf{N} bridge finally yields the two $\mathrm{Ru}(\mathrm{IV})$ centers of [5] PF_{6}.
The molecular structures of $\left[\mathrm{Ru}(\mathrm{I})\left(\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}\right.\right.$ ')] (2a), $\left[\mathrm{Ru}(\mathrm{Cl})\left(\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}\right.\right.$ ')] (4), and $\left[\mu-\mathrm{N}\left\{\mathrm{Ru}\left(\mathrm{PCy}_{3}\right)\right.\right.$ ($\left.\left.\left.{ }^{\prime} S_{4}{ }^{\prime}\right)\right\rangle_{2}\right]\left(\mathrm{BPh}_{4}\right)\left([5] \mathrm{BPh}_{4}\right)$ exhibit no anomalies. It is noted, however, that $[5]^{+}$assumes a sterically highly crowded structure with a bent Ru-N-Ru bridge. This can be traced back to electronic reasons and an allene-like $\mathbf{R u}=\mathbf{N}=\mathbf{R u}$ bonding system that allows both $\mathbf{R u}(I V)$ centers to gain an 18 valence electron configuration.

5. Supplementary material

Further details of the X-ray structure analyses have been deposited and can be obtained from the Fachinformationszentrum, Gesellschaft für wissenschaftlich-technische Information $\mathrm{mbH}, \mathrm{D}-76344$ Eggenstein-Leopoldshafen by citing the depository No. CSD 406622 [$\mathrm{Ru}(\mathrm{I})\left(\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}\right.$ ')], CSD 406623 [$\mathrm{Ru}(\mathrm{Cl})\left(\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}\right.$ ')], CSD $406624[\mu-\mathrm{N}(\mathrm{Ru}-$ $\left(\mathrm{PCy}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}\right.$ ') $\left.\left.\right|_{2}\right]\left(\mathrm{BPh}_{4}\right)$, the authors, and the reference.

Acknowledgements

Support of these investigations by the Deutsche Forschungsgemeinschaft and Fonds der Chemischen Industrie is gratefully acknowledged.

References

[1] D. Sellmann, S. Emig and F.W. Heinemann, Angew. Chem., 109 (1997) 1808.
(2) (a) Z. Dori and R.F. Ziolo, Chem. Rev, 73 (3) (1973) 247; (b) J. Strthle, Comments Inorg, Chem., 4 (1985) 295.
[3] W. Beck, J. Organomet. Chem., 383 (1990) 143.
[4] (a) J. Strthle and K. Dehnicke, Z. Anorg, Allg. Chem., 338 (1965) 287; (b) B.L. Haymore, E.A. Maatta and R.A.D. Wentworth, J. Am. Chem. Soc., 101 (1979) 2063; (c) W.A. Nugent and B.L. Haymore, Coord. Chem. Rev., ${ }^{3} 1$ (1980) 123; (d) H. Hennig, K. Hefbauer, K. Handke and R. Stich, Angew. Chem., 109 (1997) 373.
[5] (a) K. Dehnicke and J. Strahle, Z. Anorg. Allg. Chem., 339 (1965) 171; (b) W.P. Griffith, Coord. Chem. Rev., 8 (1972) 369; (c) K. Dehnicke and J. Strähle, Angew. Chem., 93 (1981) 451; (d) J.R. Dilworth, P.L. Dahlstrom, J.R. Hyde and J. Zubieta, Inorg. Chim. Acta, 71 (1983) 21; (e) K. Dehnicke and J. Strähle, Angew. Chem., 104 (1992) 978; (f) W.A. Nugent and J.M. Mayer, Metal-Ligand Muliple Bonds, Wiley, New York, 1988; (g) T. Jüstel, T. Weyhermüller, K. Wieghardt, E. Bill, M. Lengen, A.X. Trautwein and P. Hildebrandt, Angew. Chem., 6 (1995) 744; (h) A. Niemann, U. Bossek, G. Haselhorst, K. Wieghardt and B. Nuber, Inorg. Chem., 35 (1996) 906.
[6] D. Sellmann, M. Waeber, H. Binder and R. Boese, Z. Naturforsch., Teil B, 41 (1986) 1541.
[7] (a) F.L. Phillips and A.C. Skapski, J. Chem. Soc., Datton Trans., (1976) 1448; (b) H. Bezler and J. Strähle, Z. Naturforsch., Teil B, 34 (1979) 1199; (c) R. Dübgen, U. Müller, F. Weller and K. Dehnicke, Z. Anorg. Allg. Chem., 471 (1980) 89; (d) U. Müller, R. Dübgen and K. Dehnicke, Z. Anorg. Allg. Chem., 473 (1981) 115.
[8] R.C. Thompson, P. Wieland and E.H. Appelman, Inorg. Chem., 18 (1979) 1974.
[9] W. Massa, R. Kujanek, G. Baum and K. Dehnicke, Angew. Chem., 96 (1984) 149.
[10] (a) W. Beck, in A. Müller and E. Diemann (eds.). Transition Metal Chemistry, VCH, Weinheim, 1981; (b) P.H. Kreutzer, J.Ch. Weis, H. Bock, J. Erbe and W. Beck, Chem. Ber., 116 (1983) 2691.
[11] (a) F. Botomley, in R.W.F. Hardy, F. Bottomley and R.C. Burns (eds.), A Treatise on Dinitrogen Fixation, Wiley, New York, 1979, p. 109; (b) A.D. Allen, F. Bottomley, R.O. Harris, V.P. Reinsalu and C.V. Senoff, J. Am. Chem. Soc., 89 (1967) 5595; (c) L.A.P. KaneMaguire, P.S. Sheridan, F. Basolo and R.G. Pearson, J. Am. Chem. Soc., 92 (1970) 5865.
-[12] D. Sellmann and J. Sutter, J. Biol. Inorg. Chem., I (1996) 587.
[13] D. Sellmann, T. Gotschalk-Gaudig, F.W. Heinemann and F. Knoch, Chem. Ber., 130 (1997) 571.
[14] H. Fischer, in Landolt-Börnstein, Neue Serie, II/I, Springer, Berlin, 1965, p. 46.
[15] H.M. Koepp. H. Wendt and H. Strehlow, Z. Elektrochem., 64 (1960) 483.
[16] D. Sellmann and W. Weber, J. Organomet. Chem., 304 (1986) 195.
[17] SHELXTL 5.03 for Siemens Crystallographic Reaserch Systems, Release 4 2I/V, Siemens Analytical X-Ray Instruments, Madison, WI, 1995.
[18] D. Sellmann and T. Gottschalk-Gaudig, unpublished results.
[19] D. Sellmann, P. Lechner, F. Knoch and M. Moll, Z. Naturforsch., Teil B. 46 (1991) 1585.
[20] (a) W.P. Griffith, N.T. McManus and A.C. Skapski, J. Chem. Soc., Chem. Commun., (1984) 434; (b) M. Haukka, T. Venalainen, M. Ahlgren and T.A. Pakkanen, Inorg. Chem., 34 (1995) 2931.
[21] D. Sellmann, B. Seuber, F. Knoch and M. Moll, Z. Anorg. Allg. Chem., 600 (1991) 95.

[^0]: * Corresponding author. Tel.: +499131857 360; fax: +499131857 367.
 ' For Part CXXVI see Ref. [1].
 ${ }^{2}$ Dedicated to Professor Wolfgang Beck on the occasion of his 65th birthday.

[^1]: - Equivalent isotropic U_{eq} is defined as one third of the trace of the ortho-
 gonalized $U_{i j}$ tensors.

