JOC The Journal of Organic Chemistry

Article

Redox-neutral photocatalytic radical cascade cyclization for the synthesis of CH2CN/CF2COOEt/CF3 containing benzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one derivatives.

Liang Liu, De-Yong Yang, Yan-Hong He, and Zhi Guan

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.0c01688 • Publication Date (Web): 18 Aug 2020

Downloaded from pubs.acs.org on August 18, 2020

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Redox-neutral photocatalytic radical cascade cyclization for the synthesis of CH₂CN/CF₂COOEt/CF₃ containing benzo[4,5]imidazo[2,1-a]isoquinolin-6(5*H*)-one derivatives.

Liang Liu, De-Yong Yang, Yan-Hong He,* and Zhi Guan*

School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China *Supporting Information Placeholder*

ABSTRACT: A novel method for the synthesis of benzo[4,5]imidazo[2,1-a]isoquinolin derivatives via visible-light-induced radical cascade cyclization is described. By using N-methacryloyl-2-phenylbenzoimidazoles and diverse radical precursors, various benzo[4,5]imidazo[2,1-a]isoquinolin derivatives containing $CH_2CN/CF_2COOEt/CF_3$ can be formed in good to excellent yields under mild reaction conditions. The method exhibits good functional group tolerance and a wide range of substrate scope.

INTRODUCTION

Nitrogen-containing heterocyclic compounds are a class of very important organic compounds, especially those having a benzo[4,5]imidazo[2,1-a]isoquinoline tetracyclic core skeleton, which are not only an important part of privileged synthetic intermediates but also present in some bioactive molecules as well as functional materials.¹ Some pharmaceutically active molecules and functionalized material molecules having a benzimidazole tetracyclic core skeleton are shown in Fig 1. Such as **A** (Modulating the potassium ion flux),² **B** (Antitumor),³ C (Agent for hemoglobinopathies)⁴ and D (Candidates for organic electronics).⁵ In the past decade, several methods for the benzo[4,5]imidazo[2,1synthetic alisoquinoline tetracyclic skeleton have been proposed, such as palladium-catalyzed intramolecular cyclization of benzimidazoles,⁶ dehydrogenative coupling of 2-[3,4dihydroisoquinolin-2(1H)-yl]aniline derivatives,7 TEMPOpromoted C(sp₃)-H amination,⁸ Cp*Rh^{III}-catalyzed [4+2] annulation of 2-arylimidazoles and a-diazoketoesters,9 silvercatalyzed decarboxylative radical cascade cyclization,¹⁰ and oxidative radical relay functionalization for the synthesis of benzimidazo[2,1-a]iso-quinolin-6(5H)-ones,¹¹ etc. Although these methods have synthesized benzo[4,5]imidazo[2,1a]isoquinoline tetracyclic core skeleton, there are still some limitations, such as the difficulty in preparing starting materials, the use of explosive peroxides, the unitary functional group and high reaction temperatures.

Therefore, it is necessary to develop more environmentally friendly, mild and efficient methods to construct benzo[4,5]imidazo[2,1-a]isoquinoline tetracyclic skeleton with diversified functional groups. In recent years, visible-lightinduced photoredox catalysis has attracted extensive attention in organic synthesis due to its inherent green and sustainable features, and some landmark achievements have been achieved.12-15 Some examples have been reported where C-X covalent bonds are activated by visible-light catalysis to form corresponding free radical intermediates, which are then subjected to radical addition or cyclization.¹⁶⁻¹⁸ However, there are very few reports on the construction of the benzo[4,5]imidazo[2,1-a]isoquinoline skeleton through visible know, light catalysis. far only As as we

Fig 1. Representative examples of benzoxazines.

Yu's group has reported a method of constructing the benzo[4,5]imidazo[2,1-a]isoquinoline skeleton via visible light catalysis.19 Although Yu et.al. synthesized benzo[4,5]imidazo[2,1-a]isoquinoline by visible light catalysis, this method used only one free radical precursor and the product yield is not high. Inspired by these works, we designed a visiblelight-induced photocatalyzed radical cascade cyclization to construct benzo[4,5]imidazo[2,1-a]isoquinoline tetracyclic skeleton. This is the first work for the synthesis of benzo[4,5]imidazo[2,1-a]isoquinolines containing CH₂CN/CF₂COOEt/CF₃ from N-methacryloyl-2phenvlbenzoimidazoles and BrCH₂CN/BrCF₂COOEt/CF₃(SO₂)Cl visible-lightunder induced photocatalysis. This strategy not only avoids cumbersome preparation of raw materials, stoichiometric oxidants and high reaction temperatures, but also introduces a variety of valuable functional groups such as CN/CF₂/CF₃ to benzo[4,5]imidazo[2,1-a]isoquinoline with excellent yield (up to 98%).

RESULTS AND DISCUSSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18 19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

Initially, we chose N-methacryloyl-2-phenylbenzoimidazole 1a and bromoacetonitrile 2a as model substrates (1a/2a = 1:2,molar ratio) to access the target product **3a**. In the presence of fac-Ir(ppy)₃ (3% mol), Na₂CO₃ (1.5 equiv) and CH₃CN (1 mL), the desired product **3a** was obtained in 84% isolated yield by irradiation of 9 W blue LEDs at room temperature for 24 hours (Table 1, entry 1). Next, some parameters affecting the reaction were screened, such as photocatalyst, base and solvent. It was found that some commonly used photocatalysts, such as Eosin Y, Ru(bpy)₃Cl₂· $6H_2O$ and [Ir(dtbbpy)(ppy)₂][PF₆] did not show catalytic activity (Table 1, entries 2-4). After comparing the reduction potentials of Eosin Y ($E_{1/2}$ * = -1.06 V vs. SCE in CH_3CN ,²⁰ Ru(bpy)₃Cl₂·6H₂O (E_{1/2}* Ru^{II}/Ru^{III} = -0.81 V vs. SCE in CH₃CN)²¹ and [Ir(dtbbpy)(ppy)₂][PF₆] ($E_{1/2}$ * Ir^{III}/Ir^{IV} = -0.89 V vs. SCE in CH₃CN)²¹ with bromoacetonitrile ($E_{1/2} = -$ 1.63 V vs. SCE in CH₃CN) (Fig. S8), it can be seen that their reducibility is insufficient to reduce bromoacetonitrile. A series of bases were also screened, such as KOAc, NaHCO₃, K₂HPO₄ and NEt₃, and an excellent yield of 91% can be satisfactorily obtained when using KOAc (Table 1, entries 5-8). Meanwhile, a set of solvents including DMF, DCM, acetone, and isopropanol were tested, but they were not as good as CH₃CN (Table 1, entries 9-12). Additionally, control experiments revealed that the photocatalyst and continuous illumination were necessary for the reaction, and the base as well as argon atmosphere greatly improved the reaction yield (Table 1, entries 13-16).

Under the optimized reaction conditions, using **2a** as the cyanomethylation reagent, the scope and limitations of visible-light-induced cyanomethylation/cyclization of N-methacryloyl-2-phenylbenzoimidazoles (1) were evaluated. It can be seen from **Table 2** that when the para-position/ortho-position of the 2-benzene ring of benzimidazole was substituted with an electron-donating group (-Me, -OMe or -OEt), the desired products **3b-3e** could be obtained in excellent yields (79-92%). However, when the para-position of the 2-benzene ring was substituted with an electron-withdrawing group (-F, -Cl or -Br), the corresponding products **3f-3h** were only obtained in moderate yields (63-74%). This indicates that electron-donating groups conducive to the improvement of the reaction yield, which may be because the electron-donating group increases the density of the electron cloud of the molecule, so that its

intermediate is more easily oxidized by the oxidized photocatalyst (as shown in **Scheme 2**). In addition, when the ortho and meta positions of

Table	1.	Optimization	of	reaction	conditions. ^a
<u>∕</u> _N					-

	Ph	otocatalyst	\sim					
) + Br CN	se, Solvent		E				
1a 2a 3a CN								
Entry	Photocatalyst	Base	Solvent	Yield ^b (%)				
1	<i>fac</i> -Ir(ppy) ₃	Na ₂ CO ₃	CH ₃ CN	84				
2	Eosin Y	Na ₂ CO ₃	CH ₃ CN	Trace				
3	$Ru(bpy)_3Cl_2{\cdot}6H_2O$	Na ₂ CO ₃	CH ₃ CN	Trace				
4	[Ir(dtbbpy)(ppy) ₂][PF ₆]	Na ₂ CO ₃	CH ₃ CN	Trace				
5	<i>fac</i> -Ir(ppy) ₃	KOAc	CH ₃ CN	91				
6	<i>fac</i> -Ir(ppy) ₃	NaHCO ₃	CH3CN	84				
7	<i>fac</i> -Ir(ppy) ₃	K_2HPO_4	CH ₃ CN	54				
8	<i>fac</i> -Ir(ppy) ₃	Et ₃ N	CH ₃ CN	55				
9	<i>fac</i> -Ir(ppy) ₃	KOAc	DMF	48				
10	<i>fac</i> -Ir(ppy) ₃	KOAc	DCM	51				
11	<i>fac</i> -Ir(ppy) ₃	KOAc	acetone	86				
12	<i>fac</i> -Ir(ppy) ₃	KOAc	isopropan	Trace				
13°	-	Na ₂ CO ₃	CH ₃ CN	Trace				
14 ^d	<i>fac</i> -Ir(ppy) ₃	Na ₂ CO ₃	CH ₃ CN	Trace				
15 ^e	<i>fac</i> -Ir(ppy) ₃	-	CH ₃ CN	32				
16 ^f	<i>fac</i> -Ir(ppy) ₃	Na ₂ CO ₃	CH ₃ CN	68				

^aUnless otherwise noted, reaction conditions: the mixture of **1a** (1.0 equiv, 0.2 mmol), **2a** (2.0 equiv, 0.4 mmol), photocatalyst (3 mol%) and base (1.5 equiv, 0.3 mmol) in degassed dry solvent (1 mL) was irradiated by 9 W blue LEDs under Ar atmosphere at rt for 14-24 h. ^bIsolated yield by flash chromatography. ^cNo photocatalyst. ^dIn the dark. ^eNo base. ^fUnder air atmosphere.

2-benzene ring were both substituted by -Cl, the reaction could still proceed smoothly, giving the desired product **3i** in moderate yield (58%). As expected, when the benzene ring of benzimidazole was substituted or both benzene rings in the substrate (1) were substituted, the desired products still could be successfully obtained (**3j-3l**, 63-98% yields).

To verify the versatility of this method, we expanded the source of free radicals for the reaction. Due to the importance of fluorine-containing compounds, we introduced F-containing groups into benzo[4,5]imidazo[2,1-a]isoquinoline. We tried to replace bromoacetonitrile 2a with ethyl difluorobromobromoacetate 2b to react with 1a under the optimal reaction conditions used in Table 2. It is gratifying that the difluoroalkylated product 4a was successfully obtained in 87% yield (Table 3). In addition, the structure of 4a was determined by X-ray crystallography analysis (Fig. S9). Next, the effects of different substituents on the reaction were explored. It was found that substrates (1) with either electrondonating groups (-Me, -OMe, -OEt) or electron-withdrawing groups (-F, -Cl, -Br) could be converted into corresponding

Table 2. Substrate scope of photoredox-catalyzed cyanomethylation/cyclization.^a

^aUnless otherwise noted, reaction conditions: **1** (0.2 mmol), **2a** (0.4 mmol), *fac*-Ir(ppy)₃ (3 mol%), KOAc (1.5 equiv), CH₃CN (1.0 mL), 9 W blue LEDs, at rt under argon atmosphere, 14-24 h. Isolated yield. ^bDCM instead of CH₃CN.

 Table 3.
 Substrate
 scope
 of
 photoredox-catalyzed

 difluoroalkylation/cyclization.^a

^aUnless otherwise noted, reaction conditions: **1** (0.2 mmol), **2b** (0.4 mmol), *fac*-Ir(ppy)₃ (3 mol%), KOAc (1.5 equiv), CH₃CN (1.0 mL), 9 W blue LEDs, at rt under argon atmosphere, 14-24 h. Isolated yield. ^bDCM instead of CH₃CN.

products **4a-4g** in good yields (76-91%). In addition, when two benzene rings in the substrate (1) were substituted, the reaction could still proceed smoothly, giving the desired products in satisfactory yields (**4h-4i**, 65-85%).

This reaction can also be easily used for the synthesis of trifluoromethylated products. The reaction of trifluoromethanesulfonyl chloride with **1a** proceeded smoothly to give the desired product **5a** in 56% isolated yield (**Table 4**). The exploration of the substrate scope showed that substrates containing electron-donating or electron-withdrawing groups were suitable for the reaction. By using this method, various CF₃-containing benzo[4,5]imidazo[2,1-a]isoquinolin-6(5*H*)-ones (**5a-5f**) could be obtained in moderate yields (46-67%).

 Table
 4.
 Substrate
 scope
 of
 photoredox-catalyzed

 trifluoroalkylation/cyclization.^a

^aUnless otherwise noted, reaction conditions: **1** (0.2 mmol), **2c** (0.4 mmol), *fac*-Ir(ppy)₃ (3 mol%), KOAc (1.5 equiv), CH₃CN (1.0 mL), 9 W blue LEDs, at rt under argon atmosphere, 14-24 h. Isolated yield.

In addition, we explored the reaction of **1a** with other free radical precursors, such as diethyl bromide difluoromethane diphosphonate **2d**, perfluoroiodide **2e**, and diethyl bromomalonate **2f**. It was found that **1a** can react with **2f** to produce **6a**, but the reaction between **1a** and **2d/2e** is not obvious, and a large amount of raw materials remain. The above experimental results show that **1a** can react with a variety of free radical precursors, but there are still some limitations (**Scheme 1**).

Scheme 1. The reaction of 1a with other free radical precursors.

In order to investigate the reaction mechanism, a series of control experiments were carried out using the reactions of N-methacryloyl-2-phenylbenzimidazole 1a with bromoacetonitrile 2a and ethyl difluorobromoacetate 2b, respectively (Scheme 2). First, when the radical scavengers

2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO, 2.0 eq) and 2,6ditert-butyl-4-methylphenol (BHT, 2.0 eq) were separately added to the reaction system under standard reaction conditions, the reaction was completely inhibited. Meanwhile, the TEMPO-CH₂CN and TEMPO-CF₂COOEt were detected by high resolution mass spectrometry (HRMS) analysis. The above experimental results indicated that a radical process might be involved in this transformation and • CH₂CN/ • CF₂COOEt radical might be formed. In order to confirm whether a radical chain process existed in this reaction, the light on/off experiments were performed (Fig. S1). The experiments results showed that the product yield still increases slightly under dark conditions, indicating a free radical chain propagation process in the reaction. The emission spectrum of the lamp and the ultraviolet-visible absorption spectra of substrates indicated that *fac*-Ir(ppy)₃ is the only light-absorbing substance in the reaction Furthermore, fluorescence (Fig. **S2-S3**). quenching experiments showed that the excited fac-Ir(ppy)₃* can be significantly quenched by 2a/2b (Fig. S4-S7). The CV experiments (Fig. S8) of 2a ($E_{1/2} = -1.63$ V vs. SCE in CH₃CN) and **2b** ($E_{1/2} = -1.60$ V vs. SCE in CH₃CN) showed that they can oxidize the excited fac-Ir(ppy)₃* ($E_{1/2}$ * Ir^{III}/Ir^{IV} = -1.73 V vs. SCE in CH₃CN)²¹ to a higher valence state, which indicates that 2a/2b may be involved in the oxidative quenching process of the excited *fac*-Ir(ppy)₃*.

Scheme 2. Control experiments.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

On the basis of the above experiments and previous works,¹⁶⁻ ¹⁸ a plausible mechanism of this visible-light-induced photocatalytic radical cascade cyclization reaction was described in Scheme 3. Initially, the ground-state $[fac-Ir(ppy)_3]$ is converted into an excited-state [fac-Ir(ppy)₃*] under the irradiation of visible light, and then excited-state [fac-Ir(ppy)₃*] undergoes a single electron transfer (SET) process with 2 to form radical • R, halogen anion and $[fac-Ir(ppy)^{3+}]$. Subsequently, the radical • R attacks the C-C double bond in the olefinic amide unit of the substrate 1 to form the radical intermediate I, which is converted into the radical intermediate II by radical addition cyclization to the benzene ring. Next, the radical intermediate II undergoes a single electron oxidation to produce the carbocation III, during which the $[fac-Ir(ppy)_3]$ is regenerated. In addition, intermediate II may be oxidized by 2 to generate intermediate III, with the formation of • R. Finally, the carbocation intermediate III is deprotonated under the action of a base to give the eventual product 3.

CONCLUSIONS

In conclusion, we have disclosed the first visible-lightinduced photocatalytic radical cascade cyclization strategy for the synthesis of CH₂CN/CF₂COOEt/CF₃ containing benzo[4,5]imidazo[2,1-a]isoquinolin derivatives from Nmethacryloyl-2-phenylbenzoimidazoles and readily available various radical precursors. This reaction uses visible light as an energy source with mild, green and sustainable characteristics. In addition, this method has the advantages of simple operation, good functional group compatibility, wide range of substrate scope and good to excellent yields.

Scheme 3. Proposed reaction mechanism.

EXPERIMENTAL SECTION

General Information. Unless otherwise noted, materials obtained from commercial suppliers were used directly without further purification. Flash column chromatography was performed using 200 - 300 mesh silica gel. All ¹H NMR spectra, ¹³C NMR and ¹⁹F NMR spectra were respectively recorded on 600 MHz. 150 MHz and 565 MHz NMR spectrometers using deuterochloroform (CDCl₃) as solvent at room temperature, all chemical shifts are given as δ value (ppm) with reference to tetramethylsilane (TMS) as an internal standard. The peak patterns are indicated as follows (s = singlet; d = doublet; t = triplet; m = multiplet; q = quartet). The coupling constants, J, are reported in Hertz (Hz). High-resolution mass spectra were obtained by using ESI ionization sources (Varian 7.0T FTICR-MS). Fluorescence emission was determined by fluorescence spectrophotometer (F-320 Gangdong, Tianjin). Melting points were taken on a WPX-4 apparatus and were uncorrected (Yice instrument equipment Co Ltd, Shanghai). The round bottom flask was made of borosilicate glass. The 9 W blue LEDs (Epistar Amou-0708, 220 V, 50 Hz, 420-500 nm) without any filters, and the spectral distribution and intensity of the lamp was shown in Fig. S2. The distance from the light source to the irradiation vessel about 4 cm. The starting materials 2 were obtained from commercial suppliers and starting materials 1 were prepared according to the reported procedures. 10,11,22

General Procedures for Preparation of 1. *Step1*: According to the reported procedures.²² To a 10 mL test tube was added CuBr₂ (1 mol%), *o*-phenylenediamine (0.2 mmol), benzylamine (0.3 mmol) and toluene (2 mL). The reaction mixture was stirred at 100 °C under air for 24 h. After cooling to room temperature, the resulting mixture was filtered through a short path of silica gel, eluting with ethyl acetate. The volatile compounds were removed in vacuo and the residue was purified by flash column chromatography on silica gel (eluent: hexane/ethyl acetate 5 :1). Finally get the 2-phenylimidazole derivatives.

Step2: According to the reported procedures.¹⁰⁻¹¹ To the solution of benzimidazole (5 mmol, 1.0 equiv.) and DMAP (1.0 mmol, 0.2 equiv.) in DCM (0.5 M) was added Et₃N (10 mmol, 2.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

equiv.) and methacryloyl chloride (10 mmol, 2.0 equiv.) at 0 °C. The solution was warmed up to room temperature and stirred for 12–24 h. Reaction progress was checked by thin layer chromatography (TLC). The mixture was diluted with DCM (20 mL) and saturated NaHCO₃ solution (20 mL). The organic and aqueous layers were separated. The aqueous layer was extracted with DCM (20 mL ×2). The combined organic layer was washed with brine, dried over Na₂SO₄, filtered and concentrated in vacuo to give a residue, which was purified by flash chromatography and then recrystallized from nhexane/EtOAc to afford the product 1.

General Procedures for Preparation of 3/4/5. A round bottomed flask equipped with a magnetic stirrer bar was charged with fac-Ir(ppy)₃ (3 mol %), olefinic amide 1 (0.2 mmol), KOAc (0.3 mmol) and bromoacetonitrile 2a /ethyl bromodifluoroacetate 2b /trifluoromethane chloride 2c (0.4 mmol). The flask was evacuated and backfilled with Ar (three times). Then degassed dry CH₃CN (1 mL) was injected under Ar. The resultant mixture was stirred at room temperature under irradiation of 9 W blue LEDs. The reaction was monitored by thin-layer chromatography (TLC). After completion of the reaction, water (10 mL) was added into the reaction mixture. The resulting mixture was extracted with ethyl acetate (10 mL \times 3). The organic layers were combined, and dried with anhydrous Na₂SO₄. The solvent was removed in vacuo, and the residue was purified by flash column chromatography (petroleum ether/EtOAc = 3:1 to 10:1, v/v) to give the desired product 3/4/5.

Gram-Scale Synthesis of 3a. A round bottomed flask equipped with a magnetic stirrer bar was charged with olefinic amide 1 (5.0 mmol), fac-Ir(ppy)₃ (0.15 mmol), KOAc (7.5 mmol) and bromoacetonitrile 2a (10.0 mmol). The flask was evacuated and backfilled with Ar (three times). Then degassed dry CH₃CN (20 mL) was injected under Ar. The resultant mixture was stirred at room temperature under irradiation of two 9 W blue LEDs. The reaction was monitored by thin-laver chromatography (TLC). After completion of the reaction, water (20 mL) was added into the reaction mixture. The resulting mixture was extracted with ethyl acetate (40 mL \times 3). The organic layers were combined, and dried with anhydrous Na₂SO₄. The solvent was removed in vacuo, and the residue was purified by flash column chromatography (petroleum ether/EtOAc = 5:1, v/v) to give the desired product 3a (0.93 g, 62%).

Characterization of products. 3-(5-methyl-6-oxo-5,6dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-5-

yl)propanenitrile (**3a**): Isolated yield (54.8 mg, 91%), White solid, Melting range: 114.2-118.8 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.52 (d, *J* = 7.8 Hz, 1H), 8.33 (d, *J* = 7.5 Hz, 1H), 7.82 (d, *J* = 7.6 Hz, 1H), 7.65-7.62 (m, 1H), 7.56-7.54 (m, 1H), 7.48-7.43 (m, 3H), 2.90-2.85 (m, 1H), 2.42-2.37 (m, 1H), 2.11-2.06 (m,1H), 2.00-1.95 (m, 1H), 1.76 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 171.6, 149.1, 144.0, 139.1, 132.4, 131.2, 128.6, 126.5, 126.3, 126.0, 125.7, 123.1, 120.0, 118.1, 115.7, 48.7, 36.6, 29.7, 13.6; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₉H₁₅N₃NaO 324.1107; Found 324.1106.

3-(3,5-dimethyl-6-oxo-5,6-dihydrobenzo[4,5]imidazo[2,1-

a]isoquinolin-5-yl)propanenitrile (**3b**): Isolated yield (53.0 mg, 84%), White solid, Melting range: 148.1-149.5 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.39 (d, *J* = 8.0 Hz, 1H), 8.32 (d, *J* = 7.4 Hz, 1H), 7.80 (d, *J* = 7.6 Hz, 1H), 7.46-7.41 (m, 2H), 7.36 (d, *J*

= 7.9 Hz, 1H), 7.25 (s, 1H), 2.89-2.84 (m, 1H), 2.50 (s, 3H), 2.41-2.36 (m,1H), 2.10-2.05 (m, 1H), 2.00- 1.94 (m, 1H), 1.74 (s, 3H); $^{13}C{^{1}H}$ NMR (150 MHz, CDCl₃): δ 171.7, 149.3, 144.1, 143.2, 139.1, 131.1, 129.7, 126.5, 126.2, 126.1, 125.7, 120.5, 119.8, 118.2, 115.6, 48.7, 36.7, 29.7, 22.0, 13.6; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₁₈N₃O 316.1444; Found 316.1445.

3-(3-methoxy-5-methyl-6-oxo-5,6-

dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-5-

yl)propanenitrile (3c): Isolated yield (58.3 mg, 88%), White solid, Melting range: 145.0-148.8 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.45 (d, J = 8.6 Hz, 1H), 8.30 (d, J = 7.6 Hz, 1H), 7.78 (d, J = 7.6 Hz, 1H), 7.45-7.39 (m, 2H), 7.09 (d, J = 8.4 Hz, 1H), 6.94 (s, 1H), 3.94 (s, 3H), 2.90-2.85 (m, 1H), 2.37-2.32 (m,1H), 2.12-2.07 (m, 1H), 2.03-1.98 (m, 1H), 1.75 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 171.6, 163.1, 149.3, 144.1, 141.2, 131.1, 128.6, 126.2, 125.5, 119.6, 118.1, 115.9, 115.5, 114.2, 111.6, 55.7, 48.9, 36.8, 29.7, 13.6; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₁₈N₃O₂ 332.1394; Found 332.1392.

3-(3-ethoxy-5-methyl-6-oxo-5,6-

dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-5-

yl)propanenitrile (**3d**): Isolated yield (63.6 mg, 92%), White solid, Melting range: 117.2-122.5 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.44 (d, J = 8.7 Hz, 1H), 8.30 (d, J = 7.8 Hz, 1H), 7.77 (d, J = 7.7 Hz, 1H), 7.44-7.39 (m, 2H), 7.06 (dd, J = 8.7, 1.9 Hz, 1H), 6.93 (d, J = 2.2 Hz, 1H), 4.18-4.15 (m, 2H), 2.89-2.84 (m, 1H), 2.37-2.32 (m,1H), 2.12-2.06 (m, 1H), 2.03-1.98 (m, 1H), 1.74 (s, 3H), 1.49 (t, J = 6.9 Hz, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 171.7, 162.5, 149.3, 144.0, 141.2, 131.1, 128.6, 126.2, 125.5, 119.6, 118.1, 115.6, 115.6, 114.5, 112.1, 64.1, 48.9, 36.8, 29.7, 14.7, 13.6; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₂₀N₃O₂ 346.1550; Found 346.1550.

3-(1,5-dimethyl-6-oxo-5,6-dihydrobenzo[4,5]imidazo[2,1a]isoquinolin-5-yl)propanenitrile (**3e**): Isolated yield (49.8 mg, 79%), White liquid, ¹H NMR (600 MHz, CDCl₃): δ 8.36-8.34 (m, 1H), 7.84-7.84 (m, 1H), 7.49-7.42 (m, 3H), 7.37-7.33 (m, 2H), 3.05 (s, 3H), 2.90-2.85 (m, 1H), 2.40-2.35 (m, 1H), 2.09-2.04 (m, 1H), 2.00-1.95 (m, 1H), 1.74 (s, 3H); ¹³C {¹H} NMR (150 MHz, CDCl₃): δ 171.7, 149.3, 144.1, 140.6, 140.1, 131.9, 131.0, 130.3, 126.0, 126.0, 123.5, 121.7, 120.3, 118.2, 115.7, 48.7, 36.9, 30.1, 24.6, 13.6; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₁₈N₃O 316.1444; Found 316.1444.

3-(3-fluoro-5-methyl-6-oxo-5,6-

dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-5-

yl)propanenitrile (**3f**): Isolated yield (47.2 mg, 74%), White solid, Melting range: 165.5-170.0 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.54-8.52 (m, 1H), 8.32 (d, *J* = 7.1 Hz, 1H), 7.81 (d, *J* = 7.5 Hz, 1H), 7.48-7.43 (m, 2H), 7.28-7.27 (m, 1H) 7.18-7.16 (m, 1H) 2.90-2.85 (m, 1H), 2.36-2.31 (m,1H), 2.15-2.10 (m, 1H), 2.04-1.99 (m, 1H), 1.76 (s, 3H); ¹³C {¹H} NMR (150 MHz, CDCl₃): δ 170.9, 165.2 (d, *J* = 254.4 Hz), 148.3, 144.0, 141.9 (d, *J* = 7.6 Hz), 131.1, 129.1 (d, *J* = 9.0 Hz), 126.4, 126.0, 120.0, 119.6 (d, *J* = 2.9 Hz), 117.7, 116.7 (d, *J* = 22.4 Hz), 115.6, 112.9 (d, *J* = 23.3 Hz)., 48.9, 36.7, 29.5, 13.6; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₁₅FN₃O 320.1194; Found 320.1194.

3-(3-chloro-5-methyl-6-oxo-5,6-

dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-5-

yl)propanenitrile (3g): Isolated yield (42.3 mg, 63%), White solid, Melting range: 164.0-169.4 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.46 (d, J = 8.4 Hz, 1H), 8.32 (d, J = 8.3 Hz, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.54 (d, J = 8.3 Hz, 1H), 7.48-7.46 (m,

3H), 2.90-2.85 (m, 1H), 2.38-2.33 (m, 1H), 2.15-2.09 (m, 1H), 2.05-2.00 (m, 1H), 1.77 (s, 3H); $^{13}C\{^{1}H\}$ NMR (150 MHz, CDCl₃): δ 170.8, 148.2, 143.9, 140.8, 138.7, 131.1, 129.3, 127.9, 126.5, 126.2, 126.0, 121.7, 120.1, 117.7, 115.7, 48.7, 36.6, 29.5, 13.6; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₁₅ClN₃O 336.0898; Found 336.0897.

3-(3-bromo-5-methyl-6-oxo-5,6-

dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-5-

yl)propanenitrile (**3h**): Isolated yield (52.5 mg, 69%), White solid, Melting range: 168.5-170.4 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.41-8.38 (m, 1H), 8.33-8.32 (m, 1H), 7.84-7.81 (m, 1H), 7.0-7.68 (m, 1H), 7.62 (s, 1H) 7.47-7.46 (m, 2H), 2.90-2.85 (m, 1H), 2.38-2.33 (m, 1H), 2.14-2.09 (m, 1H), 2.06-2.01 (m, 1H), 1.77 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 170.8, 148.2, 143.8, 141.0, 132.2, 131.1, 129.0, 128.1, 127.1, 126.5, 126.3, 122.1, 120.1, 117.8, 115.7, 48.7, 36.7, 29.5, 13.6; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₁₅BrN₃O 380.0393; Found 380.0393.

3-(1,2-dichloro-5-methyl-6-oxo-5,6-

dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-5-

yl)propanenitrile (**3i**): Isolated yield (42.9 mg, 58%), White solid, Melting range: 231.5-233.8 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.37-8.35 (m, 1H), 7.95-7.93 (m, 1H), 7.71 (d, *J* = 8.5 Hz, 1H), 7.50-7.49 (m, 2H), 7.37 (d, *J* = 8.5 Hz, 1H), 2.91-2.86 (m, 1H), 2.38-2.33 (m,1H), 2.16-2.10 (m, 1H), 2.04-1.99 (m, 1H), 1.76 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 170.3, 145.8, 143.8, 140.0, 135.9, 132.5, 130.4, 128.0, 127.1, 126.5, 124.9, 123.3, 121.1, 117.8, 115.7, 48.8, 36.7, 29.8, 13.6; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₁₄Cl₂N₃O 370.0508; Found 370.0506.

3-(5,9,10-trimethyl-6-oxo-5,6-

dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-5-

yl)propanenitrile (**3***j*): Isolated yield (52.7 mg, 80%), White liquid, ¹H NMR (600 MHz, CDCl₃): δ 8.49-8.47 (m, 1H), 8.11 (s, 1H), 7.62-7.58 (m, 2H), 7.54-7.51 (m, 1H), 7.46 (d, *J* = 7.9 Hz, 1H), 2.90-2.85 (m, 1H), 2.43-2.36 (m, 1H), 2.09-2.04 (m, 1H), 1.99-1.94 (m, 1H), 1.75 (s, 3H); ¹³C {¹H} NMR (150 MHz, CDCl₃): δ 171.5, 148.3, 142.5, 138.9, 135.4, 135.3, 132.0, 129.5, 128.6, 126.3, 125.7, 123.5, 120.3, 118.1, 116.0, 48.6, 36.8, 29.6, 20.5, 20.4, 13.6; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₂₀N₃O 330.1601; Found 330.1597.

3-(3,5,9,10-tetramethyl-6-oxo-5,6-

dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-5-

yl)propanenitrile (**3**k): Isolated yield (67.3 mg, 98%), White solid, Melting range: 180.5-181.8 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.53 (d, J = 7.2 Hz, 1H), 8.12 (s, 1H), 7.63 (s, 1H), 7.38 (d, J = 7.8 Hz, 1H), 7.25 (s, 1H), 2.90-2.85 (m, 1H), 2.51-2.30 (m, 10H), 2.09-2.03 (m, 1H), 2.02-1.97 (m, 1H), 1.75 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 171.6, 148.2, 143.8, 139.3, 136.0, 135.9, 130.0, 128.9, 127.1, 126.2, 119.3, 118.1, 116.0, 48.7, 36.7, 29.8, 22.1, 20.6, 20.4, 13.7; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₂₂N₃O 344.1757; Found 344.1757.

3-(3-chloro-5,9,10-trimethyl-6-oxo-5,6-

dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-5-

51*yl)propanenitrile* (31): Isolated yield (45.8 mg, 63%), White52solid, Melting range: 194.1-195.4 °C; ¹H NMR (600 MHz,53CDCl₃): δ 8.55 (d, J = 8.0 Hz, 1H), 8.12 (s, 1H), 7.62 (s, 1H),547.53 (d, J = 7.7 Hz, 1H), 7.44 (s, 1H), 2.90-2.85 (m, 1H), 2.43-552.30 (m,7H), 2.13-2.01 (m, 2H), 1.77 (s, 3H); ¹³C {¹H} NMR56(150 MHz, CDCl₃): δ 170.7, 147.2, 140.8, 138.9, 136.2, 136.1,57129.4, 129.1, 128.2, 126.1, 121.2, 119.8, 117.7, 116.0, 48.7,

36.7, 29.6, 20.6, 20.5, 13.7; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₁₉ClN₃O 364.1211; Found 364.1211.

ethyl-2,2-difluoro-3-(5-methyl-6-oxo-5,6-

dihydrobenzo[4,5]*imidazo*[2,1-*a*]*isoquino*l*in*-5-*y*]*propanoate* (*4a*): Isolated yield (66.9 mg, 87%), White solid, Melting range: 116.7-119.0 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.52 (d, J = 7.6 Hz, 1H), 8.36 (d, J = 7.2 Hz, 1H), 7.84 (d, J = 7.8 Hz, 1H), 7.58-7.55 (m, 1H), 7.52-7.50 (m, 1H), 7.48-7.42 (m, 3H), 3.97-3.85 (m, 2H), 3.45-3.38 (m, 1H), 3.09-3.01 (m, 1H), 1.76 (s, 3H), 1.13 (t, J = 7.1 Hz, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 171.4, 163.3 (t, J = 31.8 Hz), 149.3, 144.0, 138.7, 131.5, 131.3, 128.3, 126.8, 126.2, 126.0, 125.7, 122.7, 119.9, 115.7, 114.4 (dd, J_I = 251.2 Hz, J_2 = 255.8 Hz), 63.1, 45.3 (d, J = 4.6 Hz), 44.5 (t, J = 23.6 Hz), 31.3, 13.6; ¹⁹F NMR (565 MHz, CDCl₃): δ -98.8, -99.3, -103.8, -104.2; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₁H₁₈F₂N₂NaO₃ 407.1177; Found 407.1175.

ethyl-3-(3,5-dimethyl-6-oxo-5,6-

dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-5-yl)-2,2-

difluoropropanoate (4b): Isolated yield (64.5 mg, 81%), White solid, Melting range: 123.9-126.6 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.41 (d, J = 8.0 Hz, 1H), 8.35 (d, J = 7.3 Hz, 1H), 7.82 (d, J = 7.8 Hz, 1H), 7.45-7.40 (m, 2H), 7.32 (d, J = 8.0 Hz, 1H), 7.25 (s, 1H), 3.96-3.84 (m, 2H), 3.43-3.36 (m, 1H), 3.08-3.00 (m, 1H), 2.46 (s, 3H), 1.74 (s, 3H), 1.12 (t, J = 7.1 Hz, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 171.5, 163.3 (t, J = 31.9 Hz), 149.5, 143.9, 142.0, 138.7, 131.4, 129.3, 127.3, 126.2, 126.0, 125.5, 120.0, 119.7, 115.6, 114.4 (dd, J_i = 249.3 Hz, J_2 = 254.2 Hz), 63.0, 45.2 (d, J = 4.7 Hz), 44.4 (t, J = 22.3 Hz), 31.3, 21.8, 13.6; ¹⁹F NMR (565 MHz, CDCl₃): δ -98.6, -99.1, -103.9, -104.4; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₂₁F₂N₂O₃ 399.1515; Found 399.1514.

ethyl-2,2-difluoro-3-(3-methoxy-5-methyl-6-oxo-5,6-

dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-5-yl)propanoate (4c): Isolated yield (70.4 mg, 85%), White solid, Melting range: 148.3-156.4 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.52 (d, *J* = 7.9 Hz, 1H), 8.34 (d, *J* = 7.7 Hz, 1H), 7.82 (d, *J* = 7.7 Hz, 1H), 7.46-7.40 (m, 2H), 7.07 (dd, *J*₁ = 8.7, *J*₂ = 2.0 Hz, 1H), 6.93 (d, *J* = 2.0 Hz, 1H), 4.00-3.90 (m, 5H), 3.45-3.38 (m, 1H), 3.06-2.98 (m, 1H), 1.75 (s, 3H), 1.15 (t, *J* = 7.1 Hz, 3H); ¹³C {¹H} NMR (150 MHz, CDCl₃): δ 171.4, 163.3 (t, *J* = 32.0 Hz), 162.3, 149.5, 140.8, 131.3, 128.8, 128.2, 125.9, 125.3, 124.7, 119.4, 115.6, 114.3 (dd, *J*₁ = 251.3 Hz, *J*₂ = 256.0 Hz), 114.2, 112.5, 63.1, 55.6, 45.5 (d, *J* = 5.2 Hz), 44.4 (t, *J* = 23.5 Hz), 31.4, 13.6; ¹⁹F NMR (565 MHz, CDCl₃): δ -98.5, -98.9, -103.9, -104.4; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₂₁F₂N₂O₄ 415.1464; Found 415.1463.

ethyl-3-(3-ethoxy-5-methyl-6-oxo-5,6-

dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-5-yl)-2,2-

difluoropropanoate (4d): Isolated yield (78.0 mg, 91%), White solid, Melting range: 128.7-129.9 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.44 (d, *J* = 8.7 Hz, 1H), 8.32 (d, *J* = 7.9 Hz, 1H), 7.78 (d, *J* = 7.6 Hz, 1H), 7.43-7.38 (m, 2H), 7.03 (d, *J* = 8.7 Hz, 1H), 6.92 (s, 1H), 4.15-4.12 (m, 2H), 4.00-3.90 (m, 2H), 3.44-3.37 (m, 1H), 3.04-2.96 (m, 1H), 1.74 (s, 3H), 1.47 (t, *J* = 6.5 Hz, 3H), 1.15 (t, *J* = 7.1 Hz, 3H); ¹³C {¹H} NMR (150 MHz, CDCl₃): δ 171.4, 163.3 (t, *J* = 31.9 Hz), 161.7, 149.6, 144.0, 140.8, 131.4, 130.0, 128.2, 125.9, 125.2, 119.4, 115.6, 115.3, 114.6, 113.0, 114.4 (dd, *J_i*= 249.5 Hz, *J₂*= 253.8 Hz), 63.3, 45.5 (d, *J* = 4.1 Hz), 44.5 (t, *J* = 22.4 Hz), 31.4, 14.7, 13.6; ¹⁹F NMR (565 MHz, CDCl₃): δ -98.6, -99.0, -103.9, -104.4; HRMS (ESI)

58 59 60

47

48

49

50

1

2

18

31

45

m/z: $[M+H]^+$ Calcd for $C_{23}H_{23}F_2N_2O_4$ 429.1620; Found 429.1622.

ethyl-2,2-difluoro-3-(3-fluoro-5-methyl-6-oxo-5,6-

3 dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-5-yl)propanoate 4 (4e): Isolated yield (61.2 mg, 76%), White solid, Melting range: 5 130.0-131.5 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.54-8.52 (m, 6 1H), 8.34 (d, J = 8.2 Hz, 1H), 7.82 (d, J = 7.3 Hz, 1H), 7.47-7 7.42 (m, 2H), 7.25-7.22 (m, 1H), 7.17-7.15 (m, 1H), 4.03 (q, J = 7.2 Hz, 2H), 3.47-3.39 (m, 1H), 3.00-2.92 (m, 1H), 1.76 (s, 8 3H), 1.19 (t, J = 7.1 Hz, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃): 9 δ 170.8, 164.6 (d, J = 253.2 Hz), 163.1 (t, J = 31.9 Hz), 148.6, 10 143.9, 141.7 (d, J = 7.8 Hz), 131.4, 128.8 (d, J = 9.1 Hz), 126.2, 11 125.8, 119.9, 119.1 (d, J = 2.8 Hz), 116.3 (d, J = 22.4 Hz), 12 115.7, 114.4 (dd, J_1 = 250.5 Hz, J_2 = 253.1 Hz), 113.8 (d, J = 13 23.4 Hz), 63.2, 45.5 (d, J = 3.9 Hz), 44.5 (t, J = 22.8 Hz), 31.2, 14 13.6; ¹⁹F NMR (565 MHz, CDCl₃): δ -99.9, -100.4, -102.9, -15 103.3, -106.4; HRMS (ESI) m/z: [M+H]⁺ Calcd for 16 C₂₁H₁₈F₃N₂O₃ 403.1264; Found 403.1264. 17

ethyl-3-(3-chloro-5-methyl-6-oxo-5,6-

dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-5-yl)-2,2-

19 difluoropropanoate (4f): Isolated yield (68.7 mg, 82%), White 20 solid, Melting range: 121.0-126.3 °C; ¹H NMR (600 MHz, 21 CDCl₃): δ 8.45 (d, J = 8.3 Hz, 1H), 8.34 (d, J = 6.9 Hz, 1H), 22 7.82 (d, J = 7.0 Hz, 1H), 7.49-7.42 (m, 4H), 4.02 (q, J = 7.1 Hz, 2H), 3.46-3.39 (m, 1H), 3.02-2.94 (m, 1H), 1.75 (s, 3H), 1.18 23 (t, J = 7.1 Hz, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 170.7, 24 163.0 (t, J=32.0 Hz), 148.4, 143.9, 140.5, 137.6, 131.4, 128.9, 25 127.6, 127.0, 126.2, 126.0, 121.4, 120.0, 115.7, 114.2 (dd, J_I = 26 250.3 Hz, $J_2 = 253.1$ Hz), 63.3, 45.3 (d, J = 4.1 Hz), 44.4 (t, J =27 23.3 Hz), 31.1, 13.7; ¹⁹F NMR (565 MHz, CDCl₃): δ -99.3, -28 99.7, -103.3, -103.8; HRMS (ESI) m/z: [M+H]+ Calcd for 29 C₂₁H₁₈ClF₂N₂O₃ 419.0969; Found 419.0967. 30

ethyl-3-(3-bromo-5-methyl-6-oxo-5,6-

dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-5-yl)-2,2-

32 difluoropropanoate (4g): Isolated yield (79.7 mg, 86%), White 33 solid, Melting range: 153.8-156.3 °C; ¹H NMR (600 MHz, 34 CDCl₃): δ 8.45 (d, J = 8.3 Hz, 1H), 8.35-8.34 (m, 1H), 7.83-35 7.82 (m, 1H), 7.65 (dd, $J_1 = 8.4$, $J_2 = 1.8$ Hz, 1H), 7.61 (d, J =36 1.6 Hz, 1H), 7.47-7.43 (m, 2H), 4.03 (q, J = 7.2 Hz, 2H), 3.46-37 3.39 (m, 1H), 3.03-2.95 (m, 1H), 1.76 (s, 3H), 1.19 (t, J = 7.2)Hz, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 170.6, 163.0 (t, 38 J =32.0 Hz), 148.5, 143.9, 140.6, 131.8, 131.4, 130.0, 127.7, 39 126.2, 126.0, 125.9, 121.8, 120.0, 115.7, 114.2 (dd, $J_1 = 250.2$ 40 Hz, $J_2 = 253.4$ Hz), 64.0, 63.1, 45.3 (d, J = 4.8 Hz), 44.5 (t, J =41 22.5 Hz), 31.1, 13.7; ¹⁹F NMR (565 MHz, CDCl₃): δ -99.1, -42 99.6, -103.4, -103.9; HRMS (ESI) m/z: [M+H]+ Calcd for 43 C₂₁H₁₈BrF₂N₂O₃ 463.0463; Found 463.0461. 44

ethyl-2,2-difluoro-3-(3,5,9,10-tetramethyl-6-oxo-5,6dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-5-yl)propanoate

46 (4h): Isolated yield (72.5 mg, 85%), White solid, Melting range: 47 151.1-152.8 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.37 (d, J = 8.0 48 Hz, 1H), 8.13 (s, 1H), 7.57 (s, 1H), 7.30 (d, J = 8.0 Hz, 1H), 49 7.23 (s, 1H), 3.94-3.82 (m, 2H), 3.42-3.35 (m, 1H), 3.06-2.98 50 (m, 1H), 2.45-2.40 (m, 9H), 1.73 (s, 3H), 1.11 (t, J = 7.2 Hz, 51 3H); ${}^{13}C{}^{1}H$ NMR (150 MHz, CDCl₃): δ 171.4, 163.4 (t, J = 31.9 Hz), 148.8, 142.2, 141.6, 138.5, 135.0, 134.8, 129.7, 129.3, 52 127.3, 126.0, 120.2, 119.9, 116.0, 114.4 (dd, J_1 = 249.0 Hz, J_2 = 53 254.3 Hz), 63.0, 45.1 (d, J = 5.1 Hz), 44.5 (t, J = 23.6 Hz), 31.3, 54 21.8, 20.5, 20.4, 13.6; ¹⁹F NMR (565 MHz, CDCl₃): δ -98.4, -55 98.9, -104.2, -104.7; HRMS (ESI) m/z: [M+H]+ Calcd for 56 C₂₄H₂₅F₂N₂O₃ 427.1828; Found 427.1827. 57

ethyl-3-(3-chloro-5,9,10-trimethyl-6-oxo-5,6-

dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-5-yl)-2,2-

difluoropropanoate (4i): Isolated yield (58.1 mg, 65%), White solid, Melting range: 172.0-173.9 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.51-8.50 (m, 1H), 8.13 (s, 1H), 7.61 (s, 1H), 7.49-7.48 (m, 1H), 7.43 (s, 1H), 4.02 (q, J = 7.1 Hz, 2H), 3.45-3.38 (m, 1H), 3.02-2.94 (m, 1H), 2.43-2.41 (m, 6H), 1.76 (s, 3H), 1.19 (t, J = 7.1 Hz, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 170.5, 163.0 (t, J = 32.1 Hz), 147.5, 141.4, 140.4, 137.6, 135.7, 135.5, 129.5, 129.0, 127.8, 127.0, 121.1, 119.9, 116.0, 114.1 $(dd, J_1 = 249.7 Hz, J_2 = 253.5 Hz), 63.3, 45.2 (d, J = 4.3 Hz),$ 44.5 (t, J = 23.7 Hz), 31.2, 20.5, 20.4, 13.7; ¹⁹F NMR (565 MHz, CDCl₃): δ -99.2, -99.6, -103.5, -104.0; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₂₂ClF₂N₂O₃ 447.1282; Found 447.1281.

5-methyl-5-(2,2,2-trifluoroethyl)benzo[4,5]imidazo[2,1alisoquinolin-6(5H)-one (5a): Isolated yield (37.0 mg, 56%), White solid, Melting range: 127.6-130.1 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.54 (d, J = 7.7 Hz, 1H), 8.36 (d, J = 7.3 Hz, 1H), 7.84 (d, J = 8.2 Hz, 1H), 7.61-7.59 (m, 1H), 7.54-7.52 (m, 1H), 7.48-7.43 (m, 3H), 3.51-3.44 (m, 1H), 2.98-2.91 (m, 1H), 1.76 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 170.9, 149.2, 143.9, 138.5, 131.6, 131.4, 128.4, 126.4, 126.4, 126.2, 125.8, 125.0 (q, J = 277.0 Hz), 122.4, 119.9, 115.7, 45.3, 44.0 (q, J =27.8 Hz), 30.9; ¹⁹F NMR (565 MHz, CDCl₃): δ -61.4; HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{18}H_{14}F_3N_2O^+$ 331.1053; Found 331.1051.

3,5-dimethyl-5-(2,2,2-trifluoroethyl)benzo[4,5]imidazo[2,1a]isoquinolin-6(5H)-one (5b): Isolated yield (44.1 mg, 64%), White solid, Melting range: 203.4-208.1 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.42 (d, J = 7.9 Hz, 1H), 8.34 (d, J = 7.4 Hz, 1H), 7.82 (d, J = 7.8 Hz, 1H), 7.47-7.41 (m, 2H), 7.35 (d, J = 7.9 Hz, 1H), 7.25 (s, 1H), 3.49-3.42 (m, 1H), 2.97-2.90 (m, 1H), 2.48 (s, 3H), 1.75 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 171.1, 149.4, 143.8, 142.4, 138.5, 131.3, 129.6, 129.6, 126.8, 126.4, 126.1, 125.6, 124.9 (q, J = 276.8 Hz), 119.7, 115.6, 45.2,44.0 (q, J = 27.5 Hz), 30.9, 21.9; ¹⁹F NMR (565 MHz, CDCl₃): δ -61.3; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₁₆F₃N₂O 345.1209; Found 345.1209.

3-methoxy-5-methyl-5-(2,2,2-

trifluoroethyl)benzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (5c): Isolated yield (45.4 mg, 63%), White solid, Melting range: 154.2-156.4 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.47 (d, J = 8.7 Hz, 1H), 8.32 (d, J = 7.8 Hz, 1H), 7.79 (d, J = 7.6 Hz, 1H), 7.45-7.39 (m, 2H), 7.08-7.07 (m, 1H), 6.94 (s, 1H), 3.92 (s, 3H), 3.50-3.43(m, 1H), 2.94-2.86(m, 1H), 1.75(s, 3H); ${}^{13}C{}^{1}H$ NMR (150 MHz, CDCl₃): δ 171.0, 162.5, 149.4, 144.1, 140.6, 131.3, 128.4, 126.1, 125.4, 124.9 (q, J = 277.1 Hz), 119.5, 115.6, 115.2, 114.0, 112.4, 55.6, 45.4, 44.0 (q, *J* = 27.7 Hz), 31.1; ¹⁹F NMR (565 MHz, CDCl₃): δ -61.3; HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{19}H_{16}F_3N_2O_2$ 361.1158; Found 361.1157.

3-bromo-5-methyl-5-(2,2,2-

trifluoroethyl)benzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (5d): Isolated yield (37.6 mg, 46%), White solid, Melting range: 241.0-244.1 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.39 (d, J = 8.4Hz, 1H), 8.35-8.34 (m, 1H), 7.84-7.82 (m, 1H), 7.68-7.66 (m, 1H), 7.62 (s, 1H), 7.49-7.45 (m, 2H), 3.51-3.44 (m, 1H), 2.94-2.86 (m, 1H), 1.77 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 171.2, 148.4, 143.9, 140.2, 132.0, 131.3, 129.7, 127.8, 126.4, 126.3, 126.2, 124.8 (q, J = 277.2 Hz), 121.5, 120.1, 115.7, 45.2,44.0 (q, J = 27.9 Hz), 30.8; ¹⁹F NMR (565 MHz, CDCl₃): δ -

58

61.4; HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{18}H_{13}BrF_3N_2O$ 409.0158; Found 409.0156.

5,9,10-trimethyl-5-(2,2,2-

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

trifluoroethyl)benzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (5e): Isolated yield (40.9 mg, 57%), White solid, Melting range: 170.1-172.9 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.50 (d, J = 8.5 Hz, 1H), 8.14 (s, 1H), 7.59 (s, 1H), 7.58-7.55 (m, 1H), 7.52-7.49 (m, 1H), 7.45 (d, J = 7.9 Hz, 1H), 3.50-3.42 (m, 1H), 2.96-2.89 (m, 1H), 2.43-2.41 (m, 6H), 1.75 (s, 3H); ¹³C {¹H} NMR (150 MHz, CDCl₃): δ 170.9, 148.5, 142.4, 138.3, 135.2, 135.2, 131.3, 129.7, 128.4, 126.4, 126.2, 125.0 (q, J = 277.2 Hz), 122.7, 120.1, 116.0, 45.2, 44.0 (q, J = 27.6 Hz), 30.9, 20.5, 20.4; ¹⁹F NMR (565 MHz, CDCl₃): δ -61.4; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₁₈F₃N₂O 359.1366; Found 359.1365.

3,5,9,10-tetramethyl-5-(2,2,2-

trifluoroethyl)benzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (5f): Isolated yield (49.9 mg, 67%), White solid, Melting range: 196.2-198.5 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.37 (d, *J* = 8.0 Hz, 1H), 8.12 (s, 1H), 7.57 (s, 1H), 7.32 (d, *J* = 8.0 Hz, 1H), 7.23 (s, 1H), 3.48-3.40 (m, 1H), 2.95-2.88 (m, 1H), 2.47 (s, 3H), 2.42-2.40 (m, 6H), 1.73 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 171.0, 148.8, 142.5, 141.9, 138.3, 135.0, 134.9, 129.7, 129.4, 126.8, 126.1, 125.0 (q, *J* = 277.2 Hz), 120.0, 116.0, 45.1, 44.0 (q, *J* = 27.6 Hz), 30.9, 21.9, 20.5, 20.4; ¹⁹F NMR (565 MHz, CDCl₃): δ -61.4; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₂₀F₃N₂O 373.1522; Found 373.1522.

diethyl 2-((5-methyl-6-oxo-5,6dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-5-

yl)methyl)malonate (**6a**): Isolated yield (53 mg, 63%), White liquid; ¹H NMR (600 MHz, CDCl₃): δ 8.52-8.50 (m, 1H), 8.35-8.33 (m, 1H), 7.84-7.83 (m, 1H), 7.60-7.57 (m, 1H), 7.52-7.49 (m, 2H), 7.46-7.43 (m, 2H), 3.97-3.93 (m, 1H), 3.88-3.83 (m, 1H), 3.77-3.69 (m, 2H), 3.10-3.05 (m, 2H), 2.80-2.75 (m, 1H), 1.77 (s, 3H), 1.03 (t, *J* = 7.1 Hz, 3H), 0.98 (t, *J* = 7.1 Hz, 3H); ¹³C {¹H} NMR (150 MHz, CDCl₃): δ 172.0, 168.5, 168.4, 149.5, 143.9, 139.9, 131.9, 131.3, 128.2, 126.5, 126.1, 126.0, 125.7, 123.0, 119.8, 115.7, 61.7, 61.6, 48.7, 48.0, 39.3, 30.2, 13.7, 13.6; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₂₅N₂O₅ 421.1758; Found 421.1768.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

Experimental procedures; mechanistic investigation; characterization data; spectral data (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: heyh@swu.edu.cn (for Y.-H. He). *E-mail: guanzhi@swu.edu.cn (for Z. Guan)

ORICD

Yan-Hong He: 0000-0002-6405-285X Zhi Guan: 0000-0002-0369-6141

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

This work was financially supported by the National Natural Science Foundation of China (No 21672174 and No 21977084), and the Natural Science Foundation of Chongqing (No. cstc2019jcyj-msxmX0297).

REFERENCES

(1) (a) Patil, N. T.; Yamamoto, Y. Coinage Metal-Assisted Synthesis of Heterocycles. *Chem. Rev.* **2008**, *108*, 3395-3442. (b) Guo, X. X.; Gu, D. W.; Wu, Z. X.; Zhang, W. B. Copper-Catalyzed C–H Functionalization Reactions: Efficient Synthesis of Heterocycles. *Chem. Rev.* **2015**, *115*, 1622-1651. (c) Pan, F.; Shu, C.; Ye, L.-W. Recent progress towards gold-catalyzed synthesis of N-containing tricyclic compounds based on ynamides. *Org. Biomol. Chem.* **2016**, *14*, 9456-9465. (d) Wu, B.; Yoshikai, N. Recent developments in synthetic methods for benzo[b]heteroles. *Org. Biomol. Chem.* **2016**, *14*, 5402-5416. (e) Xie, L.-Y.; Qu, J.; Peng, S.; Liu, K.-J.; Wang, Z.; Ding, M.-H.; Wang, Y.; Cao, Z.; He, W.-M. Coinage Metal-Assisted Synthesis of Heterocycles. *Green Chem.* **2018**, *20*, 760-764.

(2) Fulp, A. B.; Wang, X. WO2005002503 A2, 2005.

(3) Deady, L. W.; Rodemann, T. Reduced Benzimidazo[2,1a]isoquinolines. Synthesis and Cytotoxicity Studies. *Aust. J. Chem.* **2002**, *54*, 529-534.

(4) Shun, C. K. J.; Chou, Y. C. WO2005002503 A2, 2005.

(5) Taublaender, M. J.; Glöcklhofer, F.; Marchetti-Deschmann, M.; Unterlass, M. Green and Rapid Hydrothermal Crystallization and Synthesis of Fully Conjugated Aromatic Compounds. *Angew. Chem., Int. Ed.* **2018**, *57*, 12270-12274.

(6) Meng, G.; Niu, H.-Y.; Qu, G.-R.; Fossey, J. S.; Li, J.-P.; Guo, H.-M. Synthesis of fused N-heterocycles via tandem C–H activation. *Chem. Commun.* **2012**, *48*, 9601-9603.

(7) Sun, X.; Hu, Y.; Nie, S.-Z.; Yan, Y.-Y.; Zhang, X.-J.; Yan, M. Efficient Construction of C=N Double Bonds via Acceptorless Dehydrogenative Coupling. *Adv. Synth. Catal.* **2013**, *355*, 2179-2184.

(8) Xue, D.; Long, Y.-Q. Metal-Free TEMPO-Promoted C(sp³)–H Amination To Afford Multisubstituted Benzimidazoles. *J. Org. Chem.* **2014**, *79*, 4727-4734.

(9) Mai, S.; Luo, Y.; Huang, X.; Shu, Z.; Li, B.; Lan, Y.; Song, Q. Diversity-oriented synthesis of imidazo[2,1-a]isoquinolines. *Chem. Commun.* **2018**, *54*, 10240-10243.

(10) Sun, K.; Li, S.-J.; Chen, X.-L.; Liu, Y.; Huang, X.-Q.; Wei, D.-H.; Qu, L.-B.; Zhao, Y.-F.; Yu, B. Silver-catalyzed decarboxylative radical cascade cyclization toward benzimidazo[2,1-a]isoquinolin-6(5*H*)-ones. *Chem. Commun.* **2019**, *55*, 2861-2864.

(11) Sun, K.; Li, G.; Li, Y.; Yu, J.; Zhao, Q.; Zhang, Z.; Zhang, G. Oxidative Radical Relay Functionalization for the Synthesis of Benzimidazo[2,1-a]iso-quinolin-6(5H)-ones. *Adv. Synth. Catal.* **2020**, *362*, 1947-1954.

(12) (a) Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. Photoredox Catalysis in Organic Chemistry. J. Org. Chem. 2016, 81, 6898-6926.
(b) Welin, E. R.; Le, C.; Arias-Rotondo, D. M.; McCusker, J. K.; MacMillan, D. W. C. Photosensitized, energy transfer-mediated organometallic catalysis through electronically excited nickel(II). Science. 2017, 355, 380-385. (c) Liang, Y.; Zhang, X.; MacMillan, D. W. C. Decarboxylative sp³ C–N coupling via dual copper and photoredox catalysis. Nature. 2018, 559, 83-88. (d) Kornfilt, D. J. P.; MacMillan, D. W. C. Copper-Catalyzed Trifluoromethylation of Alkyl Bromides. J. Am. Chem. Soc. 2019, 141, 6853-6858.

(13) (a) Staveness, D.; Bosque, I.; Stephenson, C. R. J. Free Radical Chemistry Enabled by Visible Light-Induced Electron Transfer. *Acc. Chem. Res.* **2016**, *49*, 2295-2306. (b) Karkäs, M. D.; Porco, J. A.; Stephenson, C. R. J. Photochemical Approaches to Complex Chemotypes: Applications in Natural Product Synthesis. *Chem. Rev.* **2016**, *116*, 9683-9747. (c) Monos, T. M.; McAtee, R. C.; Stephenson, C. R. J. Arylsulfonylacetamides as bifunctional reagents for alkene aminoarylation. *Science.* **2018**, *361*, 1369-1373.

(14) (a) Blum, T. R.; Miller, Z. D.; Bates, D. M.; Guzei, I. A.; Yoon, T. P. Enantioselective photochemistry through Lewis acid–catalyzed triplet energy transfer. *Science*. **2016**, *354*, 1391-1395. (b) Yoon, T. P.

Photochemical Stereocontrol Using Tandem Photoredox–Chiral Lewis Acid Catalysis. *Acc. Chem. Res.* **2016**, *49*, 2307-2315. (c) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Dual Catalysis Strategies in Photochemical Synthesis. *Chem. Rev.* **2016**, *116*, 10035-10074.

(15) (a) Romero, N. A.; Nicewicz, D. A. Organic Photoredox Catalysis. Chem. Rev. 2016, 116, 10075-10166. (b) Zhang, X.; Rakesh, K. P.; Ravindar, L.; Qin, H.-L. Visible-light initiated aerobic oxidations: a critical review. Green Chem. 2018, 20, 4790-4833. (c) Marzo, L.; Pagire, S. K.; Reiser, O.; König, B. Visible-Light Photocatalysis: Does It Make a Difference in Organic Synthesis? Angew. Chem. Int. Ed. 2018, 57, 10034-10072. (d) Huang, X.; Meggers, E. Asymmetric Photocatalysis with Bis-cyclometalated Rhodium Complexes. Acc. Chem. Res. 2019, 52, 833-847.

(16) Chang, Q.; Liu, Z.; Liu, P.; Yu, L.; Sun, P. Visible-Light-Induced Regioselective Cyanomethylation of Imidazopyridines and Its Application in Drug Synthesis. *J. Org. Chem.* **2017**, *82*, 5391-5397.

(17) Yuan, Y.; Dong, W.; Gao, X.; Xie, X.; Zhang, Z. Sodium Sulfite-Involved Photocatalytic Radical Cascade Cyclization of 2-Isocyanoaryl Thioethers: Access to 2-CF₂/CF₃-Containing Benzothiazoles. *Org. Lett.* **2019**, *21*, 469-472.

(18) Lu, D.; Wan, Y.; Kong, L.; Zhu, G. Visible-Light-Induced Tandem Radical Addition–Cyclization of Alkenyl Aldehydes Leading to Indanones and Related Compounds. *Org. Lett.* **2017**, *19*, 2929-2932. (19) Zeng, F.-L.; Sun, K.; Chen, X.-L.; Yuan, X.-Y.; He, S.-Q.; Liu,Yan.; Peng, Y.-Y.; Qu, L.-B.; Lv, Q.-Y.; Yu, B. Metal-Free Visible-Light Promoted Radical Cyclization to Access Perfluoroa-kyl-Substituted Benzimidazo[2,1-a]isoquinolin-6(5*H*)-ones and Indolo[2,1-a]isoquinolin-6(5*H*)-ones. *Adv. Synth. Catal.* **2019**, *361*, 5176-5181.

(20) Hari, D. P.; König, B. Synthetic applications of eosin Y in photoredox catalysis. *Chem. Commun.* **2014**, *50*, 6688-6699.

(21) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. *Chem. Rev.* **2013**, *113*, 5322-5363.

(22) Xiao, T.; Xiong, S.; Xie, Y.; Dong, X.; Zhou, L. Coppercatalyzed synthesis of benzazoles *via* aerobic oxidative condensation of *o*-amino/mercaptan/hydroxyanilines with benzylamines. *RSC Advances.* **2013**, *3*, 15592-15595.

60