

Domino Aza-Michael-*ih*-Diels—Alder Reaction to Various 3-Vinyl-1,2,4-triazines: Access to Polysubstituted Tetrahydro-1,6naphthyridines

Jabrane Jouha,^{†,‡,||} Floris Buttard,^{†,||} Magali Lorion,[†] Clément Berthonneau,[§] Mostafa Khouili,[‡] Marie-Aude Hiebel,[†] Gérald Guillaumet,[†] Jean-François Brière,^{*,§} and Franck Suzenet^{*,†©}

[†]Université d'Orléans, CNRS, ICOA, UMR 7311, 45067 Orléans, France

[‡]Laboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane - Faculté des Sciences et Techniques, BP 523, 23000 Beni-Mellal, Morocco

[§]Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France

Supporting Information

ABSTRACT: A straightforward domino aza-Michael-inverseelectron-demand-hetero-Diels—Alder/retro-Diels—Alder reaction between primary and secondary propargylamine derivatives and 3-vinyl-1,2,4-triazines is developed highlighting not only the uniqueness of this dual-heterocyclic platform but also a novel and unprecedented path to polysubstituted tetrahydro-1,6-naphthyridine scaffolds.

ncreasing molecular complexity to extend the exploration of chemical space is a major goal for pharmaceutical industries. After a recognized decline of success in the clinic over the last two decades, recent studies have underlined the importance of architectures possessing saturated bonds.¹ The combination of heteroaromatic and saturated N-heterocycles aims to address this current issue,² leading to significant novelty in drug discovery programs.^{3a} In that context, pyridine scaffolds associated with saturated cycles have displayed promising biological activities.³ However, while several paths to polyfunctionalized tetrahydroquinolines and tetrahydroisoquinolines have been developed,⁴ the formation of the valuable tetrahydronaphthyridines in various regioisomeric forms is still tedious and remains a prevalent synthetic challenge.⁵ The fascinating and original reactivity of 1,2,4triazines, which belong to a versatile group of azines, partially addressed this limitation.⁶ They can indeed act as electrondeficient 4π -components able to undergo an inverse-electrondemand hetero-Diels-Alder (*ih*DA)/retro-Diels-Alder (*r*DA) sequence.⁷ This powerful strategy enabled a straightforward access to diversely substituted pyridines,⁸ among which some tetrahydro-1,5- and 1,8-naphthyridines bearing only limited substitution patterns were elaborated via an intramolecular ihDA/rDA sequence (Scheme 1, a).9 These previous studies rely on either the well-established S_NAr reactivity of the 1,2,4triazine ring to introduce the dienophile part or a late construction of the aza-arene moiety.

However, the 1,6-isomers remain inaccessible through this useful approach mainly due to the lack of synthetic approaches to construct the required precursors. Recently, 3-vinyl-1,2,4-triazines aroused our interest since this original

Scheme 1. Previous Results and Project Plan

heterocyclic platform is prompted to behave as a Michael acceptor prior to the ihDA/rDA sequence.¹⁰ This dual reactivity remains nevertheless underexploited and limited to the sole use of acetylacetone as nucleophile on unsubstituted vinyltriazine as Michael acceptors (Scheme 1, b).^{10b} We are pleased to describe herein some breakthroughs toward unprecedented aza-Michael reaction on substituted vinyltriazines. Accordingly, propargylamine derivatives were found

Received: July 12, 2017

to be well suited to carry out a domino heteroconjugated addition-ihDA/rDA reaction on various 3-vinyl-1,2,4-triazines allowing the straightforward and original formation of variously functionalized tetrahydro-1,6-naphthyridines (Scheme 1, c).

In order to achieve the optimized conditions, the aza-Michael addition was first examined. 5-Phenyl-3-vinyl-1,2,4triazine 1a was selected as the model substrate, and the reaction was performed with propargylamine 2a in various solvents (Table 1). First, methanol was used, and the need for

 Table 1. Optimization for the Aza-Michael Reaction and the One-Pot Procedure

^{*a*}NMR yield with Bn₂O as internal standard. ^{*b*}Isolated yield. ^{*c*}Same issue for PhCl and toluene. ^{*d*}Result obtained starting from **3a***a*. ^{*e*}A mixture of THF/MeOH (1/1) was used. ^{*f*}Microwave irradiations were used.

an excess of amine was rapidly identified since the completion of the reaction was observed with only 3 equiv of propargylamine (entry 1, see the Supporting Information for details). We were pleased to isolate 3aa in 81% yield, validating 3-vinyl-1,2,4-triazines as efficient Michael acceptors toward primary amines. Other polar and nonpolar aprotic solvents such as THF, toluene, or chlorobenzene, generally preferred for the anticipated *ih*DA/*r*DA sequence, were inappropriate and underlined the crucial need of the protic solvent for the success of the reaction (entry 2, see the SI).

To initiate an ihDA/rDA reaction with the best solvent in hand for the aza-Michael step, 5-phenyl-3-vinyl-1,2,4-triazine 1a and propargylamine 2a were heated under microwave (MW) irradiation in methanol. After 3.5 h at 180 °C, 4aa was obtained in excellent overall 53% yield, highlighting 3-vinyl-1,2,4-triazine as a competent platform for the aza-Michael addition followed by the domino *ihDA/rDA* reaction (entry 3). Next, in order to attain the temperature required for the *ih*DA/*r*DA sequence without facing a critical pressure issue, a more appropriate solvent was used, such as THF (entry 4). However, even at high temperature, the aza-Michael addition remained delicate. This limitation in the absence of protic solvent was confirmed when the aza-Michael adduct 3aa was directly used as the starting material in THF (entry 5). In this case, 4aa was formed in 52% yield. Fortunately, an additional amount of methanol in THF enabled us to overcome this lack of reactivity, and the desired product was successfully isolated in 45% yield after column chromatography under reasonable pressure conditions (entry 6). Further attempts to diminish the reaction time or the temperature showed no improvement (see SI).

Having established the reaction conditions, a wide range of 3-vinyl-1,2,4-triazines and propargylamines were examined as displayed in Schemes 2 and 3. The scope is a salient aspect of

Scheme 2. Modification of the Pyridine Part

^aReaction performed on a 2 mmol scale.

this methodology since various original polyfunctionalized tetrahydro-1,6-naphthyridines were obtained in good yields over this three-step cascade reaction.

First, 5-aryl-3-vinyltriazines were successfully used, giving access to the corresponding 2-aryl-tetrahydro-1,6-naphthyr-

Scheme 3. Modification on the Piperidine Part

"The propargylamine 2k was used as the HCl salt, and K_2CO_3 (3 equiv) was added to the solution for the one-pot procedure.

idines bearing substituents in the meta- (4ba, 44%), di-ortho-(4ca and 4da, 60% and 62%, respectively), and para- (4ea and 4fa, 37% and 35% respectively) positions of the phenyl ring (Scheme 2). Our method can also be extended to heteroaryl substituents since 2-pyridyl and 2-thienyl were well tolerated (4ga and 4ha). In this series, 3-vinyl-1,2,4-triazine $(R^1 = H, R^2 = H)$ and 5-methyl-3-vinyl-1,2,4-triazine $(R^1 = H, R^2 = H)$ Me, $R^2 = H$) were not evaluated due to their challenging synthesis. Next, the 2,3-dimethyl and 2,3-diphenyl derivatives 4ia and 4ja were obtained in 49% and 67% isolated yield, respectively. Then the modification of the propargylamine part was examined. Various 3-arylpropargylamines were submitted to our experimental conditions, and the desired 4-aryl-tetrahydro-1,6-naphthyridines were isolated with overall yields ranging from 35 to 67% (4ab-aj). Overall, the reaction tolerates different electron-donating (Me, OMe) and electronwithdrawing groups (NO2, CN) in the ortho, di-ortho, meta, and para positions of the phenyl ring. On the C4 position, our cascade reaction exhibits very little steric effect (4ah-aj).

Recently, it has been reported that increasing the number of sp³-hybridized carbons as well as stereogenic carbon contribute to decrease the toxicity.^{1c} Therefore, we turned our attention on introducing substituents on the piperidine part of the tetrahydro-1,6-naphthyridines (Scheme 3). First, C_{sp3} - and *N*-substituted propargylamines were successfully used as 4akam and 4kk were efficiently synthesized allowing access to C5- and *N*-functionalized tetrahydro-1,6-naphthyridines.

Next, the more challenging 3-vinyl-1,2,4-triazines lk-m substituted in the α or β positions of the alkenyl moiety were examined. Interestingly, reaction with a methyl or a hydroxymethyl group in the β -position gave the expected products 4ka and 4la in 62% and 57% yield, respectively, regardless of steric hindrance.

Nonetheless, with 5-phenyl-3-(prop-1-en-2-yl)-1,2,4-triazine **1m**, the desired bicyclic product **4m***a* was not isolated under our original experimental conditions. A slight loss of planarity (and conjugation) between the alkenyl and the triazine parts for steric reasons could explain this lack of reactivity. Therefore, an optimization was carried out on this substrate (see the Supporting Information for details). To overcome this limitation, the reaction was performed in the presence of BF₃·Et₂O (6 equiv) in refluxing THF with a larger excess of **2***a* (5 equiv). Under these conditions, **3***ma* was isolated in 62% yield and directly engaged in the *ih*DA/*r*DA sequence (Scheme 4).

Scheme 4. Synthesis of 4ma

After irradiation, **4m***a* was successfully obtained in 75% yield, allowing the efficient introduction of a wide range of functional groups in each position of the tetrahydro-1,6-naphthyridine ring.

In summary, we report herein a novel three-step domino transformation exploiting the versatile reactivity of 3-vinyl-1,2,4-triazines. This α,β -unsaturated 4π deficient scaffold demonstrated a high synthetic usefulness being at first an efficient aza-Michael acceptor toward primary and secondary

propargylamines allowing afterward a straightforward and unique access to diversely substituted tetrahydro-1,6-naph-thyridines thanks to a subsequent ihDA/rDA process.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.or-glett.7b02132.

Experimental details and characterization data for all new compounds, table of optimization for the synthesis of **3m***a*, and a complete list of compounds synthesized (PDF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: jean-francois.briere@insa-rouen.fr.

*E-mail: franck.suzenet@univ-orleans.fr.

ORCID 🔍

Franck Suzenet: 0000-0003-1394-1603

Author Contributions

^{II}J.J. and F.B. contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was partially supported by Labex SynOrg (ANR-11-LABX-0029), Labex IRON (ANR-11-LABX-0018-01), University of Orleans, region Centre, INSA Rouen, Rouen University, CNRS, EFRD, and region Haute-Normandie.

REFERENCES

(1) (a) Lovering, F.; Bikker, J.; Humblet, C. J. Med. Chem. 2009, 52, 6752-6756. (b) Walters, W. P.; Green, J.; Weiss, J. R.; Murcko, M. A. J. Med. Chem. 2011, 54, 6405-6416. (c) Lovering, F. MedChemComm 2013, 4, 515-519. (d) Schneider, P.; Schneider, G. Angew. Chem., Int. Ed. 2017, 56, 7971-7974.

(2) Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257-10274.

(3) (a) Taylor, R. D.; MacCoss, M.; Lawson, A. D. G. J. Med. Chem. 2014, 57, 5845–5859. (b) Palmer, A. M.; Grobbel, B.; Brehm, C.; Zimmermann, P. J.; Buhr, W.; Feth, M. P.; Holst, H. C.; Simon, W. A. Bioorg. Med. Chem. 2007, 15, 7647–7660. (c) Catozzi, N.; Edwards, M. G.; Raw, S. A.; Wasnaire, P.; Taylor, R. J. K. J. Org. Chem. 2009, 74, 8343–8354. (d) Basarab, G. S.; Galullo, V.; DeGrace, N.; Hauck, S.; Joubran, C.; Wesolowski, S. S. Org. Lett. 2014, 16, 6456–6459. (e) Glinkerman, C. M.; Boger, D. L. J. Am. Chem. Soc. 2016, 138, 12408–12413. (f) Murray, C. W.; Rees, D. C. Angew. Chem., Int. Ed. 2016, 55, 488–492.

(4) (a) Scott, J. D.; Williams, R. M. Chem. Rev. 2002, 102, 1669– 1730. (b) Bracca, A. B. J.; Kaufman, T. S. Tetrahedron 2004, 60, 10575–10610. (c) Sridharan, V.; Suryavanshi, P. A.; Menendez, J. C. Chem. Rev. 2011, 111, 7157–7259. (d) Fochi, M.; Caruana, L.; Bernardi, L. Synthesis 2014, 46, 135–157. (e) Kotha, S.; Deodhar, D.; Khedkar, P. Org. Biomol. Chem. 2014, 12, 9054–9091. (f) Munoz, G. D.; Dudley, G. B. Org. Prep. Proced. Int. 2015, 47, 179–206. (g) Bello Forero, J. S.; Jones, J., Jr.; da Silva, F. M. Curr. Org. Synth. 2016, 13, 157–175. (h) Singh, I. P.; Shah, P. Expert Opin. Ther. Pat. 2017, 27, 17–36.

(5) (a) Wijtmans, M.; Pratt, D. A.; Valgimigli, L.; DiLabio, G. A.; Pedulli, G. F.; Porter, N. A. *Angew. Chem., Int. Ed.* **2003**, *42*, 4370– 4373. (b) Nam, T.-g.; Rector, C. L.; Kim, H.-y.; Sonnen, A. F. P.; Meyer, R.; Nau, W. M.; Atkinson, J.; Rintoul, J.; Pratt, D. A.; Porter,

Organic Letters

N. A. J. Am. Chem. Soc. 2007, 129, 10211–10219. (c) Zhou, Y.; Porco, J. A., Jr.; Snyder, J. K. Org. Lett. 2007, 9, 393–396. (d) Mailyan, A. K.; Peregudov, A. S.; Dixneuf, P. H.; Bruneau, C.; Osipov, S. N. J. Org. Chem. 2012, 77, 8518–8526. (e) Johnson, R. J.; O'Mahony, D. J. R.; Edwards, W. T.; Duncton, M. A. J. Org. Biomol. Chem. 2013, 11, 1358–1366. (f) Sirakanyan, S. N.; Spinelli, D.; Geronikaki, A.; Hovakimyan, A. A.; Noravyan, A. S. Tetrahedron 2014, 70, 8648–8656. (g) Xiong, B.; Li, Y.; Lv, W.; Tan, Z.; Jiang, H.; Zhang, M. Org. Lett. 2015, 17, 4054–4057. (h) Wu, Y.; Chen, Y.-Q.; Liu, T.; Eastgate, M. D.; Yu, J.-Q. J. Am. Chem. Soc. 2016, 138, 14554–14557. (i) Jackl, M. K.; Kreituss, I.; Bode, J. W. Org. Lett. 2016, 18, 1713–1715.

(6) (a) Rätz, R.; Schroeder, H. J. Org. Chem. 1958, 23, 1931–1934.
(b) Paudler, W. W.; Barton, J. M. J. Org. Chem. 1966, 31, 1720–1722. (c) Saraswathi, T. V.; Srinivasan, V. R. Tetrahedron Lett. 1971, 12, 2315–2316. (d) Lukin, A.; Vedekhina, T.; Tovpeko, D.; Zhurilo, N.; Krasavin, M. RSC Adv. 2016, 6, 57956–57959. (e) Tang, D.; Wang, J.; Wu, P.; Guo, X.; Li, J.-H.; Yang, S.; Chen, B.-H. RSC Adv. 2016, 6, 12514–12518. (f) Crespin, L.; Biancalana, L.; Morack, T.; Blakemore, D. C.; Ley, S. V. Org. Lett. 2017, 19, 1084–1087.

(7) (a) Neunhoeffer, H. Comprehensive Heterocyclic Chemistry; Katritzky, A. R., Rees, C. W., Eds.; Pergamon: Oxford, 1984; Vol. 3, Chapter 2.19, pp 385–456. (b) Boger, D. L. Chem. Rev. 1986, 86, 781–793. (c) Neunhoeffer, H. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon: Oxford, 1996; Vol. 6, Chapter 6.11, pp 507–573;. (d) Lindsley, C. W.; Layton, M. E. Sci. Synth. 2004, 17, 357–447.
(e) Charushin, V.; Rusinov, V.; Chupakhin, O. In Comprehensive Heterocyclic Chemistry III; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon: Oxford, 2008; Vol. 9, Chapter 9.02, pp 95–196.
(f) Foster, R. A.; Willis, M. C. Chem. Soc. Rev. 2013, 42, 63–76.

(8) (a) Taylor, E. C.; Macor, J. E. Tetrahedron Lett. **1986**, 27, 2107–2110. (b) Taylor, E. C.; Macor, J. E.; French, L. G. J. Org. Chem. **1991**, 56, 1807–1812. (c) Raw, S. A.; Taylor, R. J. K. Chem. Commun. **2004**, 508–509. (d) Fernández Sainz, Y.; Raw, S. A.; Taylor, R. J. K. J. Org. Chem. **2005**, 70, 10086–10095. (e) Shi, B.; Lewis, W.; Campbell, I. B.; Moody, C. J. Org. Lett. **2009**, 11, 3686–3688.

(9) (a) Neipp, C. E.; Ranslow, P. B.; Wan, Z.; Snyder, J. K. *Tetrahedron Lett.* **1997**, *38*, 7499–7502. (b) Rickborn, B. The Retro-Diels-Alder Reaction Part II. Dienophiles with One or More Heteroatom. In *Organic Reactions*; John Wiley & Sons, 1998; Vol. *53*, pp 224–287. (c) Butler, R.; Leblanc, C.; McKeown, S. C.; Charlton, S. J. Ip receptor agonist heterocyclic compounds. WO2014125413A1, Aug 21, 2014; *Chem. Abstr.* **2014**, *161*, 389970. (d) Haenel, F.; John, R.; Seitz, G. *Arch. Pharm.* **1992**, *325*, 349–352. (e) Seitz, G.; Richter, J. *Chem.-Ztg.* **1989**, *113*, 252–254. (f) John, R.; Seitz, G. *Arch. Pharm.* **1989**, *322*, 561–564.

(10) (a) Badarau, E.; Bugno, R.; Suzenet, F.; Bojarski, A. J.; Finaru, A.-L.; Guillaumet, G. *Bioorg. Med. Chem.* 2010, *18*, 1958–1967.
(b) Lorion, M.; Guillaumet, G.; Brière, J.-F.; Suzenet, F. *Org. Lett.* 2015, *17*, 3154–3157.