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First formal synthesis of (+)-nimbidiol.
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Abstract—A novel ring C aromatic diterpene (4) has been prepared in three steps from natural (+)-manool (1). The structure and
anticancer activity data for 4 has been investigated. This key intermediate (4) was easily transformed into 7-deoxo nimbidiol
dimethyl ether (8). The present work represents the first formal synthesis of (+)-nimbidiol (10). © 2003 Elsevier Science Ltd. All
rights reserved.

Abietane and biosynthetically related polycyclic diter-
penes are a major group of ring C aromatic diterpenes.1

Abietane diterpenes show a wide range of biological
activities, e.g. antibiotic,2 antivirus,3 antioxidant,4

antimalarial5 and cytotoxic6 activity. This enormous
biological data has motivated numerous synthetic
investigations of racemic abietanes via polyene cycliza-
tion.7 While enantioselective syntheses of abietane diter-
penes are known, they are scarce.8

Commercially available (+)-manool (1)9 has been used
as a key intermediate for the efficient syntheses of
drimane10 and abietane-type11 terpenes. Common to all
these endeavors was the use of naturally occurring
(+)-manool as starting material. In this study, two
cleavage reactions (one oxidative and one photochemi-

cal) were used sequentially to transform (+)-manool to
the exocyclic diene 3 in 52% overall yield. The utility of
diene 3 is demonstrated for the synthesis of diterpene 4.
We report herein the synthesis, structural and complete
anticancer activity data for diester 4 and its synthetic
application in the formal synthesis of (+)-nimbidiol
(10).

Synthesis of compound 4: Our synthesis started with
diene 3,15b which was readily prepared from (+)-manool
(1) in two steps and 52% overall yield (Scheme 1).12 To
construct the C-ring of abietane we envisioned using a
Diels–Alder reaction between diene 3 and dimethyl
acetylenedicarboxylate (DMAD) with a concomitant
aerobic oxidation.13 In practice, the transformation
worked as planned after significant optimization. The

Scheme 1. (a) KMnO4, acetone, rt; (b) h�, pentane, −30°C, 52% overall yield; (c) DMAD, 110–220°C, xylene, 3 days, 48%.
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Diels–Alder adduct was obtained by heating a mixture
of diene and DMAD (1:3 ratio) in a sealed tube at
110°C for 24 h. To induce aromatization, the tempera-
ture was rapidly increased to 220°C for additional 48 h.
The yield was strongly dependent on the reaction tem-
perature (e.g. >220°C gave decomposition, <220°C
showed incomplete conversion) and stoichiometry (e.g.
threefold excess of alkyne was required to compensate
its lost by thermal polymerization).14 Under these opti-
mized conditions for aromatization15a the desired
product (4) was obtained in 48% isolated yield.15c

X-Ray determination of compound 4:18b While the spec-
tral data (1H and 13C NMR), elemental analyses and
LR/HRMS for compound 4 were completely consistent
with its structure, further confirmation was sought by
means of single crystal X-ray analyses. X-Ray quality
crystals of 4 were grown by slow evaporation of a
hexane–ethyl acetate solution. An ORTEP depiction of
4 is shown in Figure 1. It is interesting to notice that
two independent molecules were found in the asymmet-
ric unit and have different conformations and geomet-
ric parameters. The molecular dimensions for both
structures in the rings A and B are slightly different
compared to the previously reported values for abietane
compounds,16 with mean bond distances being
C(sp3)�C(sp3) 1.492 A� for structure I and 1.491 A� for
structure II. The longest C�C distance in structure I
[1.564 (5) A� ] was found at the ring A/B junction
according to previous reports.17 However, structure II
showed its longest C�C bond in ring A [C31�C36=
1.561 (5) A� ]. In both structures the carbonyl esters are
located anti to each other in order to minimize unfavor-
able dipole–dipole interactions. Neither carbonyl
groups are coplanar with the aromatic ring in structures
I and II, according to their dihedral angles
C17�C16�C18�O1=31.6° and C47�C46�C48�O10=
46.8° respectively. The aromatic ring is slightly twisted
near the decalin system (C17�C10�C11�C14=3.8° for I
and C47�C40�C41�C44=1.2° for II).18a

Antitumor testing of compound 4: Evaluation of antitu-
mor activity was performed on compound 4 at the
National Cancer Institute (NCI), following the known
in vitro oriented antitumor screening program against a
panel of 62 tumor cell lines derived from nine cancer
types (leukemia, non-small cell lung, colon, CNS,
melanoma, ovarian, renal, prostate and breast) accord-
ing to a standard protocol.19 In each test, dose–
response curves for each cell line were measured with
five different drug concentrations. The concentration
causing 50% cell growth inhibition (GI50) was calcu-
lated. Table 1 shows the biological data for selected cell
lines. Compound 4 was active against all cell lines with
mean log GI50 values ranging from −4.51 (ovarian can-
cer/OVCAR-8) to −6.29 (breast cancer/T-47D). The
cytotoxicity activity against human leukemia cell (HL-
60) of 4 (Table 1, log GI50=−5.06) showed a strong
similarity with the value reported for incanone, a struc-
turally related natural abietane diterpene (−5.22).20 As
previously mentioned, compound 4 was particularly
active against breast cancer cell T-47D. However, lab-
dane diterpenoids isolated from natural sources have

Figure 1. ORTEP plot of 4 (structures I and II). Displace-
ment ellipsoids are drawn at 50% probability level and H
atoms are omitted for clarity

Table 1. In vitro selected antitumor activity data for 4

Cell line Cytotoxicity log GI50 (M)a,b

Leukemia (HL-60 TB) −5.06
Non-small cell lung (HOP-92) −5.00

−4.80Colon (KM12)
CNS (SF-268) −4.80

−5.91Melanoma (MALME-3M)
−4.98Ovarian (IGROV1)
−4.99Renal (RXF 393)
−4.84Prostate (DU-145)
−6.29Breast (T-47D)

Mean value −5.19

a Data obtained from NCIs in vitro tumor cells screen.
b Mean value over all 62 cell lines tested.

shown non-specific cytotoxicities against several tumor
cell lines.21

Formal synthesis of (+)-nimbidiol (10):

To further demonstrate the utility of this methodology,
we investigated the use of diester 4 as a chiral building
block for the synthesis of (+)-nimbidiol (10).22 (+)-Nim-
bidiol (10) is a diterpene isolated from the root bark of
Azadirachta indica.23 Thus, we investigated the conver-
sion of the two aromatic ester groups of 4 into the
1,2-bis-phenols of nimbidiol. We initially attempted this
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Scheme 2.

Scheme 3. (a) MeLi (8 equiv.), CeCl3, THF, −78°C; (b) 30% H2O2, p-TsOH cat., THF, 0°C to rt; (c) CH2N2, ether, 45% overall
yield.

transformation by means of a Baeyer–Villiger reaction
on the corresponding dimethyl ketone 5 with the hope
of selectively forming 6 (Scheme 2). Unfortunately the
formation of dimethyl ketone 5 using MeLi/Me3SiCl24

or MeMgCl25 gave a complex crude mixture from
which the desired dimethyl ketone could not be iso-
lated.26 Next we investigated the selective oxidation of
the two carbon–carbon bonds of the bis-tertiary alcohol
7 by a hydroperoxide rearrangement.27 Exhaustive
methylation of diester 4 with excess MeLi (8 equiv.)28

gave the diol 7, which due to its instability to silica gel
chromatography was used as is (Scheme 3). Exposure
of the crude diol 7 to a solution of hydrogen peroxide
in acidic THF29 yielded 7-deoxo nimbidiol 630 which
was immediately dimethylated to give the known 7-
deoxo nimbidiol dimethyl ether 8 in 45% overall yield
(Scheme 3).31 The two steps conversion of 8 to nimbid-
iol 10 has previously been reported by Majetich and
co-workers.32

This work provides a short formal synthesis of natural
(+)-nimbidiol (10) from (+)-manool (1). The key inter-
mediate for such preparation protocol is diterpene 4,
which was easily accessible from diene 3. The first
X-ray structure of a (+)-manool-derived diterpene with
ring C aromatic was also investigated. Biological in
vitro testing of diterpene 4 against 62 cell human tumor
cell lines showed particularly strong activity for breast
cancer (T-47D, log GI50=−6.29).

Supplementary material

Experimental procedure and characterization data for
compounds 2, 3 and 8, crystallographic data for com-
pound 4.
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