β-Alkoxycarbonyl Enol Triflates as Precursors of Stereopure 3-Ene-1,5-diyne Building Blocks for the Chromophores of Neocarzinostatin, C-1027, Kedarcidin, Maduropeptin, and N1999A2

Olaf Gebauer,^a Reinhard Brückner^{b‡*}

^aGeschäftsbereich Pflanzenschutz, BAYER-AG, PF-F-S1 Fungizide, Alfred-Nobel-Str. 50, 40789 Monheim, Germany Fax +49(2173)383926; E-mail: olaf.gebauer.og@bayer-ag.de

^bInstitut für Organische Chemie der Georg-August-Universität, Tammannstr. 2, 37077 Göttingen, Germany

Fax +49(761)2036100; E-mail: reinhard.brueckner@organik.chemie.uni-freiburg.de

Received 13 December 1999

Abstract: A 5-step synthesis of α -alkoxymethyl-, α -siloxymethyland α -(carbamoyloxy)methyl-substituted enediynes 7 from type 23 β -oxo esters was developed following the strategy of Scheme 2. Specifically, the β -oxo esters 33, 36 and 38 (prepared as shown in Scheme 4) and NaH (or *t*-BuLi) gave *Z*-enolates in THF and *E*-enolates in DMF which were scavenged as enol triflates *Z*-27a-c and *E*-27a-c, respectively, upon treatment with triflimides 40 or 41 (Scheme 5). The *Z*-configurated enol triflates underwent Cacchi couplings with (trimethylsilyl)acetylene to give the pent-2-en-4yne-1-carboxylates *E*-42a-c (Scheme 5). These were reduced to the corresponding aldehydes *E*-44a-c (Scheme 6) which were homologated with lithio(trimethylsilyl)diazomethane to furnish the desired enediynes 45a-c as pure *E*-isomers.

Key words: C-C couplings, enediynes, enynes, β -oxo esters, stereoselective enolate formation

The enediyne antiobiotics are highly cytotoxic natural products.¹ One of their important common structural features is either a cis-configured hex-3-ene-1,5-diyne subunit or the corresponding epoxide. According to the substitution pattern of this hex-3-ene-1,5-diyne or its epoxide, the enediyne antibiotics can be subdivided into two groups. In the first group there is no substituent at C-3 of the substructure in question -i. e., the hexenediyne is of type 6 and the epoxide is derived from 6 - while in the second group there is such a 3-substituent - which means that the hexenediyne looks like compound 7 (FG is for functional group) and the epoxide is derived therefrom (Figure). The first group of enediyne antibiotics consists of esperamycin,² calicheamicin³ and dynemicin.⁴ The second group comprises the kedarcidin chromophore (1)⁵ the C-1027 chromophore (2)⁶ the maduropeptine chromophore (3),⁷ the neocarzinostatin chromophore $(4)^8$ and a compound named N1999A2 (5);⁹ of the latter compounds, 1-3 are 3-substituted hexenediynes while 4 and 5 are 3-substituted 3,4-epoxyhexenediynes.

Syntheses of natural products 1-5 or derivatives thereof may entail or do entail the use of end-group-differentiated enediynes of the already mentioned structure 7 as key intermediates. Accordingly, routes to such hexenediynes were developed by several groups (Scheme 1).

The first approaches depicted stem from Myers´laboratory. One is based on a double Sonogashira–Tohda–Hagi-

Figure

hara coupling of the stereoselectively accessible dibromoacrylate 8 providing the ester 10.¹⁰ This can be reduced to the underlying alcohol in which a regioselective desilylation of that Me₃Si group is possible which is closer to the OH group. Myers' other approach to a cis-hex-3ene-1,5-diyne of type 7 was the Wittig reaction between ylide 11 and ketone 12; however, compound 13 was produced with a *cis,trans* selectivity no greater than 3:1.11 Another synthesis of such enediynes was realized by Dai and Meyer.¹² Starting from aldehyde **14**, they prepared allyl alcohol 15, which underwent an acid-catalyzed nucleophilic substitution with close-to-perfect S_N1 vs S_N1 regioselectivity and perfect stereocontrol at the crucial C=C bond. Recently, Trost et al. developed an elegant approach to type-7 enediynes through the Pd-catalyzed stereo- and chemoselective addition of electron-rich alkynes like compound 18 to acceptor-substituted alkynes such as compound 17.¹³ The initial C=C bond configuration (in addition product 19) was subsequently inverted to a considerable extent by a light-induced radical chain isomerization.14 Thus the isomer 21 was obtained, which was converted via the corresponding aldehyde and the Corev-Fuchs sequence to the desired hexenediyne 20.

Scheme 2 outlines the strategy which *we* pursued in the quest of stereopure enediynes with the substitution pattern 7: we desired to elaborate them from stereodefined enol triflates¹⁵ of structure Z-22. The R¹-C=C moiety of our targets was intended to be introduced via the Cacchi coupling¹⁶ with a suitable terminal alkyne R¹-C=C-H while the R²-C=C moiety would result from the kind of C₁ elongation used by Trost et al. for the conversion $21 \rightarrow 20$. The substituents CHR³(FG) of the key triflates Z-

22 were functionalized in such a way that they themselves or derivatives thereof would be suitable for synthesizing the (epoxy)enediyne portions of the enediyne antibiotics 1-5.

The strategy of Scheme 2 suggested the feasability of stereocontrol because of the following literature observations: Weiler et al. had shown a while ago that the deprotonation of β -oxo esters with NaH in THF (or, as one now knows, in diethyl ether¹⁷) gives a single sodium enolate which is scavenged by diethyl chlorophosphate to give an enol phosphate with >99% Z configuration; conversely, the same β -oxo esters and the same phosphorylating agent furnish enol phosphates with 98% Econfiguration in the presence of triethylamine and HMPA.^{18,19} Similarly, N-phenyltriflimide²⁰ reacts in THF with the Z-configured potassium enolates 25 of β -oxo esters 24 to give Z-enol triflates Z-27, while triflic anhydride reacts in CH₂Cl₂ with the *E*-configured ethyldiisopropyl-(column²)ammonium enolates **26** of the same β -oxo esters 24 to give the isomeric *E*-triflates *E*-27 (Scheme 3).²¹ Also, N-phenyltriflimide²⁰ transforms the Z-configured sodium enolates 28 obtained from β -oxo esters 24 and NaH in THF into enol triflates Z-27 and the E-configured sodium enolates 29 obtained from β -oxo esters 24 and NaH in DMF into the isomeric enol triflates *E*-27.²²

The β -oxo ester substrates of the present study, namely compounds **33**, **36** and **38** (Scheme 4), differ from all previously used β -oxo ester precursors **24** of stereo*pure* enol triflates by the presence of at least one heteroatom in the substituent R³. The presence of these heteroatoms makes the target enediynes *Z*-**44a**-**c** (Scheme 6) into building

Biographical Sketches

Reinhard Brückner (born in 1955) prepared his doctoral thesis at the Ludwig-Maximilians-Universität München under the supervision of Professor Rolf Huisgen (1984) and was a postdoctoral fellow with Professor Paul A. Wender at Stanford University. After habilitating with Professor

Olaf Gebauer was born in Kiel in 1967. He studied chemistry at the universities of Kiel, Braunschweig and Göttingen and received his Dr. rer. nat. in 1999 (Prof. R. Brückner) synthesizing models of the dienediyne antibiotic neocarzinostatin chromophore. In July 1999, Reinhard W. Hoffmann at the Philipps-Universität Marburg he became an associate professor at the Julius-Maximilians-Universität Würzburg (1990). He was a full professor at the Georg-August-Universität Göttingen (1992) and moved to Freiburg six years later. Being a dedicated teacher, he

he joined the BAYER company's crop-protection research center in Monheim. There he is currently synthesizing and developing fungicides. was a visiting professor at the Universities of Wisconsin / Madison and Santiago de Compostela / Spain. His research interests include rearrangements of organolithium compounds and the synthetic chemistry of dienediynes, polyols, butyrolactones and butenolides.

blocks for the synthesis of enediynes like compounds 1-5. Hence, it remained to be seen how these heteroatoms affect the delicate bias between Z- and E-selective ester enolate formation.

Scheme 3

THF;

Ó

24

ibid.: NaH

DMF;

Synthesis 2000, No. 4, 588-602 ISSN 0039-7881 © Thieme Stuttgart · New York

Scheme 4

it was superior to a 1-step conversion of aldehyde **31** into β -oxo ester **33** which we attempted following a general procedure from Roskamp's group, i. e., by treating aldehyde **31** with ethyl diazoacetate and BF₃-diethyl ether complex:²⁵ On a reasonably large scale we could not advance to reproducible yields >15%. D-Glyceraldehyde acetonide (**34**) was prepared by the usual sodium periodate cleavage²⁶ of D-mannitol bisacetonide.²⁷ Adding ethyl lithioacetate to this aldehyde led to the β -hydroxy ester **35** as a 89:11 mixture of unassigned diastereomers (73% yield). Oxidation with the Dess-Martin periodinane²⁸ delivered 67% of the acetonide-containing β -oxo ester **36**. Last, but not least, a Claisen condensation of the lithium enolate derived from *tert*-butyl acetate with Garner's ester 37^{29} furnished 90% of β -oxo ester 38. As expected, the ¹H NMR spectra of the oxo esters 33, 36 and 38 of Scheme 4 displayed the (O=)CCH₂C(=O) protons as a singlet at $\delta = 3.63$ (33) or as AB spectra $\delta_A = 3.60 / \delta_B = 3.66$ (36, 38). In addition, there were the less intense singlets of the C=C-H ($\delta \approx 5.0-5.5$ ppm) and C=C-OH substructures ($\delta \approx 12.0-12.3$ ppm) of the tautomeric enols *iso*-33, *iso*-36 and *iso*-38 as which 13–17% of the material was present.

The stereoselective conversion of the β -oxo esters 33, 36 and 38 into ester-containing Z-configured enol triflates required generating the respective β -oxo ester enolates Z-selectively. According to Scheme 3, this is tantamount to generating *cation-bridged* β-oxo ester enolates. For preliminary tests we deprotonated the β -oxo ester 33 (Table 1). Using KHMDS in dry-ice cooled THF for that purpose, i. e. the Z-favoring conditions of reference 21, and sulfonylating with McMurry's phenyl triflimide **39**,²⁰ we isolated just 27% of the desired triflate 27a (entry 1). It was the pure Z-isomer as was the crude product according to the ¹H NMR spectrum. Deprotonating the β -oxo ester **33** with NaH ^{22,30} in THF and now at 0 °C \rightarrow room temperature increased the yield of Z-27a to 43% (entry 2). Replacing the phenyl triflimide 39^{20} by Comins' pyridyl triflimide **40**³¹ under the otherwise unchanged deprotonation conditions, the desired enol triflate Z-27a became available in 53% yield (entry 3). Finally, by heating the last-mentiond sulfonylating mixture at 55 °C for extended times - 6 h in the case of entry 4 of Table 1 - the yield of Z-27a rose to 83% (taking 21% of recovered β -oxo ester 33 into account). That this temperature turned out to be so beneficial is remarkable because there are ester-containing enol triflates which undergo a β -elimination of triflic acid under much milder conditions – i. e., in the presence of triethylamine within 3 h at room temperature³² – and

Table 1

entry	base	triflate donor	conditions	yield ^a
1	KHMDS	39	-78°C room temp.; overnight	27%
2	NaH	39	0°C 🔶 room temp.; overnight	43%
3	NaH	40	0°C, 20 min; room temp., 6 h	53%
4	NaH	40	0°C, 20 min; room temp., 30 min; 55°C, 6 h	83% ^t

^a Small amounts of E-27 were separated by flash chromatography.

^b Taking into account that 21% of the starting material were recovered; isolated yield: 65%.

FEATURE ARTICLE

give an allenic ester thereby. The ¹H NMR spectra of the crude enol triflate revealed that even when the sulfonylating agent was triflimide **40** there was at most 1% of *E*-**27a** formed. In contrast to that, Gibbs et al. had found in a related sulfonylation that the use of **40** vs. **39** tends to increase the proportion of the *E*-product to >5%.³³ It should be noted that we could not use Comins' pyridyl triflimide **41**³¹ for preparing the enol triflate *Z*-**27a** since both compounds co-chromatographed.

^{a)} This is not a Z-isomer because of the hetero-substituent at C- α of R². ^{b)} This is not an E-isomer because of the hetero-substituent at C- α of R².

	a (and 33)	b (and 36)	c (and 38)
R ¹	Et	Et	<i>t</i> Bu
R ²	= R ^a =	= R ^b =	= R ^c =
	oSiPh₂ <i>t</i> Bu	ProfO	Boc ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

i) For **a**: **33**, NaH, THF, r.t., 20 min; **40** (1.2 equiv.), 30 min; 55 °C, 6 h; 83% based on recovered starting material (65% isolated).–For **b**: **36**, NaH, THF, r.t., 20 min; **41** (1.2 equiv.), 30 min, 70 °C, 3.5 h; 62%.– For **c**: **38**, *t*-BuLi (1.0 equiv.), THF, −78 °C, 30 min; **40** (1.2 equiv.), r.t., 30 min; 55 °C, 14 h; 71%. ii) NaH, DMF, r.t., 20 min; **40** (1.2 equiv.), 4 h; **a**: 52%; **b**: 67%; **c**: 72%. iii) Me₃Si–C≡C–H (1.2 equiv.), PdCl₂(PPh₃)₂ (5 mol-%), CuI (15 mol-%), 3:1 i-Pr₂NH/THF, r.t.; **a** (16 h): 72%; **b** (2 h): 82%; **c** (2 h): 85%. iv) Same as (iii), 2 h; **a**: 67%; **b**: 82%; **c**: 88%.

Scheme 5

The ester-containing enol triflates Z-**27b** and **c** were similarly prepared (Scheme 5) as enol triflate Z-**27a** (Table 1) and were likewise isolated as pure Z-isomers, now, however, after flash chromatographic separation from 96:4 *Z*:*E* mixures initially obtained. Yield optimization required considerable fine-tuning of the reaction parame-

ters. The triflation of the acetonide-containing β -oxo ester **36** worked best with NaH and the chlorinated pyridyl triflimide **41**. The Boc–containing β -oxo ester **38** was best deprotonated with *t*-BuLi.

In order to assess the stereoselectivity of the trifluoromethanesulfonylations of Table 1 and Scheme 5 (upper left), we needed to know, besides the ¹H NMR shifts of the desired Z-isomers, the ¹H NMR shifts of the *E*-isomers. Therefore, we were pleased to find that we could – as did Keenan et al.²² – prepare the *E*-triflates *E*-27**a**-**c** from the β -oxo esters **33**, **36** and **38**, NaH and a suitable triflimide (vide infra) *in DMF* (Scheme 5, upper right). These compounds were isolated as a 95:5 mixture in the case of *Z*and *E*-27**a** or isomerically pure – after the initially obtained 99:1 *E:Z* mixtures had been chromatographed – in the case of *Z*-27**b** and **c**.

The alkenic nuclei 2-H and C-2 of the ester-containing enol triflates Z- and E-27a-c reveal configuration-dependent δ -values: (1) In triflates Z-27a and Z-27b, δ_{2-H} = 6.23 ppm (2 \times) is at *lower* field than in the isomeric triflates *E*-27a (5.89 ppm) and *E*-27b (6.04 ppm). In contrast, there is a *high*-field shift of 2-H in triflate Z-27c $(\delta_{2-H} = 5.84)$ compared with the isomeric triflate *E*-**27c** $(\delta_{2-H} = 5.98)$. Yet, the configurational assignment of compound Z-27c is safe since it is based on the occurrence of a cross-peak between the alkenic and the allylic proton in the NOESY spectrum. (2) The alkenic δ_{C-2} value in triflates Z-27a and Z-27b is *high*field with respect to δ_{C-2} in the respective E isomer, while it appears at lower field in triflate Z-27c compared with E-27c. Thus, the configurational assignment of ester-substituted enol triflates of type 7 cannot be based on the sign of $\Delta \delta_{2-H}$ or $\Delta \delta_{C-2}$ values.

Next, enol triflates 27a-c and (trimethylsilyl)acetylene as a particularly reactive and synthetically widely manipulable acetylene were subjected to the Cacchi couplings¹⁶ shown in Scheme 5.^{33b} Using 5 mol-% of PdCl₂(PPh₃)₂ as a catalyst, 15 mol-% CuI as a co-catalyst and 3:1 THF/ iPr₂NH as the solvent, i. e., the conditions from reference 19, these couplings occurred at room temperature within 2 h and in yields of 67-88%. They proceeded with complete retention of the double bond configuration, no matter whether we started from the Z-configured enol triflates - as our synthetic objective demands - or from the E-configured enol triflates - in order to acquire NMR reference data for analyzing the isomer composition of the coupling products. Accordingly, the Cacchi couplings of the 100% stereopure enol triflates Z-27a-c, E-27b and E-27c furnished the coupling products E-42a-c, Z-42b and Z-42c, respectively, 100% stereopure (note that in these reactions the conversion of Z- into E-isomers and vice versa corresponds to the *retention* of configuration). Similarly, the 95:5 mixture of enol triflates E- and Z-27a reacted with (trimethylsilyl)acetylene to provide the crude coupling product 42a as a 95:5 Z:E mixture as evidenced by ${}^{1}\text{H}$ NMR analysis. Since the minor isomer could be separated by flash chromatography, the major coupling product Z-42a was isolable 100% stereopure, too. In pairs of isomeric coupling products 42 the ¹H and ¹³C NMR shifts of the alkenic CH group are ordered as in the corresponding isomer pairs of their respective enol triflate precursor 27: The alkenic $\delta_{C^{-1}H}$ values in E-42a and E-42b – but not in E-42c – are *low*field compared with the respective *Z*-isomer while the alkenic δ_{13}_{C-H} values in E-42a and E-42b – but not in E-42c – are *high*field compared with the respective *Z*-isomer while the configuration of these compounds and the relative magnitude of the C_{sp}^2 -H shifts.

 $^{a)}$ This is not a Z-isomer because of the hetero-substituent at C- α of R2.

,

i) For **a**: DIBAL (2.7 equiv.), CH₂Cl₂, $-78 \text{ °C} \rightarrow \text{r.t.}$, 3 h; 81%. For **b**: DIBAL (2.7 equiv.), EtO₂/toluene, -78 °C, 3 h; r.t., 30 min; 88%. ii) For **c**: DIBAL (1.3 equiv., toluene, -78 °C, 30 min; MeOH; 81%. iii) Dess-Martin periodinane (1.2 equiv.), CH₂Cl₂, r.t., 1 h (**a**) or 20 min (**b**); for **a**: 81%; for **b**: 82%. iv) LDA (1.2 equiv.), Me₃Si-CH=N=N, THF, -78 °C, 30 min; addition of respective aldehyde **44**; 1.5 h (**a**, **b**) or 3 h (**c**); r.t., 4 h (**a**) or 20 min (**b**, **c**); for **a**: 49%; for **b**: 39%; for **c**: 41%.

Scheme 6

The final goal was to transform the CO_2R^1 groups of the coupling products *E*-42 into the C=C-H groups of the target enediynes *E*-45. To this end, the esters *E*-42 were first converted into the corresponding aldehydes *E*-44 (Scheme 6). In the case of the esters *E*-42a and b this was done in two steps. We reduced them with 2.7 equiv. of DIBAL to give the allyl alcohols *E*-43a and b and oxidized those with the Dess-Martin reagent²⁸ to provide the aldehydes *E*-44a and b in 66% and 71% yields, respectively. The Boc-containing ester *E*-42c could be reduced one-step to the aldehyde *E*-44c at -78 °C by treatment with 1.1 equiv. of DIBAH in toluene (81% yield).

For the remaining conversion of the aldehydes 44 into the enediynes 45 we envisioned the Corey–Fuchs sequence.³⁴ Accordingly, we dibromomethylenated aldehyde E-44a with CBr₄ (2.0 equiv.), PPh₃ (4.0 equiv.) and Et₃N (1.0 equiv.) and obtained the dibromodienyne E-46a in 72% yield. However, treatment of this compound with MeLi or BuLi led to a rapid decomposition and not to the desired enediyne E-45a. In principle, a one-step alternative for alkyne formation from the aldehydes 44 could have been their Horner-Wadsworth-Emmons reaction with a deprotonated dimethyl diazomethanephosphonate³⁵ but the easier-to-perform Ohira modification of this reaction³⁶ was not applicable: Instead of the desired transformation - $C=C-CH=O \rightarrow -C=C-C=C-H$ it is reported to effect – $C=C-CH=O \rightarrow -C(OMe)C-CH-C\equiv C-H.^{37}$ Thus, we took recourse to the method of Shioiri et al. from which it was known that it does effect the particular conversion - $C=C-CH=O \rightarrow -C=C-C=C-H$.³⁸ Accordingly, we treated the aldehydes E-44a-c with lithio(trimethylsilyl)diazomethane - prepared at -78 °C from freshly prepared LDA and the commercially available solution of (trimethylsilyl)diazomethane in THF – as described, i. e., for 1 h at -78 °C and for 3 h at reflux temperature. What occurred was nothing but decomposition. However, when we warmed the reaction mixtures from -78 °C slowly to no more than room temperature, the desired alkynes E-45a-c formed. The feasability of synthesizing functionalized 3-substituted cis-configured hex-3-ene-1,5-diynes from β -oxo esters – in a total of 4–5 steps – has hereby been demonstrated. The modest yields of the last step -49%, 39% and 41%, respectively - seems to reflect the inherent instability of the enediynes and not so much a weakness of their formation reactions since the latter were spot-to-spot conversions as judged by TLC.

All reactions were performed in oven-dried (100 °C) glassware under anhyd N₂. THF, Et₂O and toluene were freshly distilled from K before use, CH₂Cl₂, DMSO, DMF and amines from CaH₂; MeOH was dried with Mg. Titration of RLi according to Suffert.³⁹ Products purified by flash chromatography⁴⁰ on Macherey&Nagel silica gel 60 (particle size 0.040–0.063 mm, 230–240 mesh ASTM; column diameter, eluents and product-containing fractions given in brackets; fraction volumes chosen as a function of the diameter of the used column: 1.0 cm \Rightarrow 5 mL, 1.5 cm \Rightarrow 10 mL, 2.0 cm \Rightarrow 15 mL, 2.5 cm \Rightarrow 20 mL, 4.0 cm \Rightarrow 50 mL, 6.0 cm \Rightarrow 100 mL). Yields refer to analytically pure samples. Optical rotations: Perkin-Elmer polarimeter 241 MC, Na lamp, 589 nm. ¹H NMR spectra (unless specified differently: TMS or CHCl₃ as internal standard working in CDCl₃; occasionally: MeOH as internal standard working in CD₃OD): VXL-200 (Varian), AMX300 (Bruker) and VXR-500S (Varian). Integrals in accord with assignments; coupling constants in Hz; AB spectra: H_A refers to high- and H_B to low-field resonance; all signals except AB signals evaluated by first-order splitting. APT ¹³C NMR spectra: same instruments, "+" for CH or CH₃, "-" for CH₂ or C_{quaternary}. IR spectra (film or solution in CDCl₃; selected bands only are listed in the following): Perkin Elmer FT-IR 1600. MS and HRMS were registered by Dr. G. Remberg, Institut für Organische Chemie der Universität Göttingen, on a Finnigan MAT 95 spectrometer. Combustion analyses: M. Beller and F. Hambloch, Institut für Organische Chemie der Universität Göttingen.

Ethyl (Z)-4-[*tert*-Butyl(diphenyl)siloxy]-3-{[(trifluoromethyl)-sulfonyl]oxy}but-2-enoate (Z-27a)

At 0 °C a solution of β -oxo ester **33** (0.970 g, 2.52 mmol) in THF (4 mL) was added carefully to a suspension of NaH (0.079 g, 3.3 mmol, 1.3 equiv.) in THF (4 mL). Stirring was continued at r. t. for 20 min whereupon triflimide **40** was added (1.08 g, 3.02 mmol, 1.2 equiv.). After stirring for 30 min at r. t. and for 6 h at 55 °C the heating bath was removed and Et₂O (20 mL) added. Successive extractions with H₂O (3 × 5 mL), sat. NH₄Cl (5 mL), sat. NaHCO₃ (5 mL) and finally brine (5 mL) ensued. After drying (Na₂SO₄) the solvent was removed in vacuo. Purification by flash chromatography gave the title compound >99% isomer-free from *E*-**27a** [1.5 cm, petroleum ether/*t*-BuOMe 20:1, F7–12, 0.849 g, 65%]. Some of the starting oxo ester **33** was re-isolated (F15-22; 0.206 g, 21%) so that the yield of *Z*-**27a** based on recovered starting material measures 83%.

¹H NMR (300 MHz): $\delta = 1.09$ (s, *t*-Bu), 1.34 (t, $J_{2",1"} = 7.2, 2'''-H_3$), 4.23 (d, $J_{1",2"} = 1.5, 1''-H_2$), in touch with 4.28 (q, $J_{1",2"} = 7.1, 1'''-H_2$), 6.23 (t, $J_{2',1"} = 1.7, 2'-H$), 7.38–7.48 (m, 6 *meta-* and *para-H_{Ar}*), 7.63 (dd, $J_{ortho} = 7.9, J_{meta} = 1.5, 4$ *ortho-H_{Ar}*).

¹³C NMR (APT spectrum at 50 MHz, contains unidentified peak at $\delta = "+"$ 127.98): $\delta = "+"$ 14.06 (C-2"), "-" 19.16 [$C(CH_3)_3$], "+" 26.62 [$C(CH_3)_3$], "-" 61.40 and "-" 61.81 (C-1", C-1"), "+" 111.03 (C-2'), "-" 118.19 (only the innermost lines of q, $J_{C,F} = 319.6$, CF₃), "+" 128.03 (4 *meta*-C), "+" 130.27 (2 *para*-C, because the intensity of this resonance is only half that of the 4 *meta*- and the 4 *ortho*-C's), "-" 131.72 (2 *ipso*-C), "+" 135.29 (4 *ortho*-C), "-" 156.37 (C-1'), "-" 162.55 (C=O).

MS (EI/70 eV): m/z = 559 (22%), 516 (2%, M⁺), 501 (8%, M⁺ – Me), 471 (9%, M⁺ – EtOH), 459 (100%, M⁺ – *tert*-butyl), 431 (7%), 357 (7%), 309 (8%), 271 (90%), 238 (32%), 199 (70%), 127 (12%), 105 (40%), 91 (12%).– MS (DCI/pos., NH₄⁺): m/z = 534 (100%, M⁺+NH₄⁺), 475 (10%), 402 (18%), 384 (38%), 356 (10%).

IR (CDCl₃): v = 1725 and 1690 (C=O and C=C st), 1385 and 1185 cm⁻¹ (S=O st).

Anal. Calcd for $C_{23}H_{27}O_6F_3SSi$ (516.6): C 53.48; H 5.28. Found C 54.48; H 5.24; a better combustion analysis could not be obtained.

Ethyl (E)-4-[tert-Butyl(diphenyl)siloxy]-3-{[(trifluoromethyl)-

sulfonyl]oxy}but-2-enoate (*E*-27a) in a 94:6 Mixture with *Z*-27a At 0 °C a solution of the β-oxo ester 33 (0.174 g, 0.450 mmol) in DMF (1 mL) was added carefully to a suspension of NaH (0.014 g, 0.590 mmol, 1.3 equiv.) in DMF (1 mL). After stirring at r. t. for 20 min, the triflimide 40 (0.194 g, 0.540 mmol, 1.2 equiv.) was added and stirring continued for 4 h. Diluting with Et₂O (20 mL), washing successively with H₂O (3×5 mL), sat. NH₄Cl (5 mL), sat. NaHCO₃ (5 mL) and brine (5 mL), drying (Na₂SO₄), removing the solvent in vacuo and purifying by flash chromatography (1.5 cm, petroleum ether/*t*-BuOMe 30:1, F8-12) gave the title compound (0.122 g, 52%); it was a 94:6 *E:Z* mixture according to the ¹H NMR integral ratio over the 2'-H resonances.

E-27a

¹H NMR (300 MHz): $\delta = 1.08$ (s, *t*-Bu), 1.17 (t, $J_{2",1"} = 7.2, 2'''-H_3$), 4.06 (q, $J_{1",2"} = 7.2, 1'''-H_2$), 4.81 (s, 1''-H₂), 5.89 (s, 2'-H), 7.36– 7.47 (m, 6 *meta*- and *para*-H_{Ar}), 7.69 (dd, $J_{meta} = 7.7, J_{ortho} = 1.7, 4$ *ortho*-H_{Ar}).

¹³C NMR (APT spectrum at 50 MHz, contains unidentified peak at "+" 135.54): δ = "+" 13.90 (C-2"), "-" 19.15 [*C*(CH₃)₃], "+" 26.52 [*C*(CH₃)₃], "-" 59.87 and "-" 61.34 (C-1", C-1"), "+" 113.16 (C-2'), "-" 118.49 (three lines of q, *J*_{C,F} = 320.5, CF₃), "+" 127.79 (4 *meta*-C), "+" 129.95 (2 *para*-C, because the intensity of this resonance is only half that of the 4 *meta*- and the 4 *ortho*-C's), "-" 132.30 (2 *ipso*-C), "+" 135.60 (4 *ortho*-C), "-" 161.55 and "-" 163.17 (C-1', C=O).

Z-27a

¹H NMR (300 MHz): $\delta = 1.34$ (t, $J_{2",1"} = 7.2$, 2'"-H₃), 4.23 (d, $J_{1",2"} = 1.5$, 1"-H₂), 4.28 (q, $J_{1",2"} = 7.2$, 1""-H₂), 6.23 (t, $J_{2',1"} = 1.7$, 2'-H), 7.64 (dd, $J_{meta} = 7.7$, $J_{ortho} = 1.7$, 4 ortho-H_{Ar}); the residual resonances are superimposed by those of *E*-**27a**.

¹³C NMR (APT spectrum at 50 MHz, contains unidentified peak at "+" 135.54): δ = "+" 15.18 (C-2""), "+" 26.61 [C(*C*H₃)₃], "-" 60.76 and "-" 61.95 (C-1", C-1""), "+" 111.05 (C-2"), "+" 128.05 (4 *meta*-C), "+" 130.30 (2 *para*-C, because the intensity of this resonance is only half that of the 4 *meta*- and the 4 *ortho*-C's ist), "+" 135.31 (4 *ortho*-C); the residual resonances are superimposed by those of *E*-**27a**.

IR (CDCl₃): ν = 1725 and 1665 (C=O and C=C st), 1380 and 1225 cm^{-1} (S=O st).

No satisfactory combustion analysis could be obtained.

Ethyl (Z)-3-[(4R)-2,2-Dimethyl-1,3-dioxolan-4-yl]-3-{[(trifluoromethyl)sulfonyl]oxy}prop-2-enoate (Z-27b)

Prepared as described for Z-27a from the β -oxo ester 36 (7.39 g, 34.2 mmol) in THF (74 mL), a suspension of NaH (0.813 g, 33.9 mmol, 1.0 equiv.) in THF (74 mL) and the triflimide 41 (16.1 g, 41.1 mmol, 1.2 equiv.) except that the latter was allowed to react 30 min at r. t. and 3.5 h at 70 °C. Extractive workup and flash chromatography (6 cm, petroleum ether/t-BuOMe 12:1, F23–38) provided the title compound (7.32 g, 62%). According to the extremely weak 2'-H ¹NMR signal it was >99% isomer-free from *E*-27b.

 $[\alpha]_D^{26} = -41.1 \ (c = 1.82 \text{ in CHCl}_3).$

¹H NMR (300 MHz): $\delta = 1.32$ (t, $J_{2',1'} = 7.2$, 2'-H₃), 1.41 and 1.51 [2 s, 2"-(CH₃)₂], AB signal ($\delta_A = 4.02$, $\delta_B = 4.31$, $J_{AB} = 9.0$, in addition split by $J_{A,4"} = 5.3$, $J_{B,4"} = 7.0$, 5"-H₂), 4.20 (m_c, 1"'-H₂), 4.63 (poorly resolved ddd, $J_{4",5"-H(B)} = 6.8$, $J_{4",5"-H(A)} = 5.3$, ${}^{4}J_{4",2'} = 1.1$, 4"-H), 6.23 (d, ${}^{4}J_{2',4"} = 1.5$, 2'-H).

NOESY spectrum for configurational assignment: The resonances at $\delta = 4.63$ (4"-H) and 6.23 (2'-H) exhibit a cross-peak, which proves the *cis*-configuration of the C=C bond.

¹³C NMR (APT spectrum at 50 MHz): δ = "+" 13.97 (C-2"), "+" 25.01 and "+" 26.11 [2"-(CH₃)₂], "-" 61.48 (C-1"), "-" 67.62 (C-5"), "+" 73.48 (C-4"), "+" 111.60 (C-2" and C-2'), "-" 118.30 (q, $J_{C,F} = 320$, CF₃), "-" 155.94 (C-1'), "-" 162.29 (C=O).

IR (CDCl₃): ν = 1725 and 1685 (C=O and C=C st), 1380 and 1300 cm^{-1} (S=O st).

Anal. Calcd for $C_{11}H_{15}O_7F_3S$ (348.3): C 37.93; H 4.35. Found C 38.03; H 4.38.

Ethyl (*E*)-3-[(4*R*)-2,2-Dimethyl-1,3-dioxolan-4-yl]-3-{[(trifluoromethyl)sulfonyl]oxy}prop-2-enoate (*E*-27b)

Prepared as described for E-**27a** from the β -oxo ester **36** (0.100 g, 0.460 mmol) in DMF (1 mL), NaH (0.011 g, 0.46 mmol, 1.0 equiv.) in DMF (1 mL) and triflimide **40** (0.197 g, 0.550 mmol, 1.2 equiv.). Flash chromatography (1.5 cm, petroleum ether/*t*-BuOMe 10:1, F4-

$[\alpha]_D^{25} = +40.4 \ (c = 1.55 \ \text{in CHCl}_3).$

¹H NMR (300 MHz): $\delta = 1.32$ (t, $J_{2",1"} = 7.2$, 2"'-H₃), 1.42 and 1.52 [2 s, 2"-(CH₃)₂], AB signal ($\delta_A = 3.90$, $\delta_B = 4.37$, $J_{AB} = 8.6$, in addition split by $J_{A,4"} = 6.4$, $J_{B,4"} = 7.3$, 5"-H₂), 4.23 (q, $J_{1",2"} = 7.2$, 1"'-H₂), 5.69 (incompletely resolved ddd, $J_{4",5"-H(A)} \approx J_{4",5"-H(B)} \approx 7.7$, ${}^{4}J_{4",2"} = 0.8$, 4"-H), 6.04 (d, ${}^{4}J_{2',4"} = 0.8$, 2'-H).

NOESY spectrum for configurational assignment: The absence of a cross-peak between the resonances at $\delta = 5.69$ (4"-H) and 6.04 (2'-H) proves the *trans* configuration of the C=C bond.

¹³C NMR (APT spectrum at 50 MHz): δ = "+" 14.01 (C-2"), "+" 25.19 and "+" 25.40 [2"-(CH₃)₂], "-" 61.69 (C-1"), "-" 68.01 (C-5"), "+" 76.36 (C-4"), "-" 111.83 (C-2"), "+" 114.43 (C-2'), "-" 118.34 (q, J_{C,F} = 319.4, CF₃), "-" 161.10 (C-1'*), "-" 163.49 (C=O*); *assignments interchangeable.

IR (CDCl₃): v = 1720 and 1655 (C=O and C=C st), 1380 and 1215 cm⁻¹ (S=O st).

Anal. Calcd for $C_{11}H_{15}O_7F_3S$ (348.3): C 37.93; H 4.34. Found C 37.81; H 4.40.

tert-Butyl (4*S*)-4-((*Z*)-3-Butoxy-3-oxo-1-{[(trifluoromethyl)sulfonyl]oxy}prop-1-enyl)-2,2-dimethyl-1,3-oxazolidine-3-carboxylate (*Z*-27c)

At -78 °C *t*-BuLi (1.18 M; 375 µl, 0.443 mmol, 1.0 equiv.) was added within 40 min dropwise and under continued stirring to a solution of the β -oxo ester **38** (0.152 g, 0.443 mmol) in THF (2.0 mL). After 30 min, triflimide **40** (0.192 g, 0.535 mmol, 1.2 equiv.) was added, and the mixture was allowed to warm to r. t. within 30 min. Thereafter, it was heated at 55 °C for 14 h. Workup through diluting with *t*-BuOMe (30 mL), washing with H₂O (4 × 6 mL), sat. NH₄Cl (6 mL), sat. NaHCO₃ (6 mL) and finally brine (6 mL), drying (Na₂SO₄), removing the solvent in vacuo and flash chromatography (1.5 cm, petroleum ether/*t*-BuOMe 10:1, F12-21) gave the title compound (0.150 g, 71%). The *Z:E* ratio was >99:1 according to the 4"-H ¹H NMR signals.

 $[\alpha]_D^{26} = -4.67 \ (c = 1.30 \text{ in CHCl}_3).$

¹H NMR (300 MHz; contains an extra peak at $\delta = 4.57$ which is supposed to stem from a rotamer): $\delta = 1.45$ and 1.53 [2 s, 2"-(CH₃)₂], 1.51 (s, 2 × t-Bu), AB signal ($\delta_{A} = 4.07$, $\delta_{B} = 4.13$, $J_{AB} = 9.4$, in addition split by $J_{A,4"} = 1.9$, $J_{B,4"} = 6.4$, 5"-H₂), 4.42 (br d, $J_{4",5"-H(B)} = 5.7$, 4"-H), 5.84 (s, 2'-H).

NOESY spectrum for configurational assignment: The resonances at $\delta = 4.42$ (4"-H) and 5.84 (2'-H) exhibit a cross-peak which proves the *cis*-configuration of the C=C bond.

¹³C NMR [APT spectrum at 50 MHz; contains unidentified peak at δ = "+" 28.13 which might be due to 2 × C(*C*H₃)₃ of a rotamer]: δ = "+" 22.74 and "+" 26.48 [2"-(CH₃)₂], "+" 27.92 [2 × C(*C*H₃)₃], "+" 58.69 (C-4"), "-" 65.79 (C-5"), "-" 81.62 and "-" 82.85 [2 × C(CH₃)₃], "-" 95.24 (C-2"), "+" 113.18 (C-2'), "-" 118.33 (q, *J*_{C,F} = 320.7, CF₃), "-" 151.11 and "-" 155.14 (C-1', C-1"), "-" 161.55 (CCO₃t-Bu).

IR (CDCl₃): v = 1710 (C=O st), 1370 and 1215 cm⁻¹ (S=O st).

Anal. Calcd for $C_{18}H_{28}NO_8F_3S$ (475.5): C 45.47; H 5.94. Found C 45.70; H 5.86.

tert-Butyl (4*S*)-4-((*E*)-3-Butoxy-3-oxo-1-{[(trifluoromethyl)sulfonyl]oxy}prop-1-enyl)-2,2-dimethyl-1,3-oxazolidine-3-carboxylate (*E*-27c) in a 65:35 Mixture with a Rotamer (*iso-E*-27c)

Prepared as described for *E*-**27a** from the β -oxo ester **38** (0.237 g, 0.690 mmol) in DMF (1.5 mL), NaH (0.016 g, 0.69 mmol, 1.0 equiv.) in DMF (1.5 mL) and the triflimide **40** (0.294 g, 0.820

mmol, 1.2 equiv.). Flash chromatography (1.5 cm, petroleum ether/ *t*-BuOMe 10:1, F16-22) gave the title compound (0.236 g, 72%). According to the ¹H NMR integrals over the 4^{\prime}-H signals it constitutes a 65:35 mixture of rotamers *E*-**27c** and *iso-E*-**27c**; the integrals over the 2'-H resonances prove that it was >99% isomer-free from *Z*-**27c**.

 $[\alpha]_{D}^{26} = +12.6 \ (c = 1.30 \text{ in CHCl}_{3}).$

E-27c

¹H NMR (300 MHz): $\delta = 1.49$ (s, 2 × *t*-Bu), 1.53 and 1.65 [2"-(CH₃)₂], AB signal ($\delta_{A} = 3.97$, $\delta_{B} = 4.30$, $J_{AB} = 9.4$, in addition split by $J_{A,4^{u}} = 2.9$, $J_{B,4^{u}} = 7.7$, 5"-H₂), 5.72 (dd, $J_{4^{u},5^{u}-H(B)} = 7.4$, $J_{4^{u},5^{u}-H(A)} = 2.9$, 4"-H), 5.98 (s, 2'-H).

NOESY spectrum for configurational assignment: The absence of a cross-peak between the resonances at $\delta = 5.72$ (4"-H) and 5.98 (2'-H) is in accord with the *trans* configuration of the C=C bond.

¹³C NMR (APT spectrum at 50 MHz): δ = "+" 23.41 and "+" 24.78 [2"-(CH₃)₂], "+" 28.00 [2 × C(CH₃)₃], "+" 55.15 (C-4"), "-" 67.07 (C-5"), "-" 80.88 and "-" 82.49 [2 × C(CH₃)₃], "-" 95.48 (C-2"), "+" 112.45 (C-2'), "-" 118.16 (q, $J_{C,F}$ = 320.1, CF₃), "-" 151.21 (carbamate C=O), "-" 161.65 and "-" 163.07 (C-1', C-3').

iso-E-**27c**: ¹H NMR (300 MHz): $\delta = 1.41$ (s, 2 × t-Bu), 1.60 and 1.61 [2"-(CH₃)₂], 5.65 (poorly resolved dd, $J_{4",5"-H(B)} = 6.4$, $J_{4",5"-H(A)} = 3.6$, 4"-H); the other resonances are superimposed by those of *E*-**27c**. ⁻¹³C NMR (APT spectrum at 50 MHz): $\delta = "+"$ 24.68 and "+" 25.56 [2"-(CH₃)₂], "+" 28.00 (which superimposes – as can be inferred from its greater intensity in comparison to the peak at $\delta = 28.33$ – an analogous resonance of *E*-**27c**) and "+" 28.23 [2 × C(CH₃)₃], "+" 56.24 (C-4"), "-" 67.39 (C-5"), "-" 80.19 [*C*(CH₃)₃], "-" 94.78 (C-2"), "+" 112.81 (C-2'), "-" 152.00 (carbamate C=O); the residual resonances are superimposed by those of *E*-**27c**.

IR (CDCl₃): v = 1710 and 1655 (C=O and C=C st), 1370 and 1215 cm⁻¹ (S=O st).

Anal. Calcd for $C_{18}H_{28}NO_8F_3S$ (475.5): C 45.47; H 5.94. Found C 45.87; H 5.94.

2-(tert-Butyldiphenylsiloxy)acetaldehyde (31)

16.6 g, 78%; Prepared by the ozonolysis of allyl ether **30** (21.1 g, 71.3 mmol) in CH₂Cl₂ (250 mL) followed by reductive workup with Me₂S (16.0 mL, 225 mmol, 3 equiv.) and flash chromatography [6 cm, petroleum ether/*t*-*Bu*OMe 5:1, F12-24].²³

Ethyl 4-(tert-Butyldiphenylsiloxy)-3-hydroxybutanoate (32)

At -20 °C BuLi (2.18 M in hexane; 7.00 mL, 15.3 mmol, 1.05 equiv. with respect to **31**) was added dropwise to a solution of i-Pr₂NH (2.11 mL, 1.52 g, 16.1 mmol, 1.10 equiv. with respect to **31**) in THF (14 mL). Stirring at that temperature was continued for 40 min. At -78 °C a solution of EtOAc (1.45 mL, 14.6 mmol, 1.0 equiv. with respect to **31**) in THF (7.8 mL) was added whereupon stirring was continued for 1 h. Aldehyde **31** (4.35 g, 14.6 mmol) in THF (10 mL) was added and stirring at -78 °C continued for another 3 h. The reaction was quenched by adding sat. NH₄Cl (11 mL). Extraction with Et₂O (3 × 100 mL), washing the combined extracts with brine (10 mL), drying over Na₂SO₄, removing the solvent in vacuo and flash chromatography (4 cm, petroleum ether/*t*-BuOMe 5:1, F7-15) led to the title compound (4.24 g, 75%).

¹H NMR (300 MHz): $\delta = 1.06$ (s, *t*-Bu), 1.24 (t, $J_{2',1'} = 7.2$, 2'-H₃), extreme AB signal ($\delta_A = 2.51$, $\delta_B = 2.57$, $J_{AB} = 15.8$, in addition split by $J_{A,3} = 7.4$, $J_{B,3} = 5.1$, 2-H₂), 2.94 (br d, $J_{OH,3} = 4.6$, exchangeable with D₂O, OH), extreme AB signal ($\delta_A = 3.63$, $\delta_B = 3.67$, $J_{AB} = 10.2$, in addition split by $J_{A,3} = 6.0$, $J_{B,3} = 5.1$, 4-H₂), 4.14 (q, $J_{1',2'} = 7.1$, 1'-H₂), superimposed by ca. 4.15 (m_c, 3-H), 7.35-7.45 (m, 6 *meta*-and *para*-H_{Ar}), 7.63-7.67 (m, 4 *ortho*-H_{Ar}).

¹³C NMR (APT spectrum at 50 MHz): $\delta = "+" 14.15$ (C-2'), "-" 19.22 [*C*(CH₃)₃], "+" 26.80 [C(*C*H₃)₃], "-" 38.05 (C-2), "-" 60.64 (C-1'), "-" 66.85 (C-4), "+" 68.60 (C-3), "+" 127.73 (4 meta-C), "+" 129.79 (2 para-C because this resonance is half as intense as for *ortho-* and *meta-*C), "-" 132.95 and "-" 132.98 (2 × 1 *ipso-*C), "+" 135.48 (4 *ortho-*C), "-" 172.02 (C-1).

MS (EI/70 eV): m/z = 341 (24%, M⁺ –EtOH), 329 (21%, M⁺ –t-butyl), 283 (12%, 341 –t-butyl-H), 251 (100%, 329 –PhH), 241 (60%, 329 –EtOAc), 223 (48%), 199 (88%, 241 –C₂H₂O), 181 (50%), 163 (29%).

MS (DCI/pos., NH₃): $m/z = 404 (100\%, M^+ + NH_4^+)$, 358 (12%, 404 –EtOH), 326 (44%, 358 –MeOH), 309 (10%), 291 (5%), 274 (28%), 231 (8%).

IR (CDCl₃): v = 3575 (O-H st), 1725 (C=O st) cm⁻¹.

Anal. Calcd for $C_{22}H_{30}O_4Si$ (386.6): C 68.34; H 7.82. Found C 68.30; H 7.72.

Ethyl [4-(*tert*-Butyldiphenylsiloxy)-3-oxobutanoate] (33) in a 85:15 Mixture with the Tautomeric Enol Ethyl (*Z*)-[4-(*tert*-Bu-tyldiphenylsiloxy)-3-hydroxybut-2-enoate] (*iso*-33)

At -65 °C a solution of trifluoroacetic anhydride (7.90 mL, 11.7 g, 54.3 mmol, 1.5 equiv. with respect to **32**) in CH₂Cl₂ (19 mL) was added within 10 min to a solution of DMSO (5.25 mL, 72.4 mmol, 2.0 equiv. with respect to **32**) in the same solvent (37 mL). After another 10 min a solution of the β -hydroxy ester **32** (14.0 g, 36.2 mmol) in CH₂Cl₂ (26 mL) was added. 10 min later the cooling bath was removed so that the mixture warmed to r. t. over 40 min. Et₃N (8.40 mL, 106 mmol, 2.9 equiv. with respect to **32**) was added and another 10 min later H₂O (158 mL). The aqueous phase was extracted with CH₂Cl₂ (2 × 300 mL). The combined extracts were washed with HCl (1%, 175 mL), sat. NaHCO₃ (175 mL) and brine (175 mL). After drying (Na₂SO₄) the solvent was removed in vacuo. Flash chromatography (6 cm, petroleum ether/*t*-BuOMe 8:1, F7-15) furnished the title compound (9.87 g, 71%).

33

¹H NMR (300 MHz, CDCl₃): $\delta = 1.09$ (s, *t*-Bu), 1.26 (t, $J_{2',1'} = 7.2$, 2'-H₃), 3.63 (s, 2-H₂), 4.18 (q, $J_{1',2'} = 7.2$, 1'-H₂), in touch with 4.23 (s, 4-H₂), 7.37–7.45 (m, 6 *meta*- and *para*-H_{Ar}), 7.63 (dd, $J_{ortho} = 7.9$, $J_{meta} = 1.5$, 4 ortho-H_{Ar}).

¹³C NMR (APT spectrum at 50 MHz; contained unidentified peaks at δ = "-" 77.82 and "+" 130.23): δ = "+" 14.06 (C-2'), "-" 19.16 [*C*(CH₃)₃], "+" 26.68 [*C*(CH₃)₃], "-" 45.83 (C-2), "-" 61.37 (C-1'), "-" 69.43 (C-4), "+" 127.91 (4 *meta*-C), "+" 130.08 (2 *para*-C), "-" 132.13 (2 *ipso*-C), "+" 135.44 (4 *ortho*-C), "-" 167.14 (C-1),"-" 203.41 (C-3).

iso-33

¹H NMR (300 MHz, CDCl₃): $\delta = 1.33$ (t, $J_{2',1'} = 7.2$, 2'-H₃), 4.20 (d, ⁴ $J_{4,2} = 1.1$, 4-H₂), superimposed by 4.21 (q, $J_{2',1'} = 7.9$, 1'-H₂), 5.54 (t, $J_{2,4} = 1.1$, 2-H); the residual resonances are superimposed by those of **33**.– ¹³C NMR (APT spectrum at 50 MHz): $\delta = "-" 60.16$ (C-1'), "-" 62.73 (C-4), "+" 87.50 (C-2), "+" 127.83 (4 *meta*-C), "+" 129.93 (2 *para*-C); the residual resonances are superimposed by those of **33**.

MS (EI/70 eV): m/z = 384 (1%, M⁺), 353 (4%), 339 (6%), 327 (100%, M⁺ - *tert*-butyl), 281 (22%, 327 - EtOH), 253 (72%, 281 - CO), 221 (14%), 199 (86%), 181 (12%), 177 (12%), 135 (10%), 115 (8%).

HRMS (EI/70 eV): m/z = 384.1756 (M⁺) confirms the molecular formula $C_{22}H_{28}O_4Si$ with a precision of ± 2 mDa.

MS (DCI/pos., NH_4^+): m/z = 402 (100%, $M^+ + NH_4^+$).

IR (CDCl₃): v = 1740 and 1720 cm⁻¹ (C=O st).

Anal. Calcd for $C_{22}H_{28}O_4Si$ (384.6): C 68.70; H 7.34. Found C 68.74; H 7.30.

(4R)-2,2-Dimethyl-1,3-dioxolane-4-carbaldehyde (34)

Compound **34** was obtained by known protocols²⁶ from Ddiisopropylidenemannitol²⁷ (39.3 g, 150 mmol) and NaIO₄ (48.0 g, 215 mmol, 1.5 equiv.) as a colorless liquid (25.9 g, 67%; lit. 67%) after distillation (bp. 47 °C_{20 mbar}; lit. 72–74 °C_{30 Torr}).

Ethyl $(3R^*,4''R)$ -(2,2-Dimethyl-1,3-dioxolan-4-yl)-3-hydroxypropionate (35) in a 83:17 Mixture with the Diastereomer Ethyl $(3S^*,4''R)$ -(2,2-Dimethyl-1,3-dioxolan-4-yl]-3-hydroxypropionate (*epi*-35)

*configurational assignments interchangeable

At -20 °C BuLi (2.18 M in hexane; 55.0 mL, 120 mmol, 1.05 equiv.) was added dropwise to a solution of i-Pr₂NH (17.0 mL, 12.3 g, 121 mmol, 1.10 equiv.) in THF (112 mL). After stirring for 40 min the temperature was lowered to -78 °C. EtOAc (12.0 mL, 123 mmol, 1.1 equiv.), dissolved in THF (55 mL), was added and 1 h later aldehyde **34** (15.1 g, 116 mmol), equally dissolved in THF (88 mL). After stirring for another 3 h at -78 °C the reaction was quenched by the addition of sat. NH₄Cl (100 mL). Extractive workup as described for **32** and flash chromatography (6 cm, petroleum ether/*t*-BuOMe 1.5:1, F13–36) rendered the title compound (18.5 g, 73%). As determined by the ¹H NMR integrals over the 2"-methyl groups, it was a 83:17 mixture of unassigned diastereomers.

 $[\alpha]_{D}^{26} = -8.53 \ (c = 1.50 \text{ in CHCl}_{3}).$

35

¹H NMR (300 MHz): $\delta = 1.28$ (t, $J_{2',1} = 7.2$, $2'-H_3$), 1.35 and 1.41 [2 s, 2"-(CH₃)₂], AB signal ($\delta_A = 2.47$, $\delta_B = 2.70$, $J_{AB} = 16.4$, in addition split by $J_{A,3} = 8.1$, $J_{B,3} = 2.4$, 2-H₂), 3.32 (br d, $J_{OH,3} = 3.0$, exchangeable with D₂O, OH), 3.85–4.13 (m, 3-H, 4"-H and 5"-H₂), in touch with 4.18 (q, $J_{1',2'} = 7.2$, 1'-H₂).

¹³C NMR (APT spectrum at 50 MHz): δ = "+" 14.11 (C-2'), "+" 25.10 and "+" 26.60 [2"-(CH₃)₂], "-" 37.65 (C-2), "-" 60.80 (C-1'), "-" 66.59 (C-5"), "+" 69.14 (C-3), "+" 77.51 (C-4"), "-" 109.44 (C-2"), "-" 172.65 (C-1).–*epi-35*¹H NMR (300 MHz): δ = 1.37 and 1.45 [2 s, 2"-(CH₃)], AB signal (evaluable speculatively in the following way: δ_A = 2.47, δ_B = 2.55, J_{AB} = 16.6, in addition split by $J_{B,3}$ = 7.9, 2-H₂), 2.99 (br d, $J_{OH,3}$ = 5.6, exchangeable with D₂O, OH); the residual resonances are superimposed by those of **35**.

¹³C NMR (APT spectrum at 50 MHz): δ = "+" 26.32 (2"-CH₃), "-" 38.17 (C-2), "-" 65.54 (C-5"), "+" 68.25 (C-3), "-" 103.71 (C-2"), "-" 171.76 (C-1); the residual resonances are superimposed by those of **35**.

IR (CDCl₃): v = 3575 (O-H st), 1720 cm⁻¹ (C=O st).

No satisfactory combustion analysis could be obtained.

Ethyl (4''R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)-3-oxopropionate (36) in a 83:17 Mixture with the Tautomeric Enol Ethyl (4''R)-(Z)-(2,2-Dimethyl-1,3-dioxolan-4-yl)-3-hydroxyprop-2-enoate (*iso*-36)

At 0 °C Dess–Martin reagent²⁸ (19.2 g, 45.4 mmol, 1.1 equiv.) was added to a solution of β -hydroxy ester **35** (9.00 g, 41.2 mmol) in CH₂Cl₂ (380 mL). After stirring for 1.5 h at r. t. the reaction was quenched by the addition of sat. NaHCO₃ (250 mL) and sat. Na₂S₂O₃ (10%, 250 mL). After 10 min, the resulting mixture was extacted with CH₂Cl₂ (2 × 200 mL). Washing with (55 mL), drying (Na₂SO₄), evaporating the solvent in vacuo and purifying by flash chromatography (6 cm, petroleum ether/*t*-BuOMe 7:1, F9-24) led to the title compound (5.94 g, 67%); as determined by the ¹H NMR integrals over the 2"-methyl resonances, it was a 83:17 mixture of ketome **36** and enol *iso*-**36**. [a]_D²⁶ = +73.7 (*c* = 1.50 in CHCl₃).

36

¹H NMR (300 MHz): δ = 1.28 (t, $J_{2',1}$ = 7.1, 2'-H₃), 1.38 and 1.49 [2 s, 2"-(CH₃)₂], AB signal (δ_A = 3.60, δ_B = 3.66, J_{AB} = 16.2, 2-H₂), 4.10 (dd, J_{gem} = 9.0, $J_{5"-H(1),4"}$ = 5.2, 5"-H¹), 4.17 - ca. 4.25 (m, 5"-H₂, 1'-H₂), 4.53 (dd, $J_{4",5"-H(2)}$ = 7.8, $J_{4",5"-H(1)}$ = 5.5, 4"-H). ¹³C NMR (APT spectrum at 50 MHz): δ = "+" 14.02 (C-2), "+" 24.71 and "+" 25.88 [2"-(CH₃)₂], "-" 45.66 (C-2), "-" 61.36 (C-1), "-" 66.44 (C-5"), "+" 79.85 (C-4"), "-" 111.14 (C-2"), "-" 166.90 (C-1), "-" 203.85 (C-3).

iso-36

¹H NMR (300 MHz): δ = 1.31 (t of which only the low-field peak is not superimposed, $J_{2',1'}$ = 6.9, 2'-H₃), 1.41 (s, 2"-CH₃), 3.99 (dd, J_{gem} = 8.9, in addition split by $J_{5"-H(1),4"}$ = 9.0, 5"-H¹11111111₁), ca. 4.17 - 4.30 (m, 5"-H², 1'-H₂), 5.38 (s, 4"-H), 12.00 (s, OH); the residual resonances are superimposed by those of **36**.

¹³C NMR (APT spectrum at 50 MHz): $\delta = "+" 14.17$ (C-2'), "+" 25.29 and "+" 25.99 [2"-CH₃)₂], "-" 60.28 (C-1'), "-" 68.03 (C-5"), "+" 74.39 (C-4"), "+" 88.23 (C-2), "-" 110.59 (C-2"), "-" 175.20 (C-1); the residual resonances are superimposed by those of **36**.

IR (CDCl₃): v = 1740 and 1720 cm⁻¹ (C=O st).

Anal. Calcd for $\rm C_{10}H_{16}O_5$ (216.2): C 55.55; H 7.47. Found C 55.44; H 7.61.

3-(*tert*-Butyl) 4-Methyl (4S)-2,2-Dimethyl-1,3-oxazolidine-3,4dicarboxylate (*iso*-37)

Prepared by a published procedure²⁹ from the methyl ester of *N*-Boc-L-serine²⁹ (52.6 g, 240 mmol) and 2,2-dimethoxypropane (60.1 mL, 493 mmol, 2.0 equiv.) and purified by distillation (bp. 83–85 °C_{0.40 mbar}; lit. 102 °C_{2 Torr}) to give the title compound (51.2 g, 83%; lit. 70–89%) which solidified in the refrigerator.

tert-Butyl (4*S*)-4-[3-(*tert*-Butoxy)-3-oxopropanoyl]-2,2-dimethyl-1,3-oxazolidine-3-carboxylate (38; 63:37 Mixture* of Rotamers 38a and 38b) in a 87:13 Mixture** with the Tautomeric Enol *tert*-Butyl (4*S*)-4-[(*Z*)-3-(*tert*-Butoxy)-1-hydroxy-3-oxoprop-1enyl]-2,2-dimethyl-1,3-oxazolidine-3-carboxylate [*iso*-38; Unspecified Mixture of Rotamers *iso*-38a and *iso*-38b]

*determined ¹H NMR spectroscopically by the integral ratio over the 4⁻⁻H resonances

**determined ¹H NMR spectroscopically by the integral ratio over the 2-H resonances

At -20 °C BuLi (2.35 M in hexane; 51.7 mL, 121 mmol, 2.10 equiv.) was added dropwise to a solution of i-Pr₂NH (16.1 mL, 11.6 g, 121 mmol, 2.10 equiv.) in THF (100 mL). After stirring for 40 min the temperature was decreased to -78 °C. *tert*-BuOAc (16.4 mL, 121 mmol, 2.10 equiv.), dissolved in THF (50 mL), was added, stirring at -78 °C continued for 1 h, and ester **37** (15.0 g, 57.9 mmol), also dissolved in THF (51 mL) was added. After stirring for another 12 h at -78 °C, the reaction was quenched by the addition of sat. NH₄Cl (300 mL). Extractive workup with *t*-BuOMe (3 × 500 mL), washing with brine (200 mL) and flash chromatography (6 cm, petroleum ether/*t*-BuOMe 6:1, F12-32) gave the title compound (17.9 g, 90%) as a colorless solid (mp. 78 °C).

 $[\alpha]_D^{26} = -61.7 \ (c = 1.30 \text{ in CHCl}_3)$

38a

¹H NMR (300 MHz): δ = 1.47 and 1.48 (2 s, 2×*t*-Bu), 1.51 and 1.69 [2 s, 2"-(CH₃)₂], 3.45 (br s, 2-H₂), AB signal (δ_{A} = 4.01, δ_{B} = 4.18, J_{AB} = 9.0, in addition split by $J_{A,4"}$ = 3.0, $J_{B,4"}$ = 8.5, 5"-H₂), 4.40 (dd, $J_{4",5"-H(B)}$ = 7.6, $J_{4",5"-H(A)}$ = 3.0, 4"-H).

¹³C NMR (APT spectrum at 50 MHz): δ = "+" 23.54 and "+" 25.22 [2"-(CH₃)₂], "+" 27.84 [2 × C(CH₃)₃], "-" 46.76 (C-2), "+" 65.16 (C-4"), "-" 65.42 (C-5"), "+" 81.03 and "+" 82.01 [2 × C(CH₃)₃], "-"

95.19 (C-2"), "-" 151.18 (N-CO₂t-Bu), "-" 166.10 (C-1), "-" 201.76 (C-3).

38b

¹H NMR (300 MHz): $\delta = 1.43$ (s, t-Bu), 1.63 (s, 2"-CH₃), AB signal ($\delta_A = 3.47$, $\delta_B = 3.58$, $J_{AB} = 15.9$, 2-H₂), AB signal ($\delta_A = 4.06$, $\delta_B = 4.13$, $J_{AB} = 8.3$, in addition split by $J_{A,4"} = 2.2$, $J_{B,4"} = 5.6$, 5"-H₂), 4.55 (dd, $J_{4",5"-H(B)} = 6.4$, $J_{4",5"-H(A)} = 3.4$, 4"-H); the residual resonances are superimposed by those of **38a**.

¹³C NMR (APT spectrum at 50 MHz): $\delta = "+" 24.84"+" 25.90$ [2"-(CH₃)₂], "+" 28.09 and "+" 28.17 [2 × C(CH₃)₃], "-" 47.71 (C-2), "+" 64.74 (C-4"), "-" 65.23 (C-5"), "-" 94.49 (C-2"), "-" 152.41 (N-CO₂t-Bu), "-" 166.41 (C-1), "-" 201.47 (C-3); the residual resonances are superimposed by those of **38a**.

iso-38a and iso-38b:

¹H NMR (300 MHz): δ = 5.03 (s, 2-H), 12.28 and 12.33 (2 br s, OH*); the residual resonances are superimposed by those of **38a** and **38b**.

IR (CDCl₃): v = 1795 and 1700 cm⁻¹ (C=O st).

Anal. Calcd for $C_{17}H_{29}NO_6$ (343.4): C 59.46; H 8.51. Found C 59.30; H 8.37.

Ethyl (*E*)-(3-*tert*-Butyldiphenylsiloxymethyl)-5-(trimethylsilyl)pent-2-en-4-ynoate (*E*-42a)

Prepared as described for *E*-**42c** from PdCl₂(PPh₃)₂ (0.122 g, 0.170 mmol, 0.06 equiv.) and CuI (0.102 g, 0.540 mmol, 0.16 equiv.) in degassed THF (46 mL), triflate *Z*-**27a** (1.59 g, 3.08 mmol), (trimethylsilyl)acetylene (601 μ L, 0.418 g, 4.24 mmol, 1.4 equiv.) and degassed i-Pr₂NH (15.3 mL, 11.1 g, 110 mmol, 36 equiv. with respect to *Z*-**27a**) except that the reaction lasted 16 h. Purification by flash chromatography (2.5 cm, petroleum ether/t-BuOMe 20:1, F8-13) gave the title compound (1.03 g, 72%) which – according to the ¹H NMR integrals over the 2-H resonances – was >99% isomer-free from *Z*-**42a**.

¹H NMR (300 MHz): δ = 0.19 [s, Si(CH₃)₃], 1.09 (s, *t*-Bu), 1.34 (t, $J_{2',1'}$ = 7.2, 2'-H₃), 4.26 (q, $J_{1',2'}$ = 7.1, 1'-H₂), low-field part superimposed by 4.27 (d, ${}^{4}J_{1'',2}$ = 2.2, 1"-H₂), 6.54 (t, ${}^{4}J_{2,1''}$ = 2.1, 2-H), 7.37–7.48 (m, 6 *meta*- and *para*-H_{Ar}), 7.65–7.69 (m, 4 *ortho*-H_{Ar}).

¹³C NMR (APT spectrum at 75 MHz): δ = "+" -0.43 [Si(CH₃)₃], "+" 14.24 (C-2'), "-" 19.19 [C(CH₃)₃], "+" 26.68 [C(CH₃)₃], "-" 60.34 (C-1'), "-" 65.99 (C-1"), "-" 99.52 and "-" 107.34 (C-4, C-5), "+" 122.81 (C-2), "+" 127.91 (4 meta-C), "+" 129.96 (2 para-C), "-" 132.76 (2 ipso-C), "+" 135.47 (4 ortho-C), "-" 137.21 (C-3), "-" 165.41 (C-1).

IR (CDCl₃): v = 2255 (C=C st), 1705 and 1620 cm⁻¹ (C=O and C=C st).

Anal. Calcd for $C_{27}H_{36}O_3Si_2$ (464.7): C 69.78; H 7.81. Found C 69.77; H 7.94.

Ethyl (Z)-(3-tert-Butyldiphenylsiloxymethyl)-5-(trimethylsilyl)pent-2-en-4-ynoate (Z-42a)

Prepared as described for *E*-**42c** from PdCl₂(PPh₃)₂ (0.012 g, 0.017 mmol, 0.05 equiv.) and CuI (0.010 g, 0.051 mmol, 0.16 equiv.) in degassed THF (4.5 mL), triflate *E*-**27a** (0.159 g, 0.308 mmol), (trimethylsilyl)acetylene (52 μ l, 0.036 g, 0.370 mmol, 1.2 equiv.) and degassed i-Pr₂NH (1.5 mL, 1.1 g, 11 mmol, 36 equiv.). Purification by flash chromatography (1.5 cm, petroleum ether/*t*-BuOMe 40:1, F8-16) gave the title compound (0.096 g, 67%) which was – according to the ¹H NMR integrals over the 2-H's – >99% isomerfree from *E*-**42a**.

¹H NMR (300 MHz): $\delta = 0.22$ [s, Si(CH₃)₃], 1.09 (s, *t*-Bu), 1.17 (t, $J_{2:1'} = 7.0, 2'$ -H₃), 4.04 (q, $J_{1:2'} = 7.2, 1'$ -H₂), 4.78 (d, ${}^{4}J_{1'',2} = 2.3, 1''$ -

 H_2), 6.09 (t, ${}^{4}J_{2,1"}$ = 2.1, 2-H), 7.34–7.44 (m, 4 *meta*- H_{Ar} and 2 *para*- H_{Ar}), 7.70–7.74 (m, 4 *ortho*- H_{Ar}).

¹³C NMR (APT spectrum at 50 MHz): δ = "+" - 0.43 [Si(CH₃)₃], "+" 14.24 (C-2'), "-" 19.19 [*C*(CH₃)₃], "+" 26.68 [*C*(CH₃)₃], "-" 60.34 (C-1'*), "-" 65.99 (C-1"*), "-" 99.52 and "-" 107.34 (C-4, C-5), "+" 122.81 (C-2), "+" 127.91 (4 *meta*-C), "+" 129.96 (2 *para*-C), "-" 132.76 (2 *ipso*-C), "+" 135.47 (4 *ortho*-C), "-" 137.21 (C-3), "-" 165.41 (C-1); *so assigned because of the similar chemical environment of C-1' here and C-1' in compound **33** and because of the similar chemical environment of C-1" here and C-4 in compound **33**.

IR (CDCl₃): v = 2250 and 2150 (C=C st), 1705 and 1605 cm⁻¹ (C=O and C=C st).

Anal. Calcd for $C_{27}H_{36}O_3Si_2$ (464.7): C 69.78; H 7.81. Found C 69.58; H 7.90.

Ethyl (4''*R*)-(*E*)-(2,2-Dimethyl-1,3-dioxolan-4-yl)-5-(trimethyl-silyl)pent-2-en-4-ynoate (*E*-42b)

Prepared as described for *E*-**42c** from $PdCl_2(PPh_{3})_2$ (0.024 g, 0.033 mmol, 0.05 equiv.) and CuI (0.021 g, 0.099 mmol, 0.15 equiv.) in degassed THF (9 mL), triflate *Z*-**27b** (0.226 g, 0.649 mmol), (trimethylsilyl)acetylene (109 µl, 0.076 g, 0.779 mmol, 1.2 equiv.) and degassed i-Pr₂NH (3.00 mL, 2.17 g, 21.6 mmol, 33 equiv.). Purification by flash chromatography (1.5 cm, petroleum ether/*t*-BuOMe 20:1, F22-35) gave the title compound (0.158 g, 82%) which was – according to the ¹H NMR integrals over the 2-H's – >99% isomerfree from *Z*-**42b**.

 $[\alpha]_{D}^{25} = +32.8 \ (c = 1.83 \text{ in CHCl}_{3}).$

¹H NMR (300 MHz): δ = 0.17 [s, Si(CH₃)₃], 1.24 (t, $J_{2',1'}$ = 7.2, 2'-H₃), 1.34 and 1.39 [2 s, 2"-(CH₃)₂], AB signal (δ_A = 3.87, δ_B = 4.20, J_{AB} = 8.3, in addition split by $J_{A,4''} \approx J_{B,4''} \approx 6.8$, 5"-H₂), high-field portion of B-part superimposed by 4.13 (q, $J_{1',2'}$ = 7.1, 1'-H₂), 4.54 (dd, $J_{4'',5''-H(A)} \approx J_{4'',5''-H(B)} \approx 6.8$, 4"-H), 6.29 (hardly resolved d, ⁴ $J_{2,4''}$ = 1.1, 2-H).

¹³C NMR (APT spectrum at 50 MHz): δ = "+" -0.40 [Si(CH₃)₃], "+" 14.22 (C-2'), "+" 25.76 and "+" 26.17 [2"-(CH₃)₂], "-" 60.44 (C-1'), "-" 69.00 (C-5"), "+" 77.67 (C-4"), "-" 99.41 and "-" 108.74 (C-4, C-5), "-" 110.77 (C-2"), "+" 123.96 (C-2), "-" 136.34 (C-3), "-" 164.72 (C-1).

IR (CDCl₃): v = 2250 and 2145 (C=C st), 1710 and 1625 cm⁻¹ (C=O and C=C st).

Anal. Calcd for $C_{15}H_{24}O_4Si$ (296.4): C 60.78; H 8.16. Found C 61.05; H 8.09.

Ethyl (4''*R*)-(*Z*)-(2,2-Dimethyl-1,3-dioxolan-4-yl)-5-(trimethyl-silyl)pent-2-en-4-ynoate (Z-42b)

Prepared as described for *E*-**42c** from $PdCl_2(PPh_3)_2$ (0.030 g, 0.042 mmol, 0.05 equiv.) and CuI (0.026 g, 0.13 mmol, 0.15 equiv.) in degassed THF (11 mL), triflate *E*-**27b** (0.288 g, 0.827 mmol), (trimethylsilyl)acetylene (139 µl, 0.097 g, 0.992 mmol, 1.2 equiv.) and degassed i-Pr₂NH (3.80 mL, 2.74 g, 27.4 mmol, 33 equiv.). Purification by flash chromatography (1.5 cm, petroleum ether/*t*-BuOMe 20:1, F12-20) gave the title compound (0.202 g, 82%) which was – according to the ¹H NMR integrals over the 2-H's – >99% isomerfree from *E*-**42b**.

 $[\alpha]_D^{25} = +59.9 \ (c = 1.55 \ \text{in CHCl}_3).$

¹H NMR (300 MHz): $\delta = 0.19$ [s, Si(CH₃)₃], 1.25 (t, $J_{2',1'} = 7.2$, 2'-H₃), 1.39 and 1.49 [2 s, 2"-(CH₃)₂], AB signal ($\delta_A = 3.78$, $\delta_B = 4.32$, $J_{AB} = 8.5$, in addition split by $J_{A,4"} = 7.0$, $J_{B,4"} = 6.8$, 5"-H₂), 4.13 (q, $J_{1',2'} = 7.1$, 1'-H₂), 5.60 (ddd, $J_{4",5"-H(A)} = 7.0$, $J_{4",5"-H(B)} = 6.8$, ⁴ $J_{4",2} = 1.2$, 4"-H), 6.18 (d, ⁴ $J_{2,4"} = 1.5$, 2-H).

¹³C NMR (APT spectrum at 50 MHz): $\delta = "+" -0.44$ [Si(CH₃)₃], "+" 14.09 (C-2'), "+" 25.74 and "+" 26.13 [2"-(CH₃)₂], "-" 60.55 (C-1'), "-" 69.15 (C-5"), "+" 72.81 (C-4"), "-" 101.59 and "-" 103.40 (C- 4, C-5), "-" 110.42 (C-2"), "+" 126.43 (C-2), "-" 141.41 (C-3), "-" 165.00 (C-1).

IR (CDCl₃): v = 2255 and 2150 (C=C st), 1705 and 1610 cm⁻¹ (C=O and C=C st).

Anal. Calcd for $C_{15}H_{24}O_4Si$ (296.4): C 60.78; H 8.16. Found C 60.95; H 8.01.

tert-Butyl *E*-(4''*R*)-[3-*N*-(*tert*-Butoxycarbonyl)-2,2-dimethyloxazolidin-4-yl]-5-(trimethylsilyl)pent-2-en-4-ynoate (*E*-42c) in a 68:32 Mixture* with a Rotamer (*iso-E*-42c)

*determined ${}^{1}H$ NMR spectroscopically by the integral ratios over the 4"-H's

At r.t. triflate Z-27c (0.300 g, 0.631 mmol), (trimethylsilyl)acetylene (106 μ l, 0.074 g, 0.757 mmol, 1.2 equiv.) and degassed i-Pr₂NH (2.93 mL, 2.12 g, 21.1 mmol, 33 equiv.) were added in this order to a stirred suspension of PdCl₂(PPh₃)₂ (0.023 g, 0.032 mmol, 0.05 equiv.) and CuI (0.020 g, 0.095 mmol, 0.15 equiv.) in degassed THF (8.8 mL). After 2 h *t*-BuOMe (4 mL) was added. Washings with sat. NH₄Cl (3 × 3 mL) and brine (3 mL), drying (Na₂SO₄), evaporation of the solvent in vacuo and flash chromatography (1.5 cm, petroleum ether/*t*-BuOMe 10:1, F9-22) gave the title compound (0.227 g, 85%) which – according to the ¹H NMR integrals over the 2-H´s – was >99% isomer-free from Z-42c.

 $[\alpha]_D^{24} = -68.7 \ (c = 2.53 \text{ in CHCl}_3).$

E-42c

¹H NMR (300 MHz): $\delta = 0.20$ [s, Si(CH₃)₃], 1.49 (2 × t-Bu), 1.54 and 1.64 [2 s, 2"-(CH₃)₂], AB signal ($\delta_{A} = 3.97$, $\delta_{B} = 4.09$, $J_{AB} = 8.8$, in addition split by $J_{A,4"} = 5.3$, $J_{B,4"} = 6.8$, 5"-H₂), 4.54 (dd, $J_{4",5"-H(A)} = J_{4",5"-H(B)} = 5.7$, 4"-H), 5.95 (s, 2-H).

¹³C NMR (APT spectrum at 50 MHz): δ = "+" -0.32 [Si(CH₃)₃], "+" 24.31 and "+" 25.44 [2"-(CH₃)₂], "+" 28.14 [2 × C(CH₃)₃], "+" 62.61 (C-4"), "-" 67.51 (C-5"), "-" 80.38 and "-" 80.97 [2 × C(CH₃)₃], "-" 94.90 (C-2"), "-" 99.41 and "-" 108.74 (C-4, C-5), "+" 127.19 (C-2), "-" 135.14 (C-3), "-" 152.21 (N-CO₂t-Bu), "-" 163.96 (C-1).- *iso-E*-**42c**: ¹H NMR (300 MHz): δ = 1.41 (2 × *t*-Bu), 4.49 (m_c, 4"-H); the residual signals are superimposed by those of *E*-**42c**.

¹³C NMR (APT spectrum at 50 MHz): $\delta = "+" 24.85$ and "+" 25.88 [2"-(*C*H₃)₂], "+" 28.19 [2 × C(*C*H₃)₃], "-" 67.31 (C-5"), "-" 80.44 and "-" 80.91 [2 × C(*C*H₃)₃], "-" 99.76 (C-2"), "+" 127.26 (C-2); the residual signals are superimposed by those of *E*-42c.

IR (CDCl₃): v = 2255 and 2145 (C=C st), 1695 (C=C st) cm⁻¹.

Anal. Calcd for $C_{22}H_{37}NO_5Si$ (423.6): C 62.38; H 8.82. Found C 62.28; H 8.67.

tert-Butyl (Z)-(4"R)-[3-*N*-(*tert*-Butoxycarbonyl)-2,2-dimethyloxazolidin-4-yl]-5-(trimethylsilyl)pent-2-en-4-ynoate (Z-42c) in a 68:32 Mixture* with a Rotamer (*iso-*Z-42c)

*determined ¹H NMR spectroscopically by the integral ratios over the 2-H's.

Prepared as described for *E*-42c from PdCl₂(PPh₃)₂ (0.011 g, 0.015 mmol, 0.05 equiv.) and CuI (0.010 g, 0.047 mmol, 0.15 equiv.) in degassed THF (4.3 mL), triflate *E*-**27c** (0.146 g, 0.307 mmol), (trimethylsilyl)acetylene (51 μ l, 0.035 g, 0.37 mmol, 1.2 equiv.) and degassed i-Pr₂NH (1.43 mL, 1.03 g, 10.3 mmol, 33 equiv.). Flash chromatography (1.5 cm, petroleum ether/*t*-BuOMe 12:1, F10-21) afforded the title compound (0.114 g, 88%) which was – according to the ¹H NMR integrals over the 2-H´s – >99% isomer-free from *E*-42c).

 $[\alpha]_{D}^{25} = -64.5$ (c = 1.82 in CHCl₃).

Z-42c ¹H NMR (300 MHz): $\delta = 0.15$ [s, Si(CH₃)₃], 1.40 and 1.45 [2 s, 2"-(CH₃)₂], 1.67 (2 x *t*-Bu), AB signal ($\delta_A = 3.79$, $\delta_B = 4.26$, $J_{AB} = 9.2$, in addition split by $J_{A,4"} = 4.7$, $J_{B,4"} = 7.3$, 5"-H₂), 5.40

(ddd, $J_{4",5"-H(B)} = 7.3$, $J_{4",5"-H(A)} = 5.2$, ${}^{4}J_{4",2} = 1.2$, 4"-H), 6.11 (d, ${}^{4}J_{2,4"} = 1.2$, 2-H).

¹³C NMR (APT spectrum at 75 MHz): $\delta = "+" -0.49$ [Si(CH₃)₃], "+" 24.35 and "+" 25.03 [2"-(CH₃)₂], "+" 28.08 and "+" 28.17 [2 × C(CH₃)₃], "+" 56.93 (C-4"), "-" 68.78 (C-5"), "-" 79.76 and "-" 80.91 [2 × C(CH₃)₃], "-" 94.73 (C-2"), "-" 102.21 and "-" 102.57 (C-4, C-5), "+" 127.04 (C-2), "-" 142.96 (C-3), "-" 151.40 (N-CO₂t-Bu), "-" 164.79 (C-1).

iso-Z-42c ¹H NMR (300 MHz): $\delta = 1.42$ and 1.48 [2 s, 2"-(CH₃)₂], 1.65 (2×*t*-Bu), AB signal (A part superimposed, $\delta_B = 4.32$, $J_{AB} = 9.4$, in addition split by $J_{B,4"} = 7.1$, 5"-H₂), 6.15 (d, ${}^{4}J_{2,4"} = 1.5$, 2-H); the other resonances are superimposed by those of Z-42c.

¹³C NMR (APT spectrum at 75 MHz): δ = "+" -0.37 [Si(CH₃)₃], "+" 25.14 and "+" 25.83 [2"-(CH₃)₂], "+" 28.49 [C(CH₃)₃], "+" 57.76 (C-4"), "-" 69.34 (C-5"), "-" 80.17 and "-" 80.73 [2 × *C*(CH₃)₃], "-" 94.19 (C-2"), "-" 101.80 and "-" 102.73 (C-4, C-5), "+" 127.65 (C-2), "-" 143.06 (C-3), "-" 152.08 (N-CO₂t-Bu), "-" 164.69 (C-1); the other resonances are superimposed by those of *Z*-**42c**.

IR (CDCl₃): v = 2255 and 2145 (C=C st), 1695 cm⁻¹ (C=O st).

Anal. Calcd for C₂₂H₃₇NO₅Si (423.6): C 62.38; H 8.82. Found C 62.41; H 8.71.

(*E*)-3-[(*tert*-Butyldiphenylsiloxy)methyl]-5-(trimethylsilyl)pent-2-en-4-yn-1-ol (*E*-43a)

At -78 °C DIBAL (1.0 M in CH₂Cl₂, 12.0 mL, 12.0 mmol, 2.7 equiv.) was added to a solution of ester *E*-**42a** (2.06 g, 4.43 mmol) in CH₂Cl₂ (12 mL). Within 3 h the temperature was gradually raised to 0 °C. The reaction was quenched by the addition of sat. K,Na tartrate (42 mL). After stirring for 40 min, the phases were separated and the organic phase was extracted with CH₂Cl₂ (3 × 100 mL). Washing with brine (10 mL), drying (Na₂SO₄) removal of the solvent in vacuo and flash chromatography (4 cm, petroleum ether/*t*-BuOMe 30:1, F6-13) furnished the title compound (1.80 g, 81%).

¹H NMR (300 MHz): $\delta = 0.19$ [s, Si(CH₃)₃], 1.09 (s, *t*-Bu), 1.68 (br s, OH), 4.20 (br d, ⁴J_{1,2} = 1.5, 1'-H₂), 4.43 (br d, J_{1,2} = 6.8, 1-H₂), 6.23 (tt, J_{2,1} = 6.6, ⁴J_{2,1'} = 1.8, 2-H), 7.37-7.48 (m, 4 *meta*- and 2 *para*-H_{Ar}), 7.71 (m_c, 4 *ortho*-H_{Ar}).

¹³C NMR (APT spectrum at 50 MHz): $\delta = "+" -0.15 [Si(CH_3)_3]$, "-" 19.27 [*C*(CH₃)₃], "+" 26.76 [C(CH₃)₃], "-" 61.15 (C-1*), "-" 65.34 (C-1'*), "-" 100.20 and "-" 101.28 (C-4, C-5), "-" 124.47 (C-3), "+" 127.70 (4 *meta*-C), "+" 129.73 (2 *para*-C), "-" 133.20 (2 *ipso*-C), "+" 135.09 (C-2), "+" 135.51 (4 *ortho*-C); *so assigned because of the similar chemical environment of C-1' here and C-1' in compound *E*-44a.

IR (CDCl₃): v = 3610 (O-H st), 2255 and 2145 cm⁻¹ (C=C st).

Anal. Calcd for $C_{25}H_{34}O_2Si_2$ (422.7): C 71.03; H 8.11. Found C 70.80; H 8.39.

(4'S)-(*E*)-3-(2,2-Dimethyl-1,3-dioxolan-4-yl)-5-(trimethylsilyl)-pent-2-en-4-yn-1-ol (*E*-43b)

At -78 °C DIBAL (1.05 M in toluene, 46.2 mL, 48.5 mmol, 2.5 equiv.) was added to a solution of ester *E*-**42b** (5.85 g, 19.7 mmol) in Et₂O (57 mL). Stirring was continued for 3 h at -78 °C. Then, within 30 min, the temperature was gradually raised to r. t., then the mixture was poured into sat. K,Na tartrate (150 mL). After 20 min a similar workup followed as described for *E*-**43a**, which was teminated by a flash chromatography (4 cm, petroleum ether/*t*-BuOMe 2:1, F13-25) providing the title compound (4.43 g, 88%).

 $[\alpha]_D^{25} = +36.7 \ (c = 2.07 \ \text{in CHCl}_3).$

¹H NMR (300 MHz): $\delta = 0.18$ [s, Si(CH₃)₃], 1.39 and 1.44 [2 s, 2'-(CH₃)₂], 2.06 (br s, exchangeable with D₂O, OH), AB signal ($\delta_A = 3.88$, $\delta_B = 4.13$, $J_{AB} = 8.2$, in addition split by $J_{A,4} = 7.9$,

 $J_{B,4'}= 6.4, 5'-H_2$, 4.38 (m_c, 1-H₂), 4.47 (dd, $J_{4',5'-H(A)} = J_{4',5'-H(B)} = 6.8$, 4'-H), 6.22 (t, $J_{2,1} = 6.4, 2$ -H).

599

¹³C NMR (APT spectrum at 50 MHz): δ = "+" -0.21 [Si(CH₃)₃], "+" 26.00 and "+" 26.27 [2'-(CH₃)₂], "-" 61.00 (C-1), "-" 68.57 (C-5'*), "+" 77.81 (C-4'), "-" 98.97 and "-" 102.63 (C-4, C-5), "-" 109.98 (C-2'), "-" 123.10 (C-3), "+" 138.85 (C-2); *assignment based on the similarity of the chemical environment here with that in compound *E*-**42b**.

IR (CDCl₃): v = 3610 (O-H st), 2250 and 2145 cm⁻¹ (C=C st).

Anal. Calcd for $C_{13}H_{22}O_3Si$ (254.4): C 61.37; H 8.73. Found C 61.35; H 8.82.

(*E*)-3-[(*tert*-Butyldiphenylsiloxy)methyl]-5-(trimethylsilyl)pent-2-en-4-ynal (*E*-44a)

Dess–Martin reagent²⁸ (2.35 g, 5.32 mmol, 1.2 equiv.) was added to a solution of alcohol *E*-**43a** (2.02 g, 4.43 mmol) in CH₂Cl₂ (36 mL) at r.t. After stirring for 1 h the mixture was poured into sat. NaHCO₃ (42 mL) and sat. Na₂S₂O₃ (10%, 42 mL) and stirring continued for 10 min. Extractive workup with CH₂Cl₂ (2 × 40 mL) and brine (10 mL), drying (Na₂SO₄) evaporation of the solvent in vacuo and flash chromatography (4 cm, petroleum ether/*t*-BuOMe 30:1, F6-13) gave the title compound (1.80 g, 81%).

¹H NMR [300 MHz; contained aliphatic contaminant(s)]: $\delta = 0.19$ [s, Si(CH₃)₃], 1.08 (s, t-Bu), 4.33 (d, ⁴*J*_{1,2} = 1.9, 1'-H₂), 6.72 (dt, *J*_{2,1} = 8.4, ⁴*J*_{2,1} = 2.1, 2-H), 7.38–7.49 (m, 4 *meta*- and 2 *para*-H_{Ar}), 7.66 (m_c, 4 *ortho*-H_{Ar}), 10.17 (d, *J*_{1,2} = 8.7, 1-H).

¹³C NMR (APT spectrum at 50 MHz): $\delta = "+" -0.45$ [Si(CH₃)₃], "-" 19.26 [*C*(CH₃)₃], "+" 26.71 [C(CH₃)₃], "-" 65.43 (C-1'), "-" 99.52 (C-4), "-" 107.34 (C-5), "+" 127.88 (4 meta-C), "+" 129.99 (2 para-C), "+" 132.34 (C-2), "-" 132.47 (2 ipso-C), "+" 135.40 (4 ortho-C), "-" 145.64 (C-3), "+" 192.68 (C-1).

IR (CDCl₃): v = 2860 (carbonyl-H st), 2255 (C=C st), 1670 cm⁻¹ (C=O st).

Anal. Calcd for $C_{25}H_{32}O_2Si_2$ (420.7): C 71.37; H 7.67. Found C 71.07; H 7.69.

(4'S)-(E)-3-(2,2-Dimethyl-1,3-dioxolan-4-yl)-5-(trimethylsilyl)pent-2-en-4-ynal (E-44b)

Prepared as described for *E*-**44a** from Dess–Martin reagent²⁸ (0.519 g, 1.18 mmol, 1.1 equiv.) and alcohol *E*-**43b** (0.272 g, 1.07 mmol) in CH₂Cl₂ (7 mL) except that the reaction was allowed to proceed for 20 min. Purification by flash chromatography (1.5 cm, petroleum ether/*t*-BuOMe 10:1, F15-25) furnished the title compound (0.220 g, 82%).

 $[\alpha]_D^{23} = +24.6 \ (c = 1.99 \ \text{in CHCl}_3).$

¹H NMR (300 MHz): $\delta = 0.21$ [s, Si(CH₃)₃], 1.39 and 1.43 [2 s, 2'-(CH₃)₂], AB signal ($\delta_A = 3.93$, $\delta_B = 4.27$, $J_{AB} = 8.5$, in addition split by $J_{A,4'} = 6.4$, $J_{B,4'} = 7.0$, 5'-H₂), 4.65 (ddd, $J_{4',5'-H(A)} = J_{4',5'-H(B)} = 6.7$, ⁴ $J_{4',2} = 1.2$, 4'-H), 6.48 (dd, $J_{2,1} = 8.3$, ⁴ $J_{2,4'} = 1.5$, 2-H), 10.08 (d, $J_{1,2} = 8.3$, 1-H).

¹³C NMR (APT spectrum at 50 MHz): δ = "+" -0.59 [Si(CH₃)₃], "+" 25.56 and "+" 26.06 [2'-(*C*H₃)₂], "-" 68.72 (C-5'), "+" 77.00 (C-4'), "-" 97.32 and "-" 109.29 (C-4*, C-5*), "-" 111.02 (C-2'*), "+" 133.30 (C-2), "-" 144.17 (C-3), "+" 192.19 (C-1); *distinguishable because of the lower intensity of quaternary acetylenic ¹³C nuclei.

IR (CDCl₃): v = 2845 (carbonyl–H st), 2255 and 2145 (C=C st), 1680 cm⁻¹ (C=O st).

Anal. Calcd for $C_{13}H_{20}O_3Si\ (252.3);\ C\ 61.88;\ H\ 8.01.$ Found C $61.61;\ H\ 7.74.$

(4'R)-(Z)-3-[N-(*tert*-Butoxycarbonyl)-2,2-dimethyloxazolidin-4-yl]-5-(trimethylsilyl)pent-2-en-4-ynal (*E*-44c) in a 68:32 Mix-

ture* with a Rotamer (iso-E-44c)

*determined ¹H NMR spectroscopically by the integral ratio over the 4'-H's

At -78 °C DIBAL (1.05 M in toluene, 1.14 mL, 1.20 mmol, 1.3 equiv.) was added to a solution of ester *E*-**42c** (0.390 g, 0.921 mmol) in toluene (2.7 mL) within 10 min. Stirring at -78 °C was continued for 30 min. MeOH (300 µl), cooled to -78 °C, was added. The resulting mixture was poured into sat. K,Na tartrate (6 mL). After 20 min, a similar workup followed as described for *E*-**43a** which was terminated by a flash chromatography (1.5 cm, petroleum ether/*t*-BuOMe 7:1, F18-28) leading to the title compound (0.261 g, 81%).

 $[\alpha]_{D}^{23} = -76.8 \ (c = 2.85 \ \text{in CHCl}_{3}).$

E-44c

¹H NMR (300 MHz; slightly contaminated in the aliphatic region): $\delta = 0.21$ [s, Si(CH₃)₃], 1.37 (s, t-Bu), 1.54 and 1.64 [2 s, 2'-(CH₃)₂], AB signal ($\delta_A = 3.97$, $\delta_B = 4.09$, $J_{AB} = 8.8$, in addition split by $J_{A,4'} = 5.3$, $J_{B,4'} = 6.8$, 5'-H₂), 4.43 (br dd, $J_{4',5'-H(B)} = 6.4$, $J_{4',5'-H(A)} = 4.2$, 4'-H), 6.22 (d, $J_{2,1} = 8.2$, 2-H), 10.09 (d, $J_{1,2} = 7.9$, 1-H).

¹³C NMR (APT spectrum at 75 MHz; contained unidentified peaks at $\delta =$ "-" 26.84 and $\delta =$ "+" 26.91): $\delta =$ "+" -0.58 [Si(CH₃)₃], "+" 23.92 and "+" 25.40 [2'-(CH₃)₂], "+" 28.21 [C(CH₃)₃], "+" 61.90 (C-4'), "-" 67.53 (C-5'), "-" 80.61 [C(CH₃)₃], "-" 94.63 (C-2'), "-" 98.03 and "-" 109.51 (C-4, C-5), "+" 134.15 (C-2), "-" 145.88 (C-3), "-" 151.26 (N-CO₂t-Bu), "-" 192.35 (C-1).

iso-E-44c

¹H NMR (300 MHz; slightly contaminated in the aliphatic region): $\delta = 1.47$ (s, *t*-Bu), 1.51 and 1.60 [2 s, 2'-(CH₃)₂], 4.57 (br dd, $J_{4',5'}$. _{H(B)} = 6.0, $J_{4',5'-H(A)} = 2.3$, 4'-H), ca. 10.07 (br d, $J_{1,2} \approx 8$ Hz, 1-H); the other resonances are superimposed by those of *E*-**44c**.

¹³C NMR (APT spectrum at 75 MHz; contained unidentified peaks at δ = "-" 26.84 and δ = "+" 26.91): δ = "+" 24.69 and "+" 26.39 [2'-(CH₃)₂], "+" 28.29 [C(CH₃)₃], "-" 67.16 (C-5'), "-" 81.08 [C(CH₃)₃], "-" 95.14 (C-2'), "-" 97.68 and "-" 109.03 (C-4, C-5), "+" 133.74 (C-2), "-" 144.99 (C-3), "-" 151.99 (N-CO₂t-Bu), "+" 192.49 (C-1); the other resonances are superimposed by those of *E*-44c.

IR (CDCl₃): v = 2850 (carbonyl–H st), 2255 and 2145 (C=C st), 1700 and 1680 cm⁻¹ (C=O st).

Anal. Calcd for $C_{18}H_{29}NO_4Si$ (351.5): C 61.50; H 8.33. Found C 61.70; H 8.57.

(*E*)-3-[(*tert*-Butyldiphenylsiloxy)methyl]-1-(trimethylsilyl)hex-3-ene-1,5-diyne (*E*-45a)

At -78 °C BuLi (1.49 M in hexane; 154 µl, 0.230 mmol, 1.2 equiv.) was added dropwise to a solution of i-Pr₂NH (30.0 µl, 0.021 g, 0.230 mmol, 1.2 equiv.) in THF (1.5 mL). After stirring for 10 min (trimethylsilyl)diazomethane (2.0 M in hexane; 115 µl, 0.230 mmol, 1.2 equiv.) was added dropwise, too. After stirring for another 30 min a pre-cooled (-78 °C) solution of aldehyde *E*-**44a** (0.080 g, 0.190 mmol) in THF (420 µl) was added, again dropwise. After stirring at -78 °C for another 1.5 h, the cooling bath was removed so that r.t. was attained within 4 h. After stirring for another 20 min the reaction was quenched by adding H₂O (2 mL) and *t*-BuOMe (12 mL). Extraction with *t*-BuOMe (3 × 12 mL), washing with brine (5 mL) and drying (Na₂SO₄) led to the title compound (0.039 g, 49%) after flash chromatography (0.8 cm, petroleum ether/*t*-*Bu*OMe 50:1, F7-9).

¹H NMR (300 MHz): $\delta = 0.19$ [s, Si(CH₃)₃], 1.08 (s, t-Bu), 3.33 (d, ⁴J_{6,4} = 2.2, 6-H), 4.25 (incompletely resolved dd, ⁴J_{1,4} = 1.9, ⁶J_{1,6} = 0.8, 1'-H₂), 6.24 (dt, ⁴J_{4,1} = ⁴J_{4,6} = 2.3, 4-H), 7.37-7.45 (m, 4 *meta*- and 2 *para*-H_{Ar}), 7.66 (m_c, 4 *ortho*-H_{Ar}).

¹³C NMR (APT spectrum at 50 MHz, contains unidentified peak at δ = "-" 135.53): δ = ,,+" -0.16 [Si(CH₃)₃], "-" 19.29 [*C*(CH₃)₃], "+"

26.74 [C(CH₃)₃], "-" 64.99 (C-1'), "-" 81.12 (C-5), "+" 83.84 (C-6), "-" 100.43 and "-" 103.57 (C-1, C-2), "+" 112.71 (C-4), "+" 127.80 (4 *meta*-C), "+" 129.84 (2 *para*-C), "-" 132.82 (2 *ipso*-C), "+" 135.41 (4 *ortho*-C), "-" 135.99 (C-3).

IR (CDCl₃): v = 3305 (=C-H st), 2255 and 2145 cm⁻¹ (C=C st).

HRMS (EI/70 eV): m/z = 401.1756 (M⁺ –Me): confirms the fragment formula $C_{25}H_{29}OSi_2$ with a precision of ± 2 mDa; m/z = 359.1287 (M⁺ –t-Bu): confirms the fragment formula $C_{22}H_{23}OSi_2$ with a precision of ± 2 mDa; the mole peak was not intense enough for HRMS.

MS (DCI/pos., NH₄⁺): m/z = 434 (100%, M⁺+NH₄⁺), 391 (8%), 363 (3%), 346 (5%), 302 (10%), 291 (12%), 274 (93%), 254 (5%), 216 (4%), 196 (12%). Because of its lability no correct combustion analysis could be obtained of compound *E*-**45a**.

(*E*)-(4*S*)-2,2-Dimethyl-4-{1-[2-(trimethylsilyl)ethynyl]but-1-en-3-ynyl}-1,3-dioxolane (*E*-45b)

Prepared as described for *E*-**45a** from BuLi (1.49 M in hexane; 255 μ l, 0.380 mmol, 1.2 equiv.), i-Pr₂NH (50.0 μ l, 0.035 g, 0.380 mmol, 1.2 equiv.) in THF (2.5 mL), (trimethylsilyl)diazomethane (2.0 M in hexane; 190 μ l, 0.380 mmol, 1.2 equiv.) and aldehyde *E*-**44b** (0.080 g, 0.317 mmol) in THF (650 μ l) except that the latter reacted at -78 °C for 1.5 h, during warming to r.t. for 1 h and at r.t. for another 20 min. Flash chromatography (0.8 cm, petroleum ether/*t*-BuOMe 30:1, F4–8) provided the title compound (0.031 g, 39%).

 $[\alpha]_{D}^{22} = +43.5 \ (c = 1.32 \ \text{in CHCl}_{3}).$

¹H NMR (300 MHz; slightly contaminated in the alkyl region): $\delta = 0.22$ [s, Si(CH₃)₃], 1.40 and 1.45 [2 s, 2-(CH₃)₂], 3.32 (d, ⁴J_{4',2'}= 2.3, 4'-H), AB signal ($\delta_A = 3.89$, $\delta_B = 4.19$, $J_{AB} = 8.3$, in addition split by $J_{A,4'} = 6.8$, $J_{B,4'} = 6.4$, 5-H₂), 4.56 (ddd, $J_{4,5-H(A)} = J_{4,5-H(B)} = 6.8$, ⁴ $J_{4,2'} = 1.1$, 4-H), 6.04 (dd, ⁴ $J_{2',4'} = 2.5$, ⁴ $J_{2',4} = 1.4$, 2'-H).

¹³C NMR (APT spectrum at 75 MHz): $\delta = "+" -0.22$ [Si(CH₃)₃], "+" 25.88 and "+" 26.24 [2-(CH₃)₂], "-" 68.98 (C-5), "+" 77.09 (C-4), "-" 80.54 (C-3'), "+" 84.62 (C-4'), "-" 99.98 and "-" 104.88 (C-1", C-2"), "-" 110.46 (C-2), "+" 114.95 (C-2'), "-" 135.12 (C-1').

IR (CDCl₃): v = 3305 (=C-H st), 2255 and 2145 cm⁻¹ (C=C st).

HRMS (EI/70 eV): m/z = 248.1232 (M⁺); confirms the molecular formula $C_{14}H_{20}O_2Si$ with a precision of ± 2 mDa. Because of its lability no correct combustion analysis could be obtained of compound *E*-45b.

tert-Butyl 2,2-Dimethyl-4-{*(E)*-1-[2-(trimethylsilyl)ethynyl]but-1-en-3-ynyl}-1,3-oxazolidine-3-carboxylate (*E*-45c) in a 62:38 Mixture* with a Rotamer (*iso*-*E*-45c)

*determined ${}^{1}H$ NMR spectroscopically by the integral ratios over the 4-H's

Prepared as described for *E*-**45a** from BuLi (2.35 M in hexane; 146 μ l, 0.342 mmol, 1.2 equiv.), i-Pr₂NH (45.0 μ L, 0.031 g, 0.342 mmol, 1.2 equiv.) in THF (2.2 mL), (trimethylsilyl)diazomethane (2.0 M in hexane; 171 μ L, 0.342 mmol, 1.2 equiv.) and aldehyde *E*-**44c** (0.101 g, 0.285 mmol) in THF (600 μ L) except that the latter reacted at -78 °C for 3 h, during warming to r.t. for 30 min and at r.t. for another 20 min. Flash chromatography (1.5 cm, petroleum ether/*t*-BuOMe 20:1, F28-38) gave the title compound (0.041 g, 41%).

 $[\alpha]_{D}^{25} = -116 \ (c = 1.70 \ \text{in CHCl}_{3}).$

E-45c

¹H NMR (300 MHz; contaminated in the alkyl region): $\delta = 0.20$ [s, Si(CH₃)₃], 1.42 (*t*-Bu), 1.48 oder 1.54 and 1.64 [2 s, 2-(CH₃)₂], 3.30 (br d, ⁴J_{4',2'} = 1.9, 4'-H), AB signal ($\delta_A = 3.93$, $\delta_B = 4.07$, $J_{AB} = 9.0$, in addition split by $J_{A,4} = 5.1$, $J_{B,4} = 6.8$, 5-H₂), 4.31 (br dd, $J_{4,5-H(A)} \approx J_{4,5-H(B)} \approx 5.7$, 4-H), 5.76 (br s, 2'-H).

¹³C NMR (APT spectrum at 75 MHz; contaminated in the alkyl region): $\delta = "+" -0.27$ [Si(CH₃)₃], "+" 24.27 and "+" 25.37 [2-(CH₃)₂], "+" 28.27 [C(CH₃)₃], "+" 61.45 (C-4), "-" 67.67 (C-5), "-" 80.27 and "-" 80.59 [C-3', C(CH₃)₃], "+" 84.17 (C-4'), "-" 94.81 (C-2), "-" 100.35 and "-" 104.85 (C-1", C-2"), "+" 115.04 (C-2'), "-" 136.69 (C-1'), "-" 151.58 (N-CO₂t-Bu).

iso-E-45c

¹H NMR (300 MHz; contaminated in the alkyl region): δ = 4.46 (br s, 4-H), 5.81 (br s, 2'-H); the other resonances are superimposed by those of *E*-45c.

¹³C NMR (APT spectrum at 75 MHz; contaminated in the alkyl region): $\delta = "+" 24.94$ and "+" 26.49 [2-(CH₃)₂], "+" 28.29 [C(CH₃)₃], "+" 61.29 (C-4), "-" 67.37 (C-5), "-" 80.76 and "-" 80.78 [C-3', *C*(CH₃)₃], "-" 94.33 (C-2), "+" 135.91 (C-1'), "-" 151.94 (N-CO₂*t*-Bu); the other resonances are superimposed by those of *E*-45c IR (CDCl₃): v = 3305 (=C-H st), 2255 and 2145 (C=C st), 1695 cm⁻¹ (C=O st).

HRMS (EI/70 eV): m/z = 347.1916 (M⁺); confirms the molecular formula C₁₉H₂₉NO₄Si with a precision of ± 2 mDa. Because of its lability no correct combustion analysis could be obtained of compound *E*-**45c**.

Acknowledgement

We are indebted to Brigitte Worbs for skilled technical support and grateful to Schering AG (Berlin) and Metallgesellschaft GmbH (Langelsheim) for supporting the present study with chemicals and appreciate the advice on C₁ elongations $-CH=O \rightarrow -C=C-H$ with lithiated (trimethylsilyl)diazomethane by Prof. Shioiri (Nagoya City University, Japan).

References

- [‡] New address: Institut für Organische Chemie and Biochemie der Albert-Ludwigs-Universität, Albertstr. 21, 79104 Freiburg, Germany
- Waldmann, H. Nachr. Chem. Tech. Lab. 1991, 39, 211. Nicolaou, K. C.; Dai, W.-M. Angew. Chem. Int. Ed. Engl. 1991, 30, 1387.

Lee, M. D.; Ellestadt, A. G.; Borders, D. B. Acc. Chem. Res.
1991, 24, 235; Murphy, J. A.; Griffiths, J. Nat. Prod. Rep.
1993, 550.
Maier, M. E. Kontakte (Merck) 1994, 2, 3; Synlett 1995, 13.

Nicolaou, K. C.; Smith A. L. In *Modern Acetylene Chemistry*; Stang, P. J.; Diederich, F.Eds.; VCH-Verlagsgesellschaft: Weinheim **1995**, 203–283.

Lhermitte, H.; Grierson, D. Contemp. Org. Synth. **1996**, *3*, 41; **1996**, *3*, 93.

Wang, K. K. Chem. Rev. 1996, 96, 207.

Smith, A. L.; Nicolaou, K. C. J. Med. Chem. 1996, 39, 2103.
Grissom, J. W.; Gunawardena, G. U.; Klingberg, D.; Huang, D. Tetrahedron 1996, 52, 6453.
Brückner, R.; Suffert, J. Synlett 1999, 657.

- (2) Golik, J.; Dubay, G.; Groenewold, G.; Kawaguchi, H.; Konishi, M.; Krishnan, B.; Ohkuma, H.; Saitoh, K.-I.; Doyle, T. W. J. Am. Chem. Soc. 1987, 109, 3462.
- (3) Lee, M. D.; Dunne, T.-S.; Chang, C. C.; Ellestad, G. A.;
 Siegel, M. M.; Morton, G. O.; McGahren, W. J.; Borders, D. B. J. Am. Chem. Soc. 1987, 109, 3466.
- (4) Konishi, M.; Ohkuma, H.; Tsuno, T.; Oki, T.; VanDuyne, G. D.; Clardy, J. J. Am. Chem. Soc. 1990, 112, 3715.
- (5) Leet, J. E.; Schroeder, D. R.; Hofstead, S. J.; Golik, J.; Colson, K. L.; Huang, S.; Klohr, S. E.; Doyle, T. W.; Matson, J. A. J. Am. Chem. Soc. **1992**, 114, 7946.

Revised structure: Kawata, S.; Ashizawa, S.; Hirama, M. J. Am. Chem. Soc. **1997**, 119, 12012.

601

Downloaded by: Chinese University of Hong Kong. Copyrighted material

- (6) Yoshida, K.-i.; Minami, Y.; Azuma, R.; Saeki, M.; Otani, T. *Tetrahedron Lett.* **1993**, *34*, 2637.
- (7) Schroeder, D. R.; Colson, K. L.; Klohr, S. E.; Zein, N.; Langley, D. R.; Lee, M. S.; Matson, J. A.; Doyle, T. W. J. Am. *Chem. Soc.* **1994**, *116*, 9351.
- (8) Koide, Y.; Ishi, F.; Hasuda, K.; Koyama, Y.; Edo, K.; Katamine, S.; Kitame, F.; Ishida, N. *J. Antibiot.* **1980**, *33*, 342 Edo, K.; Katamine, S.; Kitame, F.; Ishida, N.; Koide, Y.; Kusano, G.; Nozoe, S. *J. Antibiot.* **1980**, *33*, 347 (partially revised in Shibuya, M.; Toyooka, K.; Kubota, S. *Tetrahedron Lett.* **1984**, *25*, 1171).
 Edo, K.; Akiyama, Y.; Saito, K.; Mizugaki, M.; Koide, Y.; Ishida, N. *J. Antibiot.* **1986**, *39*, 1615.
 Myers, A. G.; Proteau, P. J.; Handel, T. M. *J. Am. Chem. Soc.* **1988**, *110*, 7212.
- (9) Ando, T.; Ishii, M.; Kajiura, T.; Kameyama, T.; Miwa, K.; Suguira, Y. *Tetrahedron Lett.* **1998**, *39*, 6495.
- (10) Myers, A. G.; Alauddin, M. M.; Fuhry, M. M.; Dragovich, P. S.; Finney, N. S.; Harrington, P. M. *Tetrahedron Lett.* **1989**, *30*, 6997.
- (11) Myers, A. G.; Hammond, M.; Wu, Y.; Xiang, J. N.; Harrington, P. M.; Kuo, E. Y. *J. Am. Chem. Soc.* 1996, *118*, 10006Myers, A. G.; Liang, J.; Hammond, M.; Harrington, P. M.; Wu, Y.; Kuo, E. Y. *J. Am. Chem. Soc.* 1998, *120*, 5319.
- (12) Dai, W.-M.; Fong, K. C. Tetrahedron Lett. 1996, 37, 8413.
- (13) Method: Trost, B. M.; Sorum, M. T.; Chan, C.; Harms, A. E.; Rüther, G. J. Am. Chem. Soc. **1997**, 119, 698. Trost, B. M.; McIntosh, M. C. Tetrahedron Lett. **1997**, 38, 3207.
- (14) Trost, B. M.; Hachiya, I.; McIntosh, M. C. *Tetrahedron Lett.* 1998, *39*, 6445.
- (15) Synthesis applications of enol triflates were reviewed by Ritter, K. *Synthesis* **1993**, 735.
- (16) Method: Cacchi, S.; Morera, E.; Ortar, G. Synthesis 1986, 320.
 For related couplings with alkenyl halide cf. Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 4467.
- (17) Cf. the reaction 12→13 in Eis, K.; Schmalz, H.-G. Synthesis 1997, 202.
- (18) Aldercide, M.; Spino, C.; Weiler, L. *Tetrahedron Lett.* **1984**, 25, 1643.
- (19) a) Certain β-oxo aldehydes were converted in a very similar manner into stereopure enol triflates with Z-selectivity when a lithium enolate (in THF) was the intermediate or with *E*-selectivity via the 2,6-di-*tert*-butylpyridinium enolate (in dichloromethane): Brückner, R.; Scheuplein, S. W.; Suffert, J. *Tetrahedron Lett.* **1991**, *32*, 1449.
 Suffert, J.; Brückner, R. *Tetrahedron Lett.* **1991**, *32*, 1453.
 K. Brickmann, F. Hambloch, J. Suffert, R. Brückner, *Liebigs Ann.* **1996**, 457.
- (20) McMurry, J. E.; Scott, W. J. Tetrahedron Lett. 1983, 24, 979.
- (21) Crisp, G. T.; Meyer, A. G. J. Org. Chem. 1992, 57, 6972.
- (22) Keenan, R. M.; Weinstock, J.; Finkelstein, J. A.; Franz, R. G.; Gaitanopoulos, D. E.; Girard, G. R.; Hill, D. T.; Morgan, T. M.; Samanen, J. M.; Hempel, J.; Eggleston, D. S.; Ayar, N.; Griffin, E.; Ohlstein, E. H.; Stack, E. J.; Weidley, E. F.; Edwards, R. J. J. Med. Chem. 1992, 35, 3858.
- (23) Görth, F. C.; Brückner, R. Synthesis 1999, 1520.
- (24) Method: Huang, S. L.; Omura, K.; Swern, D. J. Org. Chem. 1976, 41, 3329.
- (25) Holmquist, C. R.; Roskamp, E. J. J. Org. Chem. **1989**, 54, 3258.
- (26) a) Reimnitz, F. *Diplomarbeit*, Universität Göttingen 1996.
 b) Schmid, C. R.; Bryant, J. D.; Dowlatzedah, M.; Phillips, J.

L.; Prather, D. E.; Schantz, R. R.; Sear, N. L.; Vianco, C. S. J. Org. Chem. **1991**, *56*, 4056.

- (27) Tipson, R. S.; Cohen, A. Carbohydr. Res. 1968, 7, 237.
- (28) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155.
 Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277.
- (29) Garner, P.; Park, J. M. Org. Synth. 1992, 70, 18.
- (30) Houpis, I. N. Tetrahedron Lett. 1991, 32, 6675.
- (31) Comins, D. A.; Dehghani, A. *Tetrahedron Lett.* **1992**, *33*, 6299.
- (32) Kant, J.; Roth, J. A.; Fuller, C. E.; Walker, D. G.; Benigni, D. A.; Farina, V. J. Org. Chem. 1994, 59, 4956.
- (33) a) Gibbs, R. A.; Krishnan, U.; Dolence, J. M.; Poulter, C. D. *J. Org. Chem.* 1995, *60*, 7821.
 b) These authors coupled an ester-substituted Z-configured enol triflate with Bu₃Sn−C≡C−H under and destannylated thereafter to obtain 31% of the derived Z-enyne.
- (34) Original procedure: Ramirez, F.; Desai, N. B.; Mc Kelvie, N. J. Am. Chem. Soc. 1962, 84, 1745. Extension thereof: Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 3769.

- (35) Regitz, M.; Anschütz, W. *Liebigs Ann. Chem.* **1969**, 730, 194.
 Seyferth, D.; Marmor, R. S. *Tetrahedron Lett.* **1970**, 2493;
 Seyferth, D.; Marmor, R. S.; Hilbert, P. J. *J. Org. Chem.* **1971**, 36, 1379.
- (36) Ohira, S. Synth. Comm. 1989, 19, 561 (using a reagent by Grieco, P. A.; Pogonowski, C. S. J. Am. Chem. Soc. 1973, 95, 3071).
- (37) Müller, S.; Liephold, B.; Roth, G. J.; Bestmann, H. J. Synlett 1996, 521.
- (38) Miwa, K.; Aoyama, T.; Shioiri, T. Synlett 1994, 107.
- (39) Suffert, J. J. Org. Chem. 1989, 54, 509.
- (40) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.

Article Identifier:

1437-210X,E;2000,0,04,0588,0602,ftx,en;H09999SS.pdf