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ABSTRACT: Discovery of enantioselective catalytic reactions for the preparation of chiral compounds from readily available pre-
cursors, using scalable and environmentally benign chemistry, can greatly impact their design, synthesis and eventually manufac-
ture on scale.  Functionalized cyclobutanes and cyclobutenes are important structural motifs seen in many bioactive natural prod-
ucts and pharmaceutically relevant small molecules.  They are also useful precursors for other classes of organic compounds such 
as other cycloalkane derivatives, heterocyclic compounds, stereo-defined 1,3-dienes and ligands for catalytic asymmetric synthesis.  
The simplest approach to make cyclobutenes is through an enantioselective [2+2]-cycloaddition between an alkyne and an alkenyl 
derivative, a reaction which has a long history.  Yet known reactions of this class that give acceptable enantioselectivities are of 
very narrow scope and are strictly limited to activated alkynes and highly reactive alkenes.  Here we disclose a broadly applicable 
enantioselective [2+2]-cycloaddition between wide variety of alkynes and alkenyl derivatives, two of the most abundant classes of 
organic precursors.  The key cycloaddition reaction employs catalysts derived from readily synthesized ligands and an earth-
abundant metal, cobalt.  Over 50 different cyclobutenes with enantioselectivities in the range of 86-97% ee are documented.  With 
the diverse functional groups present in these compounds, further diastereoselective transformations are easily envisaged for syn-
thesis of highly functionalized cyclobutanes and cyclobutenes.  Some of the novel observations made during these studies including 
a key role of a cationic Co(I)-intermediate, ligand and counter ion effects on the reactions, can be expected to have broad implica-
tions in homogeneous catalysis beyond the highly valuable synthetic intermediates that are accessible by this route. 

INTRODUCTION 
Recent incisive analyses of reactions1 and molecules2 of inter-
est to medicinal chemists have validated the notion that mo-
lecular complexity, measured by fraction of saturated carbons 
(Fsp3) and the presence of chiral centers, correlate with suc-
cess as compounds move from discovery, through clinical 
testing, to drugs.  About a third of the compounds whose bio-
logical assays were analyzed had at least one chiral center.1  
The improved clinical efficacy has been ascribed to solubility, 
diminished promiscuity towards receptors, and occasionally, 
to better transport properties across biological barriers.  Practi-
cal considerations in the preparation and screening of large 
and diverse array of structures, and, eventually manufacturing 
of the successful candidates from readily available precursors, 
provide strong justification for research into efficient and en-
antioselective synthetic methods.3  Functionalized cyclobu-
tanes and cyclobutenes are important structural motifs seen in 
many bioactive natural products and pharmaceutically relevant 
small molecules (Figure 1, A).4  They are also useful precur-
sors for other classes of organic compounds such as other cy-
cloalkane derivatives, heterocyclic compounds, stereo-defined 
1,3-dienes and ligands for catalytic asymmetric synthesis.5  
Even though direct synthesis of suitably functionalized cyclo-
butane precursors from readily available starting materials has 
been the subject of a burgeoning area of research,6 there is 

considerable room for improvement with respect to diversity 
of functional groups on the ring and stereoselectivity associat-
ed with the ring formation.  In this regard, a class of com-
pounds with enormous potential for diversification are the 
chiral 3-substituted cyclobutenes (Figure 1, B), which allow 
further modification of the small ring through a myriad of 
ways involving the double bond,7 the G group,8 or through 
activation of the ring C-H bonds.9  The simplest approach to 
making cyclobutenes is through an enantioselective [2+2]-
cycloaddition between an alkyne and an alkenyl derivative, a 
reaction with a long history, starting with mostly addition of 
reactive alkynes to bicyclic10 or activated11 alkenes with the 
notable exceptions of additions of activated alkynes to cyclo-
pentene (Hilt)12a and a variety of styreneyl alkenes to enynes 
(Ogoshi),12b both giving racemic products.  Thus, there are no 
examples in the literature of a broadly applicable enantioselec-
tive version of this [2+2]-cycloaddition process.  Reactions 
that give acceptable enantioselectivities are limited to special-
ized substrates, most often strained alkenes or activated al-
kynes (example: Figure 1, C). 13  Here we disclose a broadly 
applicable enantioselective [2+2]-cycloaddition between wide 
spectrum of alkenyl derivatives and alkynes (Figure 1, D). 
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Figure 1.  A. Cyclobutane and cyclobutene motifs occur in many 
medicinally important small molecules and natural products.  B. 
Cyclobutenes are excellent precursors for cyclobutanes and other 
useful intermediates.  C. Current methods for their direct prepara-
tion via [2+2]-cycloaddition are applicable only to activated al-
kenes and/or activated alkynes.  D. This work documents a practi-
cal, catalytic enantioselective (enantiomeric excess: 86-97%, ~50 
examples) approach to the most diverse set of cyclobutenes re-
ported to-date. 

RESULTS AND DISCUSSION 

For the enantiopure, substituted cyclobutenes (Figure 1, B) as 
the targets, we recognized that none of the existing 
methods11c.11e-g.13a including our own recently disclosed7a enan-
tioselective cobalt-catalyzed cycloaddition between an enyne 
(1) and ethylene (Eq 1a) are suitable.  The use of ethylene as 
the 2p-component necessarily leaves two prochiral carbons of 
the cyclobutene unfunctionalized.  An attractive way to cir-
cumvent this problem would be to access precursor cyclo-
butenes (6) with the use of alkenyl derivatives (5) in place of 
ethylene (Eq 1b). This further raises the intriguing possibility 

of preparing these chiral 3-substituted cyclobutenyl derivatives 
via enantioselective catalysis.  However, the application of 
reaction conditions described in Eq 1a led to complex mix-
tures with very little of the desired products (Eq 1b), prompt-
ing further investigations into a new strategy. 

 
A New Reaction and Optimization Studies.  Following 
many failed attempts to modify the reaction conditions de-
scribed in Eq 1a, we wondered if the incompatibility of the 
Lewis bases in the substrates was the problem, and if so, could 
it be addressed by activation of the reagents by a cationic 
Co(I) species, an intermediate that was implicated in our re-
cent 1,2-hydroboration of prochiral 1,3-dienes.14  Initial scout-
ing experiments (Table 1) were conducted with a prototypical 
alkyne, 4-octyne (4a) and two acrylates, methyl acrylate (5a) 
and 1,1,1-trifluoroethylacrylate (5b).  Concurrently, we also 
studied the corresponding reaction between a more reactive 
enyne and methyl acrylate (Table 2).  The most pertinent re-
sults from these studies are summarized in the Tables 1 and 2. 
Details of initial optimization of the reaction conditions, from 
which the results in Tables 1 and 2 are abbreviated, can be 
found in the Supporting Information (See Tables S1-S7, pp. 
S12-S20).  These experiments include effects of the following 
parameters on the efficiency and selectivity of the reactions: 
(i) cobalt(II) halide (Br or Cl) complexes of 1,n-bis-
diphenylphosphinoalkanes of varying bite angles [Ph2P–
(CH2)n–PPh2, n = 1-5)], including chiral variants such as chi-
raphos, BDPP, BDPH, DIOP, and other chelates with different 
backbone motifs such as dppf, biaryl, Josiphos ligands and 
phosphino-oxazoline ligands [see Figure 2 for structures of the 
ligands and Figure S1 (p. S12) in the Supporting Information, 
which contains a complete list of all ligands]; (ii) zinc, man-
ganese, and, various 1,4-bis-trimethylsilyldihydropyrazines 
14,15 as reducing agents; (iii) activators such as ZnX2, AgOTf, 
AgSbF6, InBr3, sodium tetrakis-[3,5-(bis-
trifluoromethyl)phenyl]borate (NaBARF); (iv) solvents, di-
chloromethane (DCM), 1,2-dichloroethane (DCE), toluene, 
hexanes, THF, ether, ethyl acetate or acetonitrile; (v) reaction 
temperature.  In general, it was found that the reactions pro-
ceed best at or near room temperature in non-coordinating 
solvents such as DCM, DCE or toluene, with NaBARF as the 
most suitable activator.  As expected, none of the solvents 
containing heteroatoms were suitable for this reaction.  For 
enantioselective reactions, toluene was found to be a better 
solvent (giving 5-10% higher enantioselectivities vis-à-vis 
DCM) in several instances. 
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Table 1.  Optimization of Co-catalyzed enantioselective 
[2+2]-cycloadditions between acrylates and an alkyne (4a) a 

  entry ligandb conv. 
(%) 

6a 
(%) 

7a 
(%) 

ee 
(6) 

  1 dppp 55 36 15 0 
  2 dppf c 40 35 0 0 
  3 (S)-BINAP 100 73 23 84 
5a  4 (S,S)-BDPP 100 74 22 16 
  5 L1 5 5 - 0 
  6 L2 55 25 28 - 
  7 L8 d 95 87 0 90 
  8 L9 e 100 92 0 91 
     6b 7b  
  9 (R)-BINAP 100 47 42 90 
5b  10 L8 d 100 >95 0 84 
  11 L9 d 100 >95 0 88 
a See Eq 2 for a typical procedure.  b For structures of ligands, see 
Figure 2. c at 50 oC.  d in toluene.  e in toluene at 40 oC. 

 

 

 

 

 

 
Table 2.  Optimization of Co-catalyzed enantioselective 
[2+2]-cycloadditions between acrylate 5a and an enyne 8aa 

entry ligandb conv. 
(%) 

9a 
(%) c 

10a 
(%) c 

11a 
(%) c 

ee 
(9a) 

Achiral Ligands      
1 dppp 100 78 3 19 0 
2 dppf 36 23 - - 0 
3 dPEPhos 45 45 - - 0 
4 L1 100 92 4 - 0 
Chiral Ligands      
5 (S,S)-BDPP 97 80 3 13 52 
6 (S,S)-BDPH 100 80 5 10 56 
7 Josiphos 1 50 40 40 2 64 
8 Josiphos 2 0 0 0 0 0 
9 (S)-BINAP 100 80 - 16 18 
10 L2 100 97 2 0 62 
11 L3 100 93 2 0 54 
12 L4 100 94 4 0 80 
13 ent-L7 100 82 17 0 10 
14 L8 100 95 3 0 82 
15 d L8 100 92 4 0 94 
16 d,e L8 100 98 <1 0 90 
17 d L9 100 90 10 0 90 
a See Eq 3 for typical procedure.  b See Figure 2 for structures of 
ligands.  c. Yield determined by internal standard method.  d Tolu-
ene used as a solvent.  e Trifluoroethylacrylate used instead of 
methyl acrylate. 

 

 
Figure 2.  Partial list of ligands examined for cobalt-catalyzed [2+2]-cycloaddition between alkynes and alkenyl derivatives 
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[2+2]-Cycloadditions between an alkyne (4a) and alkyl 
acrylates (5a and 5b) (Eq 2, Table 1).  The results for the 
[2+2]-cycloaddition reactions of a prototypical alkyne, 4-
octyne show that for the reaction with methyl acrylate, 
among the 1,n-bis-diphenylphosphino-alkane [Ph2P-(CH2)n-
PPh2] ligands, only dppp (n = 3) gave moderate yield of the 
expected cyclobutene 6a, the others producing significant 
amounts of a diene byproduct 7a [Table 1, entry 1, see also: 
Supporting Information Table S1 (p. S13) in for a more de-
tails].  The byproduct contamination was also a major prob-
lem with other commonly used chiral bis-phosphines includ-
ing (S)-BINAP (entry 3) and (S,S)-BDPP (entry 4).   
Phosphino-oxazoline Ligands.  While these studies were in 
progress, we were also examining the related [2+2]-
cycloaddition of the acrylate 5a with the enyne 8a (see: Eq 3, 
Table 2), where it was found that the phosphino-oxazoline 
ligands, including the easily synthesized achiral ligand L1 
and chiral ligand L2 (Figure 2), were much superior in giv-
ing the cyclobutene product (9a) with very high chemo- and 
regioselectivity.  These observations, along with the highly 
tunable nature of the phosphino-oxazoline ligands prompted 
us to examine this ligand system for further detailed investi-
gations.  Accordingly, several of phosphino-oxazoline lig-
ands (L1-L9) were prepared (Figure 2), and their cobalt (II) 
complexes studied as catalysts for the cycloaddition reaction 
at room temperature under conditions described in Eq 2.  As 
can been seen in entries 7 and 8 (Table 1), with the new Co-
complexes of these ligands, the [2+2]-cycloaddition between 
4-octyne and methyl acrylate proceeded to give synthetically 
useful yield in unprecedented levels of enantioselectivity for 
the cyclobutene products.  Most notably, replacing the P-
diarylphosphino group in L2 with a dicyclohexylphosphino 
group (L8) produced a very active Co-catalyst that gave 
exclusively the cyclobutene adduct 6a in an enantiomeric 
excess (ee) of 90% in toluene, with none of the undesired 
heterodimerization product 7a.  With yet another modifica-
tion, viz., introduction of 4,5-disubstitution on the oxazoline 
as in the ligand L9 [readily prepared from (1S,2R)-
norephedrine], further improvements in both the reactivity 
and selectivity of the reaction were observed (entry 8).  With 
these new ligands and use of an activated trifluoroethyl acry-
late 5b, a quantitative reaction ensued with minimal loss in 
selectivity (Table 1, entries 10 and 11).  For the effects of a 
more complete set of ligands, see Supporting Information, 
Table S6 (p. S19). 
[2+2]-Cycloaddition between a 1,3-enyne (8a) and methyl 
acrylate (Eq 3, Table 2).  The cycloadditions of 1,3-enynes 
presented further challenges, the increased reactivity of the 
enynes notwithstanding.  In the initial investigations, we 
found that 1- or 2-substituted alkenyl alkynes were the best 
substrates for this reaction (vide infra).  For example, one 
such substrate, 8a, with a C1-methyl substituent (Eq 3, Table 
2), gave varying amounts of codimerization product (11a) 
along with regioisomeric mixtures, 9a and 10a, of the [2+2]-
cycloadducts.  Most gratifyingly, these selectivity problems 
could be readily solved by examination of ligand effects on 
this reaction.  See Supporting Information Tables S2-S5 (p. 
S14-S18) for complete optimization of reaction conditions.  
Initially, we found that cobalt-complexes of achiral (entries 
1-3) and chiral (entries 5-9) bisphosphine ligands were gen-
erally unsatisfactory either because of low reactivity or low 

selectivity.  However, the phosphino-oxazoline (PHOX) 
ligands, including the achiral ligand L1, are excellent ligands 
for this transformation giving almost exclusively the ex-
pected cyclobutene product 9a.  Recall that L1 was surpris-
ingly ineffective in the cycloadditions of simple alkynes 
(e.g., Table 1, entry 5).  Changing the 4-aryl substituent on 
the oxazoline moiety in the PHOX ligands to alkyl groups (e. 
g., from Ph in L2 to t-Bu in L7, entries 10-13) led to poorer 
ligands.  In sharp contrast, tuning of the P-aryl substituents 
led to significant improvements in enantioselectivites (the 
ee’s improving from 62% to 80%, entries 10-12).  The best 
results were obtained when the P-aryl groups were replaced 
by cyclohexyl groups as in L8, which resulted in the highest 
yield (98%), regioselectivity (regioisomeric ratio, rr = 
>95:5), and enantioselectivity (ee = 94%) for this substrate, 
especially when the reaction was carried out in toluene as the 
solvent (entries 15 and 16).  For an ORTEP representing the 
solid-state structure of the pre-catalyst, [(R)-L8]CoBr2, see 
Figure 4 (A).  The norephedrine-derived ligand L9, also 
gave high enantioselectivity (ee = 90%), albeit with only 
modest regioselectivity (9a:10a = 90:10, entry 17).  With the 
identification of a viable protocol for the reaction and the 
availability of several useful ligands, the stage is now set for 
a broader investigation of the scope of vinyl derivatives and 
the alkynes. 
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Figure 3.  Scope of [2+2]-Cycloaddition between Alkenyl Derivatives and Alkynes.  The versatility of the reaction is illustrated by the 
diverse functional group present in the two coupling partners.  In unsymmetrical alkynes regioselectivities of the products (6) are >95:5 
unless otherwise indicated.  The structures shown are for the major regioisomers and the corresponding ee’s were determined by using 
CSP-GC or CSP-HPLC.  See the Supporting Information for further details.    Yields shown are for isolated products. 

Scope of [2+2]-Cycloadditions between Alkynes and 
Alkenyl Derivatives.  The optimized reaction conditions 

with minor modifications (Figure 3, Eq 4) were employed in 
the [2+2]-cycloaddition reactions of a wide variety of al-
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kynes and alkenyl derivatives.  The enantioselective reac-
tions were carried out using the ligand L9 unless otherwise 
noted, and authentic racemic products were synthesized us-
ing the ligand rac-L8.  In general, excellent yields and enan-
tioselectivities were observed for both sets of ligands for a 
broad range of cyclobutenes carrying many common organic 
functional groups, originating either from the alkyne or the 
alkene.  Details of the synthesis of each of the specific ad-
ducts can be found in the Supporting Information.  For the 
sake of brevity and clarity, the products are classified ac-
cording to the types of alkyne precursors (4), and, within 
each type, by the alkenyl partners.  The simplest alkynes are 
the symmetric ones (R = n-Pr, Ph, CH2OTMS) leading to 
products 6a-6j.  The alkenyl derivatives include alkyl and 
trifluoroethyl acrylates (6a-6d), vinyltriethoxysilane (6e), 
vinyltrimethylsilane (6f), vinylboronic acid pinacolate (6g 
and 6h), each giving excellent yields (86-97%) and ee’s (88-
97%).  The trifluoroethyl acrylates were generally more re-
active and the reactions proceeded at a faster rate compared 
to the alkyl acrylates.  This permits lower temperatures for 
the reactions, leading to improved yields but with little 
change in selectivities.  Among the acrylates t-butyl acrylate 
gave the product 6d with the highest enantioselectivity 
(94%) with 4-octyne.  The hydroxymethyl-bearing product 
6i,was formed in very good yield and excellent ee (95%).  
Products derived from unsymmetrical alkynes bearing an 
aryl group and an alkyl group are represented by 6k–6t.  1-
Phenylpropyne and 1-phenylbutyne gave high yields of the 
[2+2]-adducts 6k, 6l and 6p upon reaction with the respec-
tive acrylates in excellent regioselectivity (rr >95:5) and 
enantioselectivity (ee >89%), with the ester moiety placed 
adjacent to the aromatic substituent.  Ligand L8 was found 
to be the most optimal for these aromatic substrates.  The 
regioselectivity in the products from unsymmetrical dialkyl 
alkynes depends on the difference in the size of the two alkyl 
groups.  Methyl/butyl and methyl/i-propyl combination gave 

relatively low selectivity (62:38 and 87:13 for 6m and 6n), 
even though the enantioselectivity reached >91% ee for the 
major product in both cases.  Significantly, the norephedrine-
derived ligand L9 gave better regioselectivity compared to 
L8.  t-Butylmethyl acetylene with a significant size differ-
ence between the groups underwent a highly regioselective 
[2+2]-cycloaddition to give the product 6o.  
Products 6q-6ai derived from functionalized, unsymmetrical 
alkynes, including some carrying hetero-atoms (N, S) on the 
alkynyl carbon (6s, 6ag, 6ah), demonstrate the vast func-
tional group compatibility of the reaction.  The following 
additional substituents on the alkynes are tolerated: carbonyl 
group as in a ketone or ester (6q, 6r, 6t, 6u, 6v and 6ai), 
electron-rich or electron-poor aryl and heteroaryl groups (6t, 
6w, 6x, 6y, 6z, 6aa, 6ab, 6ac, 6ad, 6ae, 6af, 6ai), alkyl 
sidechains with -OH (6y), -Cl (6z), or phthalimido- (6aa) 
groups, cyclopropyl groups (6ab).  In general, very good to 
excellent yields of the isolated products were obtained for a 
wide variety of alkenyl derivatives previously shown to work 
with simpler symmetric alkyne substrates.  The regioselec-
tivity observed was also high (>95:5) except for a few in-
stances (6m, 6ag, 6ai).  Where ever we have carried out the 
enantioselective reactions (6a-6t), the ee’s are very high (86-
97%).   
 
 
 
 
 
 
 
 

 
Figure 4.  A.  Solid-state structure (ORTEP) of the pre-catalyst [(R)-L8]CoBr2 (Cambridge Crystallographic Data Centre CCDC # 
1860755).  B. Absolute configuration (S) established by X-ray crystallography of a 1,6-dibromo-2-naphthoate corresponding to cyclobu-
tene 9a (Cambridge Crystallographic Data Centre CCDC # 1921037).  See Supporting Information for details. 

Scope of [2+2]-Cycloadditions between 1,3-Enynes and 
Alkenyl Derivatives.  1,3-Enynes as the alkyne components 
in the [2+2]-cycloadditions increase the versatility and ap-
plicability of this chemistry by placing yet another function-
alizable carbon in the form of an alkenyl substituent on the 
product cyclobutene (9, Eq 5, Figure 5).  The (E)-1-propenyl 
moiety was chosen as the optimal substituent on many of the 

enynes in this study for three reasons: (a) the substrates bear-
ing this group can be easily synthesized in high yield by 
cross-coupling chemistry; (b) the propenyl derivative can be 
readily converted into a more versatile cyclobutenyl alde-
hyde by chemoselective ozonolysis (Figure 6, A); (c) 1,3-
enynes with no alkenyl substituents require three equivalents 
of the alkenyl partner to promote efficient [2+2]-

A B
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cycloaddition (for example, to prepare 9ac or 9ad) and to 
prevent a competitive co-dimerization of such enynes (ex-
ample, to give 13ad, Figure 6, B) to 1,6-dialkylvinylaromatic 
compounds.  See Supporting Information Table S7 for fur-
ther details. 
The most general reaction conditions, applicable to the 
broadest spectrum of substrates, is shown in Eq 5 (Figure 5), 
and, the corresponding substrate scope is illustrated by the 
accompanying structures.  The electron-rich phosphino-
oxazoline ligand L8 appears to be the best ligand to obtain 
the highest regio- and enantioselectivity under the previously 
optimized conditions for this transformation.  See also Table 
2, and, a more elaborate Table S2 in the Supporting Infor-
mation (p. S14) for the effect of other ligands, and Table S3 
(p. S16) for the effect of solvents.  Solid state structure of the 
most useful CoBr2-complex is shown in Figure 4 (A).  The 
authentic racemic products were synthesized using ligand 
L1.  The diverse structures of products in Figure 5 validate 
the broad scope of this [2+2]-cycloaddition reaction with 
respect to the enynes and the alkenyl derivatives.  The abso-
lute configuration of the products is based on the X-ray crys-
tallographic structure of a 1,6-dibromo-2-naphthoate corre-
sponding to the methyl ester 9a (Figure 4, B).  Configuration 
of the other products are assumed by analogy. 
For convenience, the products from enynes are classified 
into six somewhat arbitrary groups, five of them showing the 
variations in the starting alkenyl components – alkyl acry-
lates (9a-9e), hetero-functionalized alkenes (9f-9i: starting 
from trialkoxyvinylsilane, trialkylvinylsilane, vinylboronate 
and vinylsulfone), allyl derivatives (9j-9n: from allyl ethers, 
allyl amides, allyl pinacolboronates, allyl sulfones and allyl 
trialkylsilanes), vinylarenes (9o-9s), and disubstituted al-
kenes such as dihydrofuran (9t), norbornene (9u) and trans-
anethole (9v).  Another group of adducts (9w – 9ag) show 
the variations possible in the enynes.   
In most of the adducts derived from alkyl acrylates, the het-
ero-functionalized alkenes, and the allyl derivatives (9a-9n), 
the major product carries the alkenyl substituent adjacent to 
the 2-propenyl group of the enyne (>95:5 rr).  The enantiose-
lectivities in these instances are also excellent (generally 
>90% ee), except for the adducts from allyl N-tosylamide 
(9k, 87%) and allyl phenyl sulfone (9m, 55%).  Cycloaddi-
tions with allyl derivatives also revealed a remarkable ligand 
effect.  While the cycloaddition reactions carried out using 
the PHOX ligands (L1 or L8) gave excellent yields of the 
[2+2]-cycloaddition (9j-9n) with outstanding regioselectivi-
ty, the (dppp)CoBr2 complex gave adducts corresponding to 
a formal ene reaction (Figure 6, C).12a  See Supporting In-
formation for other substrates showing similar behavior 
(Supporting Information Table S8, p. S21).  Simple internal 
alkynes give only ene-products with 1-alkenes irrespective 
of the ligands.12c  The vinylarenes (corresponding to the 
products 9o-9s) are excellent alkenes for the cycloaddition, 
even though the enantioselectivities seen are unacceptably 
low, except for the benzofuranyl compound 9s (ee 86%).  
Compatibility of functional groups in the cyclization of 
enynes is similar to what was previously observed for simple 
alkynes (Figure 3).  Thus, cyclopropyl (9w), alkyl (9x – 9z), 
chloroalkyl (9aa), phthalimido-alkyl (9ab) or trimethylsilyl-
vinyl (9af) groups presented no complications in the reac-
tion.  In general, very good to excellent regioselectivities (rr 

>90:10) and enantioselectivities (> 89% ee) were observed 
for the corresponding substrates.   
 

Page 7 of 13

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



	

 8 

 

 

Figure 5.  Scope of [2+2]-Cycloaddition between Enynes and Alkenyl Derivatives.  A. Typical reaction conditions.  Broad scope of the 
reaction is illustrated by diverse functional groups tolerated in the two coupling partners.  Regioisomeric ratio of product 9 was >95:5 un-
less otherwise indicated.  The structures shown are for the major regioisomers and the corresponding ee’s were determined by using CSP-
GC or CSP-HPLC.  See the Supporting Information for further details.   B. Most useful ligands for the [2+2]-additions of 1,3-enynes and 
alkenyl derivatives. 

As alluded to earlier, 1,3-enynes lacking substituents on the 
Csp2-carbons (R2 or R3) gave only modest yields (e.g., 67% 
for 9ac; 47% for 9ad), even though the observed enantiose-
lectivity was very high (92% ee and 94% ee respectively).  A 
competing homodimerization of these enynes to give 1-
vinyl-2,6-dialkylbenzenes (Figure 6, B) can be avoided by 
using excess of the alkenyl derivative (up to 3 equivalents in 
the case of 9ac and 9ad).  As illustrated by the high yields 
and selectivities observed for examples 9ae, 9af, and 9ag 

(under near stoichiometric ratios of the starting materials), 
substitution at the internal Csp2 carbon of the enynes also 
promotes facile [2+2]-cycloaddition without any complica-
tion from the homodimerization of the enyne. 
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Figure 6.  A. A propenyl substituent in an enyne (thus in the cycloadduct 9a) is useful as an aldehyde surrogate.  B. This group also pre-
vents homodimerization of the enyne to a vinyl aromatic (13ad).  C. Allyl derivatives give [2+2]-cycloadducts with ligand L1, but an ene-
products with dppp.  D. A gram-scale reaction and a diastereoselective transformation of a cyclobutene. 

 
Role of Cationic Cobalt (I) in the [2+2]-Cycloaddition 
Reaction and a Possible Mechanism of the Reaction.  In 
the initial studies we have recognized a prominent role for a 
cationic cobalt (I) species in these reactions.  Control exper-
iments (Eq 6 and the accompanying Table 3) confirm that no 
reaction ensues in the presence of isolated Co(I) complex 
(dppp)3Co2Cl2

14
 or a Co(I) complex formed by in situ reduc-

tion of  LCoBr2 (L = dppp or L1) using Zn as a reducing 
agent (See Supporting Information Table S5 for further de-
tails) in the absence of NaBARF (entry 4 and 9 versus 1 and 
2).  A possible unified mechanism that accounts for all prod-
ucts formed and the various experimental observations is 
shown in Figure 7.  The presence of NaBARF, which pre-
sumably generates a cationic Co(I) species (15), under these 
reaction conditions is essential for the success of the reac-
tion.  Oxidative dimerization of the alkyne and the alkenyl 
reactant gives the metallacycle 17, which could undergo 
reductive elimination to give the cyclic product 6 or 9.  Al-
ternately, b-hydride elimination followed by reductive elim-
ination could give either 7 or 14 depending upon the sub-
strate.  Allylic derivatives with an exo-cyclic CH2 group (17, 
G = CH2Y) gives the formal ene-product via 19.  That coor-
dinating solvents such as THF, acetonitrile and even ethyl 
acetate are not suitable for the reaction also supports the 
intermediacy of the cationic Co(I) species 15 as a viable 
catalyst.  Thus, this cycloaddition reaction joins a growing 
list of other alkene functionalization reactions such as diene-
acrylate dimerization16 and HBPin-mediated hydroboration14 
and hydrogenation17 of prochiral alkenes where cationic 
Co(I) have been invoked as intermediates. 
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Table 3. Role of cationic Co(I) in [2+2]-cycloaddition a 

entry catalyst activator reductant solvent. time (h) 9a (%)  
 1 (L1)CoBr2 NaBARF Zn CH2Cl2 15 96 

 

2 (dppp)CoBr2 NaBARF Zn CH2Cl2 6 >80 
3 (L1)CoBr2 NaBARF none CH2Cl2 24 0 
4 (L1)CoBr2 none Zn CH2Cl2 24 0 
5 (L1)CoBr2 NaBARF Zn THF 24 0 
6 (L1)CoBr2 NaBARF Zn CH3CN 24 0 
7 b (dppp)CoBr2 NaBARF Zn CH2Cl2 6 16 
8 c (dppp)3Co2Cl2 NaBARF none CH2Cl2 6 9 
9 (dppp)3Co2Cl2 none none CH2Cl2 24 0 

a See Eq 6 for a typical procedure and SI for further details.  Solvent and additive effects support a key role for cationic Co(I)-species in 
[2+2]-cycloadditions.  b Additionally, 2.5 mol% dppp was used.  Note that addition of extra ligand inhibits the reaction (Table entry 2 vs 
7).  c  2.5 mol% catalyst loading (5 mol% in Co).   

 

 
Figure 7. A possible mechanism that accounts for the observed ligand, counter ion and solvent effects. 

 

CONCLUSIONS   
Cyclobutanes are important structural motifs in many biolog-
ically relevant compounds.  We report a practical approach 
to diverse array of nearly enantiopure cyclobutenes from 
which these compounds can be easily accessed.  Two of the 
most abundant organic precursors, alkynes and alkenyl de-
rivatives are used in the key enantioselective [2+2]-
cycloaddition reaction, which employs catalysts derived 

from readily available amino-alcohols and an earth-abundant 
metal, cobalt.  These enantioselective cycloaddition reactions 
are easily scaled up to gram scale.  With the diverse func-
tional groups present in the cyclobutenes, further diastere-
oselective transformations are easily envisaged for synthesis 
of other useful intermediates including highly functionalized 
cyclobutanes, cyclopentanes and stereo-defined 1,3-dienes.  .  
Experimental observations implicate a cationic cobalt(I)-
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species in the mechanism of this reaction.  Such species may 
have broader applications for other carbon-carbon and car-
bon-heteroatom bond-forming reactions. 
 
EXPERIMENTAL SUMMARY  
In an N2-filled glovebox, an 8-mL vial equipped with a sep-
tum screw cap was charged with a magnetic stirrer bar, 
[LCoBr2] (0.01 mmol, 0.05 equiv), activated zinc-dust (0.1 
mmol, 0.5 equiv), NaBARF (0.02 mmol, 0.1 equiv), and 
toluene (0.20 - 0.25 M).  The vial was capped and after stir-
ring the mixture for 5-10 minutes, the alkyne (0.20 mmol, 1 
equiv) was added neat using microliter syringe via the sep-
tum, followed by the alkenyl derivative (0.22 – 0.30  mmol, 
1.1-1.5 equiv).  The resulting mixture was stirred at rt.  The 
progress of the reaction was monitored by taking an aliquot 
using a glass pipette, diluting with ether and filtering through 
a pad of silica before analyzing via GC-FID or TLC.  Upon 
completion of the reaction (4 h-24 h), the vial was taken out 
of the box and quenched with ether (5 mL).  The resulting 
mixture was filtered over a short pad of silica eluting with 
ether.   Concentration on a rotary evaporator, and subsequent 
purification by column chromatography eluting with hex-
ane/ethyl acetate (0 to 20%) afforded the products.  Full ex-
perimental details, spectroscopic and analytical data includ-
ing chiral stationary phase chromatograms can be found in 
the Supporting Information under each new compound. 
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