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a b s t r a c t

New conjugated dienamides have been synthesized effectively via palladium-catalyzed aminocarbonyla-
tion of enynes in the presence of various amines, diaminoalkanes, and aminoalcohols. The products have
been utilized as substrates in alkoxycarbonylation reactions using methanol as the nucleophile and
Pd(PPh3)2Cl2 as the catalyst to afford novel x-amidoesters in high yields and selectivities. Interestingly,
the product obtained from the alkoxycarbonylation reaction of the dienamide product of enyne 1b was
observed to undergo carbonylation of the a,b-double bond with respect to the carbonyl group and isom-
erization of the second isolated double bond.

� 2012 Elsevier Ltd. All rights reserved.
Dienamides are recognized as key reactive intermediates in or-
ganic synthesis due to their synthetic potential and occurrence in
Nature.1 A variety of dienamide derivatives have been isolated
from natural sources and have been reported to have antioxidant
and cytotoxic activities.2 Several alkaloids have been synthesized
using dienamides as starting materials.3 Acyclic dienamides are
also key constituents in a number of biologically active natural
products and pharmaceutically relevant units.4 Despite their utility
and biological potential, available synthetic routes for dienamides
are still very limited.5 Moreover, reports on the synthesis of diena-
mides via metal-catalyzed carbonylation are rare in the literature.
Imanda and Alper reported the palladium-catalyzed regioselective
carbonylation of propargyl amines into 2,4- or 2,3-dienamides.6

The need to develop efficient, mild and simple methods for the
synthesis of more versatile and new dienamides remains an inter-
esting challenge. Aminocarbonylation of enynes can be considered
as an attractive route toward the simple, efficient and practical
preparation of a variety of dienamides. Encouraged by the impor-
tance of aminocarbonylation reactions in organic syntheses,7 our
group has succeeded in the development of different palladium
catalyst systems for the aminocarbonylation of various internal
and terminal alkyl and aromatic alkynes, using different types of
amines as nucleophiles.8
ll rights reserved.

+966 3 8604277.
In this Letter, we report a one-step protocol for the regioselec-
tive synthesis of new dienamides, in high yields, via palladium-cat-
alyzed aminocarbonylation of enyne substrates using a modified
catalytic system that we reported previously for the aminocarb-
onylation of terminal alkynes.8a Different reaction parameters have
been screened and optimized in order to maximize the yield and
the regioselectivity of the aminocarbonylation. Moreover, the
dienamides obtained from the aminocarbonylation step were sub-
jected to further catalytic alkoxycarbonylation with methanol to
produce new x-amidoesters with interesting structural properties.

The aminocarbonylation of 1-ethynylcyclohexene (1a), adopted
as a model substrate, with diisobutylamine (2a) in the presence of
a palladium-diphosphine catalyst system was carefully optimized
by varying the reaction conditions (Eq. (1)) and the results are
summarized in Table 1. Excellent conversion and regioselectivity
toward the (2-gem)-4-dienamide 3aa was achieved, while
(2-trans)-4-dienamide 4aa was obtained as a minor product. The
use of 1,3-bis(diphenylphosphino)propane (dppp) as the ligand
(Table 1, entry 2) led to a higher conversion of 1a and excellent
selectivity toward 3aa, and better reproducibility compared to
1,4-bis(diphenylphosphino)butane (dppb) (Table 1, entry 1), 1,1’-
bis(diphenylphosphino)ferrocene (dppf) (Table 1, entry 3), and
2,20-bis(diphenylphosphino)-1,10-binaphthyl (BINAP) (Table 1, en-
try 4) as ligands and Pd(OAc)2 as the catalyst precursor. Low to
average conversions (12% and 48%) were obtained with the mono-
phosphine ligands PPh3 and P(p-Tol)3 (Table 1, entries 12 and 13),
respectively. The major carbonylation product of the reaction with
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Table 1
Selected experimental results for the optimization of the catalyst system for the
aminocarbonylation of 1aa

Entry Catalyst
precursor

Ligand Conversion of
1ab (%)

Product
distributionb

(%)

10ab

(%)

3aa 4aa

1 Pd(OAc)2 dppb 92 93 5 2
2 Pd(OAc)2 dppp 98 94 4 2
3 Pd(OAc)2 dppf 92 82 12 6
4 Pd(OAc)2 BINAP 83 88 9 3
5 PdSO4 dppp 97 93 4 3
6 PdCl2(PPh3)2 dppp 80 92 1 7
7 Pd(NO3)2 dppp 100 94 5 1
8c Pd(OAc)2 dppp 65 84 4 12
9d Pd(OAc)2 dppp 86 85 6 9
10e Pd(OAc)2 dppp 78 72 6 22
11f Pd(OAc)2 — 50 — — 100
12 Pd(OAc)2 PPh3 20 49 3 48
13 Pd(OAc)2 P(p-

Tol)3

48 42 13 45

a Reaction conditions: catalyst precursor (0.02 mmol), ligand (0.08 mmol),
1-ethynylcyclohexene (1a) (2 mmol), diisobutylamine (2a) (2.2 mmol), p-TsOH
(0.3 mmol), CO (200 psi), CH3CN (10 ml), 110 �C, 6 h.

b Determined by GC based on 1a.
c Solvent = CH2Cl2.
d Temperature = 90 �C.
e No p-TsOH was added.
f No ligand was added.
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PPh3 and P(p-Tol)3 was 3aa (49% and 42%, respectively) in addition
to the homocoupling product (48% and 45%, respectively). It is clear
that the mechanism of the carbonylation reaction of enynes using
monosphosphine ligands differs from that occurring in the pres-
ence of diphosphines.9

Comparable activities and selectivities were obtained in the
aminocarbonylation of 1a when dppp was applied with other pal-
ladium(II) precursors (Table 1, entries 5–7). The use of CH2Cl2 as
the solvent or a lower temperature of 90 �C resulted in a decrease
in both the activity and selectivity of the aminocarbonylation reac-
tion of 1a (Table 1, entries 8 and 9). The catalyst system still
showed good activity in the aminocarbonylation of 1a even in
the absence of p-TsOH as an additive (Table 1, entry 10). However,
the absence of the ligand resulted only in the formation of the
product 10a obtained via homocoupling of 1a, and no carbonylation
products were identified (Table 1, entry 11). Furthermore, no poly-
merization by-products of 1a were identified from any of the
experiments.
1a 2a [R=R'=CH2CH(CH3)2]
2b [R=CH(CH3)2; R'=H]
2c [R=R'=CH(CH3)2]
2d [R=CH2(CH2)4CH3; R'=H]
2e [R=CH2C6H5; R'=H]
2f [R=C6H5; R'=H]
2g [R=C10H7; R'=H]

3aa-ae 4

H

+ HNRR'
Pd/[L], p-TsOH

CH3CN, CO

110 oC, 6 h

NRR'

O +
We next investigated the aminocarbonylation of 1a with a
range of primary and secondary amines and the results are sum-
marized in Table 2. Excellent conversions (82–98%) and selectivi-
ties (94–99%) were achieved with alkyl amines 2a–d (Table 2,
entries 1–4) and benzylamine 2e (Table 2, entry 5) yielding the cor-
responding (2-gem)-4-dienamide isomers 3aa–ae as the predomi-
nant products. Surprisingly, no catalytic activity was observed in
the presence of aromatic amines such as aniline 2f and naphthyl-
amine 2g (Table 2, entries 6 and 7), probably due to the low nucle-
ophilicity of these nucleophiles.

These interesting results have encouraged us to initiate a sepa-
rate computational mechanistic study to clarify the possible cata-
lytic pathways for the aminocarbonylation of these enynes, and
also to compare them with our previously reported mechanistic
study for the aminocarbonylation of terminal alkynes.9

The palladium-catalyzed aminocarbonylation reaction was also
successfully applied for the carbonylation of 1a in the presence of
diaminoalkanes 5a–c (Scheme 1). Interestingly, the two amino
groups in the diaminoalkanes, regardless of the number of carbon
atoms in the chain, were reactive as amines in the aminocarbony-
lation of two molecules of 1a leading to the formation of new
alkyl-di-(2-gem)-4-dienamides 6aa–ac in excellent isolated yields
(81–91%).

It is worth noting that the catalyst system composed of
Pd(OAc)2 and dppp was also active and selective in the aminocarb-
onylation of 2-methyl-1-buten-3-yne (1b) using the amines 2a, 2h,
and 1,3-propanediamine (5a) as nucleophiles.10 Excellent isolated
yields (78–95%) of dienamides 3ba, 3bh, and 6ba were obtained
(Scheme 2).

The most interesting results were obtained when we utilized
the described catalyst system [Pd(OAc)2/dppp] for the aminocarb-
onylation of enyne 1a with aminoalcohols 7a–c as nucleophiles.
These are considered as interesting molecules having two different
functionalities that are typically available as nucleophiles for
aminocarbonylation as well as alkoxycarbonylation reactions. Sur-
prisingly, aminocarbonylation products were obtained exclusively
(Scheme 3), and the OH function remained intact. This result was
confirmed by the absence of any catalytic activity for our amino-
carbonylation catalyst system in the alkoxycarbonylation reaction
of 1a with different alcohols. It is important to note that new
dienamides 8aa–ac, having diene, amine, and hydroxy functions
are important for the synthesis of new and useful heterocyclic
compounds.

The presence of the interesting diene functionality in the prod-
ucts of the aminocarbonylation of enynes encouraged us to consider
the obtained dienamides as substrates for alkoxycarbonylation
aa-ae

NRR'

O

+

1'a ð1Þ



Table 2
Pd(II)-catalyzed aminocarbonylation of 1a in the presence of amines 2a–ga

Entry Amine Conversion (%)b Product distributionb (%)

3 [ ]c 4 10a

1 Diisobutylamine (2a) 98 3aa
95 [93]

4aa
3

2

2 Isopropylamine (2b) 91 3ab
97 [84]

4ab
3

0

3 Diisopropylamine (2c) 93 3ac
89 [85]

4ac
5

6

4 Hexylamine (2d) 96 3ad
99 [90]

4ad
1

0

5 Benzylamine (2e) 82 3ae
98 [81]

4ae
1

1

6 Aniline (2f) 0 — —
7 Naphthylamine (2g) 0 — —

a Reaction conditions: Pd(OAc)2 (0.02 mmol), dppp (0.08 mmol), 1-ethynylcyclohexene (1a) (2 mmol), amine (2.2 mmol), p-TsOH (0.3 mmol), CO (200 psi), CH3CN (10 ml),
110 �C, 6 h.

b Determined by GC based on 1a.
c Isolated yield.

(2.0 mmol) (1.1 mmol)
Isolated yield
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Scheme 1. Aminocarbonylation of enyne 1a using diamines 5a–c.
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Scheme 2. Aminocarbonylation of enyne 1b using amines 2a, 2h, and 5a.
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reactions with methanol using Pd(PPh3)2Cl2 as the catalyst.11 To
our delight, the reactions proceeded smoothly to yield the required
alkoxycarbonylation products in excellent isolated yields (92–
95%). Interestingly, the alkoxycarbonylation of dienamide 3bh
proceeded with isomerization of the second isolated double bond.
This isomerization behavior was not observed for the isolated
double bonds located in the cyclic moiety of substrate 6ab (Eqs. 2
and 3).12
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Scheme 3. Aminocarbonylation of enyne 1a using aminoalcohols 7a–c.
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In conclusion, an efficient palladium-diphosphine catalyst sys-
tem was applied for the aminocarbonylation of enyne substrates
using various mono and diaminoalkanes, and aminoalcohols. The
catalyst system showed excellent regioselectivity to produce
(2-gem)-4-dienamide as the predominant product. Interesting
and novel x-amidoesters were obtained through the palladium-
catalyzed alkoxycarbonylation of the dienamides prepared in this
study.13 A computational study of plausible mechanisms for the
above noted reactions is in progress.
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