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Figure 1. Bortezomib (Velcade™).
P. Veeraraghavan Ramachandran ⇑, Wataru Mitsuhashi, Debanjan Biswas, Daniel R. Nicponski
Herbert C. Brown Center for Borane Research, Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA

a r t i c l e i n f o
Article history:
Received 18 April 2013
Revised 13 June 2013
Accepted 16 June 2013
Available online 26 June 2013

Keywords:
Amino-boronic ester
Allylboration
Crotylboration
Methoxyallylboration
Nitriles
a b s t r a c t

The first stereocontrolled synthesis of the title d-aminoboronic esters—proceeding from commercially
available nitriles—via a reduction, Brown’s ‘allyl’ boration reaction, a Boc-protection, a hydroboration,
an oxidative elimination of a-pinene, and an esterification reaction, has been reported in excellent enan-
tio- and diastereoselectivities.

� 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
Aminoboronic acids have been shown capable of mimicking
natural amino acids, and have also been demonstrated to act as
bioisosteres in many biochemical reactions.1,2 These unusual
amino acid mimetics can function as potent inhibitors of several
enzymes, and can also effectively serve as immunosuppressants.
a-Aminoboronic acids have also recently acquired special
pharmaceutical significance with the recent approval of bortezo-
mib (Velcade™) (Fig. 1), the first boron-containing compound to
be approved for pharmaceutical use by the FDA. Indeed, bortezo-
mib has shown its potential to function as a successful proteasome
inhibitor.3 Owing to the clear and growing importance of aminobo-
ronic acids in various areas of medicinal chemistry, several classes
of these important molecules have been synthesized.3,4 Despite
this recent interest, there remains only a limited amount of litera-
ture precedence for the asymmetric preparation of aminoboronic
acids.5

The preparation of functionalized aminoboronic acids has re-
mained challenging. While a few methods have been reported for
the preparation of a-,6 b-,7 and c-aminoboronic acids,7 the prepa-
ration of d-aminoboronic acids and esters remains almost entirely
unexplored. In perhaps the most significant example of the latter,
Vaultier and co-workers reported the preparation of simple
d-aminoboronic acids by the reduction of azide-containing boronic
esters in a series of two papers.8 Their synthetic route, shown in
Scheme 1, involved the hydrodibromoboration of a halide-contain-
ing alkene, followed by hydrolysis, azidation, and hydrogenative
reduction. One consequence of this synthetic route is that the
use of primary azides necessitates that the resultant d-amino-
boronic acids remain achiral.

It is not inconceivable that this group of interesting compounds
remains underreported in the literature because their synthesis
can be difficult. Quite possibly, this is due to the fact that these
compounds are often unstable, and to the incompatibility of the
varying functional groups that are needed to serve as synthetic
handles during their synthesis.9

As part of a separate research project in our laboratory, we re-
cently developed and reported a number of convenient syntheses
for a series of aldimine–borane and N-aluminoimine complexes.10

Their subsequent allyl-, crotyl-, and methoxyallylborations provide
access to homoallylic amines in high yields and very good to excel-
lent enantio- and diastereoselectivities. We envisaged that the use
of these homoallylic amines as synthons could provide easy access
through a novel route to a new class of functionalized, chiral
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Scheme 1. d-Aminoboronic acid production by Vaultier and co-workers by means
of an azide-containing pathway.
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d-aminoboronic esters and their substituted analogs. The synthetic
approach to this class of compounds is outlined in Scheme 2.

The hydroboration of functionalized olefins can lead to the syn-
thesis of a variety of substituted alkylborons and boron-containing
heterocycles, and also to those alcohols and functionalities that re-
sult from the oxidation and further synthetic manipulation of these
borane intermediates.12 We believed that the application of this
hydroboration methodology to (aminoalkyl)-x-olefins would nec-
essarily lead to the production of amino-x-borylated compounds.
For our purposes, we were interested in investigating the hydro-
Table 1
Asymmetric synthesis of Boc-protected d-aminoboronic esters

N

R
(-)-Ipc2B

R

NH2
1. LiHBEt3
2. MeOH

3.

1
2
3
4
51 2

Entry Nitrile Homoally

No. R= No.

1 1a C6H5– 2a
2 1b 4-Me-C6H4– 2b
3 1c 4-MeO-C6H4– 2c
4 1d 2-Thiophenyl– 2d
5 1e 2-F-C6H4– 2e

a Yields refer to analytically pure material (flash chromatography) after three steps.
b Yields refer to analytically pure material (flash chromatography) after five steps.
c Enantiomeric ratios were determined by Mosher amide analysis using 19F NMR.
d Yields are from previous report.11

e Reduction was performed using DIBAL-H.
boration of 1-aminobut-3-enes, as we considered that they could
provide direct access to the desired d-aminoboranes, which, upon
oxidative elimination of a-pinene and esterification, would furnish
the desired d-aminoboronic esters.

We began our efforts by searching for a method that would
allow for both the symmetric and asymmetric production of the req-
uisite 1-aminobut-3-enes. To this end, we decided to extend our
previous methodology10 in which we had described a one-pot pro-
cess of imine allylation. In that case, metalated imines were pro-
duced in situ by the reduction of a variety of substituted nitriles.

Building on our previous work, these 1-substituted-1-amino-
but-3-enes were then protected at the amine position with the
tert-butoxycarbonyl group. The resultant Boc-protected homoal-
lylic amines were then subjected to hydroboration conditions,
thereby furnishing the expected alkylamines possessing the de-
sired x-boryl group. Oxidation of the two boron diisopinocamphe-
nyl ligands with acetaldehyde (akin to a DIP-Cl� reduction),13

followed by hydrolysis with diluted mineral acid provided the de-
sired d-boronic acids. Unfortunately, these products were not read-
ily purifiable. As such, these compounds were directly converted
into their ester analogs by esterification with pinacol. In this
way, the pinacolato d-aminoboronic esters were prepared in very
good overall yields.

The use of Brown’s chiral isopinocampheyl ligand14 during the
allylboration stage was found to provide excellent enantiomeric ra-
tios of the desired 1-substituted-1-aminobut-3-enes. Expectedly,
this high enantiomeric enrichment was carried through to the
boronic esters, providing, to the best of our knowledge, the first
such stereocontrolled synthesis of d-aminoboronic acids and es-
ters. Generally speaking, enantiomeric ratios of between 6:1 and
99:1 were obtained with this process (Table 1).

The synthesis of a series of N-protected-1-aryl-1-amino-d-boro-
nic esters was then performed as follows (Table 1). An aromatic ni-
trile (1) was first reduced with lithium triethylborohydride to
furnish the lithium triethyl(alkylidenylamino)borate complex.
After a controlled protonation with methanol, the resulting
imminium–borane adduct was allylated with (-)-B-ally-
diisopinocampheylborane [(-)-Ipc2B(allyl)] which, upon oxidative
workup and column chromatography, provided the intermediate
homoallylic amines 2 in very good yields and excellent enantio-
meric ratios. After protection of the amine functionality by reaction
with di(t-butyloxycarbonyl) anhydride, hydroboration with the
R

NHBoc

. Boc2O, Et3N

. Ipc2BH

. MeCHO

. HCl (aq)

. Pinacol
B

O

O

3

lic amine d-Aminoboronic ester

Yielda (%) No. Yieldb (%) erc

79d 3a 59 96:4
86d 3b 67 97:3
90d 3c 65 97:3
82d 3d 55 >99:1
71e 3e 54 88:12



Table 2
Asymmetric synthesis of methylated and methoxylated d-aminoboronic esters

N

R

(-)-Ipc2B
R

NH2

R

NHBoc
1. DIBAL-H
2.

3. MeOH

1. Boc2O,Et3N
2. Ipc2BH
3. MeCHO
4. HCl(aq)
5. Pinacol

B
O

O

1

X

XY
XY

Y

4
5
6

X = Y =
Me

Me
H

H
H

7
8
9

X = Y =
Me

Me
H

H
HMeO MeO

Nitrile Homoallylic amine d-Aminoboronic ester

Entry No. R= No. Yielda (%) No. Yieldb (%) drc erd

1 1b 4-Me-C6H4– 4b 69 7b 64 >99:1 95:5
2 1b 4-Me-C6H4– 5b 56 8b 52 >99:1 93:7
3 1b 4-Me-C6H4– 6b 63 9b 53 98:2 >99:1
4 1c 4-MeO-C6H4– 4c 59 7c 57 >99:1 84:16
5 1c 4-MeO-C6H4– 5c 63 8c 58 >99:1 84:16
6 1c 4-MeO-C6H4– 6c 56 9c 51 99:1 94:6

a Yields refer to analytically pure material (flash chromatography) after three steps.
b Yields refer to analytically pure material (flash chromatography) after five steps.
c Diastereomeric ratios were determined by 1H NMR analysis of the crude reaction mixture.
d Enantiomeric ratios were determined by Moscher amide analysis of the major diastereomer using both 1H and 19F NMR.
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bulky Ipc2BH,15 followed by oxidation with excess acetaldehyde,
hydrolysis with dilute hydrochloric acid, and esterification with
pinacol provided the product 1-aryl-1-amino-d-boronic esters 3
in very good overall yields and excellent enantiomeric ratios. The
product boronate esters, which were stable under conditions of
column chromatography, were obtained as the major enantiomer
shown in Table 1. A comparison with literature values of similar
compounds11,16 was used as confirmation that the stereochemical
outcome was the one expected for imine allylation. This stereo-
chemistry, when considered in the context of the stereochemical
consistency of other reports of analogous imine allylations,17 is
very reasonable.

The application of these conditions to Brown’s crotyl-18 and
methoxyallylboration19 reactions was also studied. These synthetic
analogs provide an excellent means to introduce further substitu-
tions or functionalities vicinal to the amine. We initially explored
these reactions, again using lithium triethylborohydride as the ni-
trile reductant. We found, however, that the use of the less expen-
sive diisobutylaluminum hydride (DIBAL-H)10 offered comparably
high enantio- and diastereoselectivities at the expense of only a
slight decrease in isolated yield (Table 2).

By following a methodology similar to that above, the formation
of crotyl-derived amines was realized. For example, the use of
4-methyl and 4-methoxybenzonitriles, when subjected to the
sequential reduction and crotylation conditions, resulted in the
formation of the expected products. Again, protection, followed
by hydroboration, controlled ligand oxidation, hydrolysis, and
esterification, furnished the desired d-aminoboronic esters. In
these cases, the use of the chiral isopinocampheyl ligand provided
very high levels of stereoinduction, with enantiomeric ratios as
high as 99:1 or better. As expected, the crotylation of the imines
proceeded with excellent diasteromeric ratios.10,17

In conclusion, we have presented herein the first synthesis of d-
aminoboronic esters in a fully stereocontrolled manner.20 The very
high levels of enantio- and diastereoselectivity, when considered in
the context of the high synthetic yields obtained, make this a very
attractive methodology, and opens a new route for the exploration
of these potentially useful d-aminoboronic esters.
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