

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 15 (2005) 4985-4988

Synthesis and biological activities of aryl-ether-, biaryl-, and fluorene-aspartic acid and diaminopropionic acid analogs as potent inhibitors of the high-affinity glutamate transporter EAAT-2

Alexander Greenfield,^{a,*} Cristina Grosanu,^a John Dunlop,^b Beal McIlvain,^b Tikva Carrick,^b Brian Jow,^b Qiang Lu,^b Dianne Kowal,^b John Williams^c and John Butera^a

> ^aChemical and Screening Sciences, Wyeth Research, CN 8000, Princeton, NJ 08543, USA ^bDiscovery Neuroscience, Wyeth Research, CN 8000, Princeton, NJ 08543, USA ^cNeurocrine Biosciences, 12790 El Camino Real, San Diego, CA 92130, USA

> > Received 7 July 2005; revised 2 August 2005; accepted 2 August 2005 Available online 13 September 2005

Abstract—Excitatory amino acid transporters (EAATs) play a pivotal role in maintaining glutamate homeostasis in the mammalian central nervous system, with the EAAT-2 subtype thought to be responsible for the bulk of the glutamate uptake in forebrain regions. A complete elucidation of the functional role of EAAT-2 has been hampered by the lack of potent and selective pharma-cological tools. In this study, we describe the synthesis and biological activities of novel aryl-ether, biaryl-, and fluorene-aspartic acid and diaminopropionic acid analogs as potent inhibitors of EAAT-2. Compound (16) represents one of the most potent (IC₅₀ = 85 ± 5 nM) and selective inhibitors of EAAT-2 identified to date. © 2005 Elsevier Ltd. All rights reserved.

It is widely believed that the dysfunction of glutamate transmission participates in the etiology of a number of neurodegenerative and neuropsychiatric disorders and diseases. In the mammalian central nervous system, the excitatory amino acid transporter (EAAT) family of proteins is responsible for the high-affinity sodium-dependent uptake of glutamate into both astroglial cells and neurons. Normal EAAT function is required both for the efficient termination of glutamatergic neurotransmission and clearance of glutamate from the synaptic cleft, thereby preventing excitotoxicity. Among the five recently identified subtypes of excitatory aminoacid transporters (EAAT-1-5), three of them (EAAT-1/GLAST, EAAT-2/GLT-1, and EAAT-3/EAAC1) are involved in synaptic glutamate homeostasis. Further classification distinguishes neuronal transporter EAAT-3 from glial transporters EAAT-1 and EAAT-2, with the latter being the major contributor to glutamate uptake¹ from the synapse.

Keywords: Glutamate transporters; EAAT-2 inhibitors.

An ever-growing interest in the area led to the discovery of several classes of restricted glutamate analogs as inhibitors of EAATs (pyrolidine dicarboxylates,² aminocyclobutane dicarboxylates,3 and carboxycyclopropyl glycines⁴). Many of these relatively compact molecules act as competitive (transportable) substrates inducing transport currents and heteroexchange. A close structural similarity of these earlier series with glutamate presents a plausible explanation for the poor selectivity across EAAT subtypes and substantial affinity to other glutamate receptors (mGluRs and iGluRs). Finally, their use as pharmacological tools is also affected by modest micromolar potency and poor physico-chemical properties. While more recently designed non-transportable ligands, such as dl-*threo*- β -hydroxyaspartate and its benzylated derivative (TBOA),⁵ and the novel heptane dicarboxylate-3-amino-tricyclo[2.2.1.0^{2.6}]heptane-1,3-dicarboxylic acid⁶ offered improved potency, they still fall short of being ideal tool molecules. The latest generation of TBOA-based analogs delivers nanomolar potent EAAT-2 inhibitors (measured in transfected MDCK cells), with the most selective agent PMB-TBOA ((2S, 3(S)-3-[3-(4-methoxybenzoylamino)benzyloxy]aspartate)⁷ exhibiting a 39-fold selectivity over EAAT-3. Manifesting a notably better profile, this series still leaves room

^{*} Corresponding author. Tel.: +1 732 274 4044; fax: +1 732 274 4505; e-mail: greenfa@wyeth.com

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2005.08.003

Scheme 1. Synthesis of aspartamides and diaminopropionic acid analogs. Reagents and conditions: (i) *N*-Boc-L-aspartic acid benzyl ester, 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride, CH_2Cl_2 , (ii) H_2/Pd on carbon, 50 psi, (iii) trifluoroacetic acid (TFA), CH_2Cl_2 , (iv) 1. *N*-hydroxysuccinimide, *N*,*N'*-diisopropylcarbodiimide, CH_2Cl_2 . 2. diisopropylethylamine, *N*-Boc-3-amino-L-alanine, (v) TMS-diazomethane, (vi) NaOH, MeOH, THF, (vii) trifluoroacetic acid (TFA), CH_2Cl_2 .

Figure 1. Typical side products of aspartamide synthesis.

for improvement in selectivity and physico-chemical properties.

In this study, we present the synthesis and structure–activity studies of a structurally distinct series possessing high potency and selectivity in HEK cell lines together with a potentially promising overall biopharmacological profile. Focusing on creating sufficient structural dissimilarity with glutamate and improvement of pharmacological characteristics, we constructed variable lipophilic structural fragments with the terminal carboxy- and amino-groups of aspartic and 2,3-diaminopropionic acid correspondingly. In comparison with TBOA series,⁷ these inhibitors possess only one chiral center and a free carboxylic acid group, potentially simplifying the syntheses and improving physico-chemical properties. The general synthetic routes, leading to aspartate and 2,3-diaminopropionate analogs, are shown in Scheme 1. As outlined in Scheme 1, aspartic acid analogs 1-16 were synthesized through standard carbodiimide-mediated coupling between an amine and an appropriately protected aspartic acid. It is worth mentioning that step (ii) in Scheme 1 proved to be challenging in the synthesis of aspartamides. For example, basic hydrolysis or even exposure of the coupled protected material to elevated temperatures led to the contamination of the target materials with the product of intramolecular cyclization (1) and its subsequent non-selective opening (2) (Fig. 1). Hydrogenolysis with vigorous stirring at elevated pressure (50 psi) or Cu^{2+} -mediated debenzylation⁸ (step (ii) in Scheme 1, and steps (iv) and (viii) in Scheme 2) allowed us to overcome these difficulties.

Diaminopropionic acid analogs were prepared via in situ formation of hydroxysuccinimide ester with the appropriate aryl carboxylic acid, followed by coupling with diaminopropionic acid.⁹ To simplify isolation and purification of the intermediate, the crude material was subjected to esterification with trimethylsilyl diazomethane. Final hydrolysis of a methyl ester with diluted (1 N) sodium hydroxide and removal of Boc-group with TFA afforded analogs **17–28**.

Scheme 2. Syntheses of the analogs with highly functionalized cores. Reagents and conditions: (i) 2-bromo-4,5-difluorophenol, NaH, DMSO, (ii) SnCl₂, EtOH, 80 °C, (iii) *N*-Boc-L-aspartic acid-a-benzyl ester, 1-[3-dimethylamino)propyl]-3-ethylcarbodiimide, CH₂Cl₂, (iv) 1. trifluoroacetic acid (TFA), CH₂Cl₂, 2. CuSO₄, EtOH, 40 °C, (v) Pd(OAc)₂/Na₂CO₃/DMA, 120 °C, (vi) H₂/PtO₂, MeOH, THF, (vii) *N*-Boc-L-aspartic acid-a-benzyl ester, 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride, CH₂Cl₂, (viii) 1. H₂/Pd on carbon, 50 psi, 2. trifluoroacetic acid (TFA), CH₂Cl₂, (ix) LiBH₄, E₂O, (x) Pd(OAc)₂, Tol₃P, arylboronic acid, dioxane, (xi) polyphosphoric acid, 110 °C, (xii) H₂, PtO₂, MeH, THF, (xiii) *N*-Boc-L-aspartic acid-a-benzyl ester, 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride, CH₂Cl₂, 2. H₂/Pd on carbon, 50 psi, 3. trifluoroacetic acid (TFA), CH₂Cl₂.

Table 1. The inhibitory properties of aspartamides and diaminopropionic acid analogs

	$\begin{array}{c} NH & H \\ O & NH_2 \end{array}$						
	Inhibition $(IC_{50}, \mu M)^a$	EAAT-3	EAAT-1	EAAT-2			
1	CH ₃	10	2	0.1			
2	ÇH ₃	0.6	0.3	0.2			
3	F	0.3	0.2	0.6			
4	CF ₃	0.14	0.13	0.1			
5		0.6	0.4	0.2			
6		1	3	0.5			
7	F ₃ C CH ₃	5.6	6	0.7			
8	F	0.05	0.1	0.08			
9	CI CI	0.2	0.15	0.1			
10	Br-CTC-	0.65	0.3	0.2			
11		0.45	0.2	0.3			
12	F ₃ C-{	2.4	3.8	0.1			
13	F F-C-C	1.8	1	0.5			
14		1	0.7	0.3			
15	F	14.5	2.9	0.13			
16	F Br	3.8	5	0.08			
17		1	2	0.7			
18	CF.	0.5	0.1	0.06*			

Table 1 (continued)							
	Inhibition $(IC_{50}, \mu M)^a$	EAAT-3	EAAT-1	EAAT-2			
19	CF ₃	0.6	1	0.4			
20	F ₃ C CH ₃	3	20	0.3			
21	CI CH ₃	1.5	2	0.2			
22	CI CI CH ₃	0.85	0.7	0.1			
23		5	6	1			
24	CH ₃ CF ₃	9	63	67			
25		3	100	0.3			
26	QJ	9	22	1			
27		0.42	0.3	0.7			
28		2	3	13			

^a Concentration required to inhibit glutamate uptake in HEK cells by 50%. The error margin is $\pm 10\%$.

^{*} IC₅₀ \leq 10 nM in MDCK cell line.

Examples of the synthesis of the targets with highly elaborated lipophilic cores are shown in Scheme 2. Yields usually ranged from good to excellent (40–90%). The structural integrity of the analogs was confirmed by traditional analytical techniques (NMR, MS, CHN, and IR).

It is noteworthy that among the plethora of nitro-group reduction methods, only $SnCl_2$ in ethanol¹⁰ (step (ii) in Scheme 2) showed excellent regioselectivity preserving the bromine atom intact. A potentially problematic Pd-catalyzed formation of dibenzofuran¹¹ (v) and polyphosphoric acid mediated cyclization of biaryl methanols into corresponding fluorenes¹² (xi), both requiring strenuous conditions (110–120 °C), took place without major complications, routinely providing products with satisfactory yield (40–70%).

The EAAT inhibitory properties of compounds, prepared in the course of the study, are shown in Table 1.

The compounds under study were tested in a HEK cell line expressing each of the human transporter subtypes

Table 2. Pharmacological profile of bromo-ether 16

System	HEK	Oocytes	Synaptosomes	mGluR	iGluR
Inhibition (IC50, nM)	85 ± 5	130 ± 1	35 ± 7	No effect	No effect

EAAT-1–3.¹³ Compound **18** was also tested for its EAAT-2 uptake inhibitory effect on MDCK cells in an effort to benchmark its potency with TBOA series.⁷ It showed potent inhibition of EAAT-2 uptake with an $IC_{50} < 10$ nM, which is comparable with the best TBOA analogs reported to date.

Overall, both aspartamide and diaminopropionamide series routinely elicited high EAAT-2 inhibitory potency in HEK cells with an $IC_{50} < 100 \text{ nM}$ (3, 8, 16, and 18). Linear arrangement of amino acid fragment with respect to distal aromatic ring is a prerequisite for potency in diaminopropionamide series (weakly active 24). The selectivity proved to be an elusive and complex issue. As exemplified by compounds 26, 27, and 28, breaking of aryl-aryl bond with concomitant loss of rigidity did not deteriorate EAAT-2 inhibition but gave rise to some selectivity (10- to 20-fold) versus EAAT-1 and EAAT-3. On the other hand, fluorenone 28, not only lost EAAT-2 potency, but also reversed the sense of inhibitory preference. The best results achieved in diaminopropionamide series are represented by analogs 20 and 25. Possessing significant EAAT-2 potency, they also showed excellent separation for EAAT-1 (60- to 300-fold) and a moderate one for EAAT-3 (\sim 10-fold). Linear, in respect to amino acid residue, arrangement in biaryl analogs, while lacking selectivity, revealed a uniformly high blocking potency against EAAT-2 transporter in both series (aspartamides- and diaminopropionamides). Planarity derived from the conversion of biaryls into fluorenes (8-12, 27) did not affect the properties, leaving them potent non-selective inhibitors (with the exception of 12) of EAAT-2 transporter. On the other hand, perturbations in the proximity of aryl-aryl linkage in some cases (1, 20-22) produced the desired selectivity trend. Our attempts to exploit these results led to the synthesis and evaluation of the ethers 13–16. While potent EAAT-2 blockers dibenzofuran 13 and phenoxazine 14 showed no selectivity, less rigid ethers 15 and, especially, 16 showed both increased potency and desired inhibitory preference. In addition to being the most potent compound, bromo-ether 16 (EAAT-2 IC₅₀ ~ 85 nM) was the most selective with 59- and 45-fold selectivity over EAAT-1 and EAAT-3, respectively. Because of superior combination of potency and selectivity, the compound 16 was fully characterized pharmacologically. It showed high potency in rat cortical synaptosomes and EAAT-2 expressing oocytes (Table 2). In addition, the compound did not show cross-receptor reactivity (failed to activate both ionotropic and metabotropic glutamate receptors) and proved to be a competitive non-substrate inhibitor of EAAT-2 (by failure to activate transporter-like current when applied to oocytes expressing EAAT-1-3 transporters¹⁴).

In conclusion, we have designed and characterized a novel series of EAAT-blockers, exemplified by 16 (N^4 -[4-(2-

bromo-4,5-difluorophenoxy)phenyl]-L-asparagine)—a potent, selective, competitive non-substrate inhibitor of EAAT-2. As one of the most potent and selective EAAT-2 inhibitors identified to date, compound **16** represents a unique addition to the arsenal of pharmacological tools which can be used to elucidate further the role of specific EAAT subtypes and to improve our understanding of hyperglutamatergic and neurodegenerative disorders.

References and notes

- 1. Dunlop, J.; Zaleska, M. M.; Eliasof, S.; Moyer, J. A. Excitatory amino acid transporters as emerging targets for central nervous system therapeutics. *Emerging Therapeutic Targets* **1999**, *3*, 543.
- Bridges, R. J.; Stanley, M. S.; Anderson, M. W.; Cotman, C. W.; Chamberlin, A. R. J. Med. Chem. 1991, 34, 717.
- Fletcher, E. J.; Mewett, K. N.; Drew, C. A.; Allan, R. D.; Johnston, G. A. Neurosci. Lett. 1991, 121, 133.
- Nakamura, Y.; Kataoka, K.; Ishida, M.; Shinozaki, H. Neuropharmacology 1993, 32, 833.
- Lebrun, B.; Sakaitani, M.; Shimamoto, K.; Yasuda-Kamatani, Y.; Nakajima, T. J. Biol. Chem. 1997, 272, 20336.
- Dunlop, J.; Eliasof, S.; Stack, G.; McIlvain, H. B.; Greenfield, A.; Kowal, D.; Petroski, R.; Carrick, T. Br. J. Pharmacol. 2003, 140, 839.
- Shimamoto, K.; Sakai, R.; Takaoka, K.; Yumoto, N.; Nakajima, T.; Amara, S. G.; Shigeri, Y. *Mol. Pharmacol.* 2004, 65, 1008.
- Prestidge, R. L.; Harding, D. R. K.; Battersby, J. E.; Hancock, W. S. J. Org. Chem. 1975, 40, 3287.
- Bark, S. J.; Schmid, S.; Hahn, K. M. J. Am. Chem. Soc. 2000, 122, 3567.
- 10. Bellamy, F. D.; Ou, K. Tetrahedron Lett. 1984, 25, 839.
- 11. Ames, D. E.; Opalko, A. Synthesis 1983, 3, 234.
- 12. Klein, M.; Boche, G. Synthesis 1999, 7, 1246.
- 13. Uptake in stable cell lines. Stable HEK cell lines expressing each of the human glutamate transporter subtypes EAAT-1-3 were plated at 50,000 cells/well in 96-well culture plates the day, prior to the measurement of glutamate uptake. Uptake assays were performed in Dulbecco's phosphate-buffered saline (D-PBS) in the presence of 1 μ M glutamate and 0.2 μ Ci/ml L-[³H]glutamate in a final volume of 100 µl for 20 min at room temperature. Assays were stopped by aspiration followed by two ice-cold D-PBS washes and [³H] accumulation in the wells determined by liquid scintillation counting. Uptake was linear for incubation times up to 30 min, thus data were analyzed as true rates. Nonspecific uptake was corrected for by performing all experiments in the absence and presence of sodium. Sodium-independent uptake accounted for <10% of total uptake and was subtracted prior to any further data calculation.
- Dunlop, J. H.; McIlvain, B.; Carrick, T.; Jow, B.; Lu, Q.; Kowal, D.; Lin, S.; Greenfield, A.; Grosanu, C.; Fan, K.; Petroski, R.; Williams, J.; Foster, A.; Butera, J. *Mol. Pharmacol.* Fast Forward. Published on line 07/13/2005 as doi:10.1124/mol.105.012005.