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A biomimetic polyketide-inspired approach to
small-molecule ligand discovery
Claudio Aquino1, Mohosin Sarkar1,2, Michael J. Chalmers3, Kimberly Mendes1,2, Thomas Kodadek1,2*
and Glenn C. Micalizio1*

The discovery of new compounds for the pharmacological manipulation of protein function often embraces the screening of
compound collections, and it is widely recognized that natural products offer beneficial characteristics as protein ligands.
Much effort has therefore been focused on ‘natural product-like’ libraries, yet the synthesis and screening of such libraries
is often limited by one or more of the following: modest library sizes and structural diversity, conformational heterogeneity
and the costs associated with the substantial infrastructure of modern high-throughput screening centres. Here, we
describe the design and execution of an approach to this broad problem by merging principles associated with biologically
inspired oligomerization and the structure of polyketide-derived natural products. A novel class of chiral and
conformationally constrained oligomers is described (termed ‘chiral oligomers of pentenoic amides’, COPA), which offers
compatibility with split-and-pool methods and can be screened en masse in a batch mode. We demonstrate that a COPA
library containing 160,000 compounds is a useful source of novel protein ligands by identifying a non-covalent synthetic
ligand to the DNA-binding domain of the p53 transcription factor.

O
ligomerization is the central synthetic strategy by which
nature derives molecules with function. With only a small
collection of monomeric units, and bond-forming processes

compatible with the cellular environment, sequential union or
modular assembly (oligomerization) results in products that have
great molecular and functional diversity. Examples include
complex biological polymers like proteins, nucleic acids and carbo-
hydrates, as well as small-molecule natural products (fatty acids,
polyketides and terpenes). In contrast to nature’s modular approach
to molecular diversification, the impressive and elegant state-of-the-
art laboratory solutions typically take advantage of the strategic and
divergent reactivity of complex organic intermediates (here, the
unique reactivity of library members is used to alter the structure
of subpopulations within a library)1–4. Attempts to emulate
nature’s modular process for establishing molecular diversity have
delivered interesting compound classes (b-peptides, peptoids and
peptide nucleic acids; Fig. 1a) with a bio-inspired oligomeric frame-
work that is compatible with split-and-pool solid-phase synthesis5—
a powerful technology for the creation of large and diverse chemical
libraries6. However, a common limitation associated with such syn-
thetic oligomers is that they uniformly lack the conformational con-
straints typical of small-molecule natural products—a property that
probably limits their affinity for protein targets due to entropic
penalties incurred on assuming a particular bound conformation.
Here, we describe a new class of synthetic oligomers inspired by
natural products that overcome such limitations. In combination
with solid-phase split-and-pool chemistry and on-bead screening
technology, the science described defines a powerful new approach
to the discovery of small-molecule protein-binding ligands.

Results
Design of a new class of chiral and conformationally rigid
synthetic oligomers. Inspired by the power of modularity in
synthetic design and the mathematical merits of oligomerization

as a central theme for molecular diversification7,8, we
hypothesized that a new class of chiral and conformationally
constrained synthetic oligomers, where chirality could be readily
addressed in concert with local conformational preferences, would
define a substantial advance in discovery-oriented science. Not
being constrained by the desire to mimic the three-dimensional
motifs seen in biological macromolecules9–20, we turned to the
structures of polyketide-derived small-molecule natural products
for inspiration (Fig. 1b)21. Members of this class often
contain relatively simple stereochemically defined structural
motifs that, in combination, dictate their global conformational
preferences. With this molecular characteristic as a guiding
principle, we designed and executed a two-step iterative synthetic
pathway to polyketide-inspired oligomers termed ‘chiral oligomers
of pentenoic amides’ (COPAs; Fig. 1c), in which a central
N-substituted 5-amino-2,4-dialkyl-3-pentenoic amide provides a
rigid and chiral environment about each monomeric unit. The
control of conformation resulting from this motif is substantial,
and is based on the minimization of non-bonded steric
interactions about the a-branched trisubstituted alkene and
a-branched tertiary amide22. As illustrated in Fig. 1d, each of
these structural motifs imparts substantial rigidification, as the C2
proton is constrained to being in-plane with the C4-alkyl group
(that is, Me) and the R2-amide substituent (defining a rigid chiral
environment at each monomer), with the amide and alkyl
substitution emerging from this core being precisely oriented in
three-dimensional space.

Impact of stereochemistry on the structure of COPAs. Although
the local effect of stereochemistry and substitution within each
COPA core unit is clear (Fig. 1d), the combined influence of
distinct chiral subunits on the gross conformational preferences of
a COPA oligomer is more difficult to conceptualize or predict.
For an initial assessment of the potential unique properties of
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chiral COPA oligomers, we turned to molecular mechanics
calculations offered within Spartan-08 (Conformer Distribution,
MMFF model/Monte-Carlo algorithm). At the outset, we
embraced the notion that these calculations would only provide a
uniform lens through which to observe differences associated with
model oligomers, and would probably not depict relevant
solution-phase behaviour. That said, analysis of homogeneously
substituted oligomer backbones (COPA versus peptoid) with this
computational method leads to the identification of some striking
differences. First, for the COPA oligomer, the three-dimensional
structures of the lowest-energy conformers found within each
isomeric series (four random examples are depicted: RRRR, RRSS,
RSRS and RSSR) are unique with respect to one another, despite
their identical polymethylated substitution pattern (Fig. 2).
Second, the analysis of each stereoisomer resulted in the
identification of two or fewer conformers within 1.1 kcal mol21 of
the low-energy conformer found. Using the identical molecular
mechanics calculation for analysis of a polymethylated peptoid
tetramer (Mw¼ 371.4) and the larger peptoid octamer of related
molecular weight to the COPA tetramers analysed (Mw¼ 655.7),
seven and thirteen conformers were identified within
1.1 kcal mol21 of the low-energy conformation found for each
(this analysis includes the mirror images of the conformations
depicted). Although we are mindful of not over-interpreting the
results, the analysis described is consistent with the hypothesis
that COPAs are more conformationally restricted than peptoids,
and stereoisomeric COPA oligomers have disparate
conformational preferences.

Design and execution of solution- and solid-phase organic
chemistry for COPA library synthesis. Synthetically, COPAs
have been designed to be accessible using a ‘sub-monomer’ route
akin to that used in peptoid synthesis (Fig. 3a; 2 � 3)23–25. This
allows simple primary amines, of which hundreds are
commercially available, to be used as one of the diversity elements
in split-and-pool library synthesis—a critically important
characteristic to enable the synthesis of the large compound
collections necessary to increase the likelihood of finding
high-affinity hits in unbiased screens26. Furthermore, this design
was optimistically thought to be compatible with tandem mass
spectrometry (MS–MS) analysis, where compound from a single
bead would be sufficient to decode the precise structure of the

oligomer present. As such, one could avoid using an encoding
strategy to elucidate hit structure27.

To effect this strategy, we required a practical and scalable syn-
thesis of both antipodes of chloropentenoic acids such as 1
(Fig. 3b). Ideally, this synthesis would also be capable of delivering
future analogues of 1 with diverse C2 and C4 substitution.
Therefore, a convergent synthetic pathway was targeted to facilitate
future analogue generation that could avoid chromatographic puri-
fication at any step, proceed from readily available starting materials,
limit the use of air- and moisture-sensitive reagents, and deliver
chiral monomers with high levels of stereochemical fidelity. Our sol-
ution to this problem is outlined in Fig. 3b. Synthesis of the propio-
nyl oxazolidinone 4 was accomplished without the requirement of
a highly reactive base28, and the subsequent stereoselective aldol
reaction with methacrolein (6) was achieved under reaction con-
ditions that do not require pre-generation of a metal enolate29.
Isolated by simple filtration through silica, the TMS-ether 7 was
converted to the stereodefined allylic chloride 8 by Nb-mediated
stereoselective halogenation (E:Z ≥ 20:1)30. Although seemingly
difficult to accomplish in a highly selective fashion, hydrolysis of
the imide proceeded uneventfully (without significant hydrolysis
of the allylic chloride) and delivered 1 in 90% enantiomeric excess
(e.e.) and 41% overall yield. Notably, this synthesis procedure deli-
vers optically active 1 in acceptable yield and purity through a
simple four-step sequence that does not require a single chromato-
graphic operation (see Supplementary Information for details). As
an indication of the robust nature of this sequence, routine syntheses
of 1 (4 g) were performed in just a few days from 10 g of 4.

As depicted in Fig. 3c, solution-phase amide bond formation with a
simple secondary amine (via the mixed anhydride) proceeded effec-
tively, in this case delivering the chloroamide 10 in 94% yield.
Unlike related coupling reactions for the synthesis of peptides, no evi-
dence was found for epimerization of the potentially labile a-stereo-
centre of 10. Subsequent coupling with benzylamine proceeded in a
similarly straightforward manner, delivering aminoamide 11 in 82%
yield. This simple two-step sequence validated the central steps of
the proposed oligomerization of 1 and confirmed that chiral chloroa-
cids of this and related structures can be functionalized in a similar
manner to a-bromoacetic acid in peptoid synthesis.

Subsequent homologation of 11 with either enantiomer of 1
leads to the production of the corresponding dimers 12 and 13
with similarly high levels of efficiency. This success indicates that
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double asymmetric relationships between amine 11 and acid 1 have
little impact on chemical efficiency for this bond construction—a
critically important virtue of this chemistry, as split-and-pool tech-
niques will aim to prepare all combinations of stereochemistry along
the growing COPA backbone. With regard to this later consider-
ation associated with the projected application of this chemistry
in split-and-pool format, we recognize that oligomerization of
chiral monomers of 90% e.e. will result in the production of
minor diastereomers on each bead. The combinatorial nature of
this process, however, will ensure that the population contains
beads that present these minor impurities as major constituents.
In this way, a built-in control mechanism exists to aid in the analysis
of assay results, as the minor component on any particular bead will
be present as a major component on a different bead within the col-
lection. That said, we anticipate that conditions can be found in
future studies to crystallize intermediate 7 or 8 as a means to
attain isomeric homogeneity.

Establishing the value of COPA libraries as a source of protein
ligands. Moving forward to explore the utility of COPA oligomers
as a potential source of protein ligands, a library of tetramers was
prepared by split-and-pool methods. To be compatible with our
on-bead screening platform31, we selected 160 mm TentaGel beads
functionalized with a tetrameric polyamide (Fig. 3e), the structure
of which was selected to optimize subsequent MS-based structure
elucidation (see Supplementary Information for details). Targeting
a library of 160,000 members, we used ten primary amines and
two pentenoic acids as depicted in Fig. 3d. As we planned to
carry out structural elucidation by MS, we used a heavy atom
label (CD3 at C2) to correlate differences in the mass of fragment
ions with absolute stereochemistry of the chloropentenoic acid
monomer. Alongside these efforts, a library of peptoid tetramers

was prepared with the same amines used for the COPA library
(Fig. 3f) in an effort to establish a baseline for comparison
between these two synthetic oligomer platforms. Matrix assisted
laser desorption ionization (MALDI) mass spectra revealed a
single strong peak for the COPAs released from several individual
beads chosen randomly from the library, indicating that each bead
predominantly displays a single compound and that each
synthetic step proceeded in high yield.

Having established that the library was of high quality, it was
screened against the DNA-binding domain of p53, an important
transcription factor that regulates a variety of genes involved in
cell cycle control and apoptosis. More than half of human cancers
express inactive p53 due to the presence of missense mutations in
the DNA-binding domain (DBD) that destabilize the folding of
the protein32. There is considerable interest in the identification of
‘chemical chaperones’ whose binding to p53 might stabilize the
wild-type, functional, folded conformation33. Because transcription
factors are generally considered to be extremely challenging targets
for small molecules34, we considered p53 recognition a stringent test
of the utility of this new class of compounds.

Purified, bacterially expressed, FLAG-tagged p53–DBD (10 mM)
was incubated with the bead-displayed COPA library in the pres-
ence of high levels of competitor proteins to suppress non-specific
binding events. The beads were then washed and treated with
anti-FLAG antibody followed, after another washing step, by anti-
IgG antibodies conjugated to red quantum dots. The beads were
then examined under a low-power fluorescent microscope. Several
beads with a strong red halo surrounding them, indicating
binding of the quantum dot via the p53–FLAG/anti-FLAG anti-
body/anti-IgG–quantum dot sandwich complex, were observed
(Fig. 4a). These, as well as some beads with weaker staining, were
picked using a micropipette. In all, 22 beads were collected. Six of
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these putative hits proved to be ligands for either anti-FLAG anti-
body or the secondary antibody-conjugated quantum dots. The
same experiment was carried out with the peptoid library. In this
case, no obvious ‘hits’ with strong red halos were observed, but
several more weakly fluorescent beads were picked. The beads
were separated in wells of a microtitre plate and the oligomer was
released from the resin via CNBr-mediated cleavage of a methionine
residue in the linker.

Although strong precursor ion signals were observed in the
MALDI mass spectrum for the COPAs, sequence-specific product
ions were not produced via collision-induced dissociation.
Therefore, we attempted to sequence these molecules by means of
tandem electrospray ionization (ESI) mass spectrometry with elec-
tron transfer dissociation (ETD)35. This ETD approach proved
reasonably successful, and the sequences of 8 of the 16 COPA hits
could be determined unequivocally (Supplementary Fig. S7).
These eight molecules were re-synthesized with a fluorescein tag
(Supplementary Fig. S8) and tested for binding to p53 by fluor-
escence anisotropy. Two of the eight COPA molecules showed
clear binding to p53. The best of these, compound 14a (Fig. 4b,c),
bound to the p53 DBD with a Kd of �10 mM, but did not bind
detectably (Kd . 500 mM) to three control proteins. To the best of
our knowledge, COPA 14a constitutes the first non-covalent36

small-molecule ligand for the wild-type37 p53 DNA-binding
domain. The addition of an oligonucleotide that binds p53 tightly
did not disrupt the p53–COPA complex, indicating that the syn-
thetic ligand does not recognize the DNA-binding surface of the
p53 core domain (Supplementary Fig. S13).

The same set of experiments was carried out for the peptoids col-
lected as possible hits in the screening experiment. Not surprisingly,
given the low intensity of quantum dot fluorescence observed on the
beads, none of the peptoids exhibited binding to the p53 DNA-
binding domain (Kd . 500 mM). This is interesting in that the
COPA and peptoid libraries contained exactly the same amine-
derived side chains. Furthermore, controls with independently syn-
thesized COPA diastereomers of 14a and an achiral peptoid bearing
the identical amine side chains as 14a all showed a substantial
decrease of affinity for the p53 DBD (Supplementary Figs S11,
S12). Although more work will be required before definitive con-
clusions can be reached, the results of these experiments are consist-
ent with the proposition that conformationally constrained COPAs
may be superior to peptoids as a source of protein ligands.

Discussion
In summary, we have developed a new class of natural product-
inspired oligomeric compounds that promises to be a valuable
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source of protein ligands. COPAs are unusual among synthetic
small-molecule oligomers in that their stereodefined structure is
readily malleable and their backbone conformations are supported
by concepts long used in organic synthesis for acyclic stereocontrol
(such as minimization of A(1,3) interactions). These features offer a
unique and powerful means of addressing the disposition of all main
chain substituents in three-dimensional space38. In essence, we
describe a practical chemical solution to diversity-oriented library
construction that couples building-block diversity with substantial
scaffold diversity. This is noteworthy, because the desirability of
scaffold diversity in natural product-like libraries has been well
documented39, and current solutions to this problem require
careful synthesis planning to accomplish strategic and divergent
reactivity of complex organic intermediates in a library syn-
thesis40–42. Further compounding the virtues of COPAs as a chemi-
cal foundation to discovery-oriented science, the synthetic strategy
described here is completely compatible with split-and-pool solid-
phase synthesis, making very large libraries readily accessible.
Moreover, the highly practical and scalable synthesis of either opti-
cally pure antipode of the chloropentenoic acid building blocks (that
is, 1), combined with the use of simple primary amines as the source
of side-chain diversity, allows the synthesis of potentially millions of
compounds at modest cost. Finally, COPA libraries synthesized on
hydrophilic TentaGel beads can be used in a variety of inexpensive,
yet powerful, binding screens31,43,44, therefore eliminating the
requirement for a substantial infrastructure to maintain diverse

compound collections for use in traditional high-throughput
screening. We look forward to future developments that explore
the power of this chemistry in combination with available on-
bead screening technologies as a platform for the discovery of
bioactive synthetic molecules.
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published online 20 November 2011
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